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Question

» Does there exist u € L2 (Qt, d’;dy) and E > 0 with
—y*(2+82)u = E-u, and

2. 6@ = 0 (Neumann conditions)?

» Remark: Q; non-compact but finite measure.



Some answers

SIS

}

> Selberg proved ‘yes' if t € {%, %,



Some answers

» Selberg proved ‘yes' if t € {cos(7/3), cos(7/4), cos(7/6)}



Some answers

» Selberg proved ‘yes' if t € {cos(7/3), cos(7/4), cos(7/6)}

» Phillips and Sarnak conjectured ‘no’ if

t € {cos(m/n): n+#3,4,6}



Some answers

» Selberg proved ‘yes' if t € {cos(7/3), cos(7/4), cos(7/6)}

» Phillips and Sarnak conjectured ‘no’ if

t € {cos(m/n): n+#3,4,6}

Theorem (Hillairet-J.)

The answer is ‘no’ for all but countably many t €0, 1].

Goal of this talk: Describe some ingredients of the proof.
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v

I C Isom(H) cofinite discrete subgroup with ‘cusps’.

v

A : [2(H/T) — L2(H/T) non-negative self-adjoint operator.

v

spectral decomposition (Selberg)

Au = Y B, uk>uk+/(1/4—|—r2)<u, G)G, dr
keN R

v

Conjectured dichotomy (Sarnak):

[ ‘arithmetic’ < pure point spectrum has Weyl density 1.



Return to €2;: Fourier decomposition in x

> Does there exist u € L2 (Qt, dXTgZ> and E > 0 with
1 —y*(82+82)u = E-u, and

2. 2y =0 (Neumann conditions)?



Return to €2;: Fourier decomposition in x

> pure point vs. continuous spectrum explained by Fourier
decomposition:

» For u smooth Neumann function on Q; and y > 1,

) = 3 ult)-cos (% )

=0

» If u eigenfunction with eigenvalue E, then u’ satisfies the ODE

W= ()R
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Solutions to the ODE

» O(y) = y% (A -cos(r-In(y)) + B-r~t.sin(r- In(y)))
E=1/4+r?

» > 0: For y >> zero of ({n/t)> — E-y—2

14
ugwc-exp<i:-y>

» uis L? eigenfunction < u® =0 and u’ subexp
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Cut-off Laplacian (Lax-Phillips, Colin de Verdiere)

» Restrict A; to u € C§° with u®(y) =0fory >b>1

Friedrichs extension called the cut-off Laplacian AP.

v

v

(AL 4 I1d)~! compact, and eigendata real-analytic in t.

Awu=FEu = Abu=Eu

v

v

APu=FEuand l®(y)=0forl<y<b = Awu=Eu

» If t — u; analytic, then t — u2(y) is analytic.

Suffices to show 2 A® eigenbranches u; with 19 =0

v
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New ideas

Study eigenvalues of A? as t — 0.
Proof by contradiction:
» Each eigenvalue E; tends to zero,

» =0= E 40 («)

asymptotic separation of variables.

crossing avoidance.
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v

Map R onto £ 2 . via diffeo ‘supported’ on y < b.

v

q¢ pull-back of t times (A;-,-) to C§°(R)
> Expansion at t =0
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Horizontally stretched domain < 2 .

v

Rectangle R = [0, 1] x [1, 0]

v

Map R onto £ 2 . via diffeo ‘supported’ on y < b.

v

q¢ pull-back of t times (A;-,-) to C§°(R)

» Expansion at t =0

) = [ (0 + € ()?) dedy + O (e (1)

at(u)
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v

a; and g; nonnegative quadratic forms.

v
Nl
Nl

qe(u,v) = ar(u,v)] < C-t-ar(v)

-ar(v)

v

lg:(u) — ai(u)| < C-ay(u) (dot signifies t-derivative)

v

a(u) = 2t- [ u§ dx dy

at(v 2
>0 < t()S*,V#O
at(V) t
> positivity = each eigenvalue of a; converges as t — 0.
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A first consequence: convergence of eigenvalue branches

Proposition
If a; and q; asymptotic at first order and a; > 0, then each
real-analytic eigenvalue branch t — E; converges as t — 0.

