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Cauchy horizon of charged black holes

(subextremal) Reissner-Nordstrom-de Sitter spacetime

» solution of Einstein-Maxwell system,

» black hole mass M > 0, charge Q > 0,

» cosmological constant A > 0,

» topology: R;, x (0,00), x S?,

> metric: g = u(r)dt?> — p(r)~tdr?> — r’do?; t. =t — F(r).
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Cauchy horizon CH*: boundary of domain of uniqueness of
solution u to wave equation [lyu = 0 with Cauchy data on H,
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Blue-shift effect and strong cosmic censorship

(Simpson—Penrose '73.)

CHT

Observer A crosses CH™T in finite time.

Observer B lives forever.
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The maximal globally hyperbolic development of generic initial
data for Einstein's field equations is inextendible as a suitably
regular Lorentzian manifold.

Related work:
» Christodoulou (...,'99, '08),
» Dafermos (03, '05, '13),
» ongoing work by Dafermos—Luk, Luk—Oh.
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Theorem (Franzen, '14)

For C* initial data, u remains uniformly bounded near CH™.

Theorem (Luk—Oh, '15)

For generic C* initial data, u is not in HllOC near any point of CH™.
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Theorem (H.—Vasy, '15)

For C*° initial data on
Reissner—Nordstrom—de Sitter, u
solving Ugu = 0 has a partial
asymptotic expansion near i T,

u=uptu, up€C, |u(t.) Se ",

where o« > 0 depends only on the
spacetime. More precisely, u’ and its

derivatives tangential to CH™ lie in
e—Otx 1/2+a/k—0

k > 0: surface gravity of the Cauchy
horizon
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Energy estimates:

» Dafermos—Shlapentokh-Rothman ('15)
> Luk-Sbierski ('15)
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Analysis near the exterior region

Given u € e !t H% vanishing near H,
Ogu="feCZ,

study regularity and decay of u. (E.g. £ <0, sp =0.)

u is C*°. Quantitative bounds as t, — 00?
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Microlocal red-shift effect

Ugu = f € C°, u smooth.

c !

. L + _
Partial compactification CH R _7=0

suited for global analysis:

M := [0, 0),%(0, 00), xS,

where 7 = e7 b,

Propagation of singularities on ‘uniform’ version ® T*M of the
cotangent bundle down to 7 = 0. R: saddle point for the
null-geodesic flow lifted to > T*M.

If u€ e ™ H% near R, and sp > 1/2 + £/k, then u € e *&H>
near R.
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Meromorphic continuation and quantitative bounds for ﬁ\g(o*)_1
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Obtain:
u=ug+u, uwecC, vece “H>,



This gives asymptotics and decay in r > roy+ + €, € > 0.
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Setup for the extended problem

Study forcing problem Uzu = f, with u = 0 near H; U H ,.

CH™ He
/’ NZ- " Hra
A N
e Hrooqpt

(Add complex absorbing potential Q € \U% beyond CH™ to hide
additional trapping and H?. Study Oz —iQ.)
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Microlocal blue-shift effect
Ogu=f € C®. Work near CH". Recall 7 = e~ .

CH* =0 R

CH*

If ue e H > near R, and u € e **H? in a punctured
neighborhood of R within {7 = 0}, then u € e~***H® near R,
provided s < 1/2 4 {/k.
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Microlocal analysis of the extended problem

T=0
I\‘ Vf |
[T |
I,a| 1l i - T |
Fofl |
[ N |

N
|

He CHT HY H

Green arrows: Future directed timelike vectors.

Control u solving [lzu = f using standard hyperbolic theory near
dashed surfaces, and microlocal elliptic regularity and propagation
of singularities.
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Obtain
ulleet s S 10z Ulle—ete prs—1 + [[ulle—eee oo s
where

s>sy>1/2+4 (/K at WA,
s<1/2+/(/kat CH™.

(s is a variable order function, and ¢ < 0.)

If there are no resonances o with Imo = —/, have better error
term ||ul| o1yt yo = (non-elliptic) Fredholm problem!

Get solvability of extended problem [zu = f, and control of u
near CH™.
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u'(ty, ryw) is smooth in t,,w. (Haber-Vasy ‘13.)
HY/2H0(R,) < L®(R,) yields |u/(t.)] < et
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Other settings

Our methods apply directly to
» subextremal Kerr-de Sitter black holes, small angular
momentum a # 0,

» subextremal Kerr-Newman-de Sitter black holes, charge Q,
small angular momentum a # 0.

» differential forms (Maxwell)

With some additional work:

» symmetric 2-tensors (linearized gravity)

Only potential issue for large a: resonances in Imo > 0 (‘mode
stability,” see Whiting '89, Shlapentokh-Rothman '14 for Kerr)
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Outlook

Shallow resonances. Mode solution Cg(e™"7% v(x)) = 0 has
v e HY/2-Ima/s=0 5t CH+; could be C™ in principle. Study
location and regularity properties of shallow resonances.

N = 0. Localize analysis near black hole region; in the exterior,
polynomial decay according to Price’s law (Tataru '13,
Metcalfe-Tataru—Tohaneanu '12). Get polynomial decay near
CH™. (Luk-Sbierski '15, H. '15)

Nonlinear problems. Einstein's field equations. Work in progress by
Luk—Rodnianski, Dafermos—Luk, Luk—Oh.