Proof.

If u; is the associated eigenfunction branch, then
. - E 2
Ge(ur) = [ e

Since asymptotic at first order and since 8 > 0

—2C B Jue|? <€ —Cra(ue) < B [|uel?

for small t because asymptotic at first order.
Thus,

_2C§7

t



Quasimodes from spectral projections
» u eigenfunction of g; with respect to L?(dx dy/y?) norm:
gt(u,v) = E-{(u,v) forall v
» [ = interval in R.
» w := projection of u onto a; eigenspaces with A € /
Proposition
w is an a; quasimode at order t and energy E: For each v
|ac(w,v) — E-(w,v)| < C-t-|we]-[v]]
for all v. Moreover,

a(u—w) + [w—ul?> < C-t-lul?.



Consequences for real-analytic eigenbranches of g;

> t — u; eigenfunction branch of g; with eigenvalue E;.

» w; corresponding spectral projection associated to / C R

Proposition
a(we)

[[we[2

The function t — is integrable over 10, to|

and |a(we) — E¢ - |luel?| < C[|ue|
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2
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Variational formula in €2; context

To obtain finer information we use our specific context:

ae(u) = / (1)? + 22 ()2

ar(u) — E - |Ju]]® = /(ux)2+t2-(uy)2—5/;'2
2w = o) = E- Lol [ i ()

. 2 2 [E

a(u) = E(at(u)—E-HuH2)+ t/yZ-uz—Ug



Spectrum of a; via separation of variables

v

u(x,y) = >, u(y) - cos(m- £ - x)

v

ar(u) =Y ab(u’) where

Ly = > 2 ()2 02 2
() = [ (@ WF ) o

v

spectrum of a; = |J, spectra of al

¢ >0 = eigenvalue \; = (7/)? + c- t5 4 O(t) (Airy)

v



a2

bri) P
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Variation and non-concentration

> ais ‘diagonal’ with respect to a;, and so a; = Z éf where
¢

840) = 3 () - B vR) + 5 [ (Eey 2 = (wt) 02

Proposition (Nonconcentration at the turning point)

If w is an at quasimode of order t at energy E >> ({)?, then
there exists k > 0 so that for all small t

[ (52 - @) w? = e wl.



Et — (k7T)2

fr(gen) T

fray

» Integrality condition

&



Et — (k7T)2

X



Relatively small k-mode implies large variation
w! = projection of w; onto a; eigenspaces with \; — (/)2

Lemma
Let p < 1. There exists § > 0 such that for sufficiently small t




Crossings imply relatively small k-mode

Lemma
Let p < 1. If for sufficiently small n and t

dist(E;, spec(a?)) < n-t%

then
Iwf |/ lwell < p.

Idea of Proof:
(Ee=AD)-(ue, be) = (qe—ar) (e, 07) = t-be(ue, ¥¢)+O(£)- | uel|-[2]]-
ODE (Airy) approximation = there exists 6 > 0 so that
2
(be(ue, ) = 6 (Iwfll-e5 = o) well) - I1vf)
Here

bi(u) = 2t/<b p(y) - ux - u, dxdy
y<

with p is smooth and p(1) =1



Zeroth order approximation of proof of main theorem

» (— <) Suppose there exists u; with u; =0 and E; /4 0.

Eo > 0 = infinitely many eigenvalue branches of a? cross E;.

v

> previous two lemmas imply that at each crossing E: > %

» Summing over crossings leads to E; — 0.



Additional considerations for summing

» Frequency of crossings: 3 t, — 0 with E;, € spec(a;,) and

lim n-t,= k-In(b).

n—oo

» Width of crossings: \: € spec(a?) =

8
3

s —t| < t3 = dist(\s,spec(a?))

» ‘Tracking’: There exists unique eigenvalue branch \¥ of a¥ so
that |E; — \}| < Ct for t small.

> In truth, we use crossings to show that

/Ot (£~ 4:)ds > o(th).

a contradiction.
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