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Cauchy horizon of charged black holes
(subextremal) Reissner-Nordström-de Sitter spacetime

I solution of Einstein-Maxwell system,

I black hole mass M > 0, charge Q > 0,

I cosmological constant Λ > 0,

I topology: Rt∗ × (0,∞)r × S2,

I metric: g = µ(r) dt2 − µ(r)−1 dr2 − r2 dσ2; t∗ = t − F (r).



Cauchy horizon of charged black holes
(subextremal) Reissner-Nordström-de Sitter spacetime

I solution of Einstein-Maxwell system,

I black hole mass M > 0, charge Q > 0,

I cosmological constant Λ > 0,

I topology: Rt∗ × (0,∞)r × S2,

I metric: g = µ(r) dt2 − µ(r)−1 dr2 − r2 dσ2; t∗ = t − F (r).



Cauchy horizon of charged black holes
(subextremal) Reissner-Nordström-de Sitter spacetime

I solution of Einstein-Maxwell system,

I black hole mass M > 0, charge Q > 0,

I cosmological constant Λ > 0,

I topology: Rt∗ × (0,∞)r × S2,

I metric: g = µ(r) dt2 − µ(r)−1 dr2 − r2 dσ2; t∗ = t − F (r).



Penrose diagram:

Cauchy horizon CH+: boundary of domain of uniqueness of
solution u to wave equation �gu = 0 with Cauchy data on HI



Penrose diagram:

Cauchy horizon CH+: boundary of domain of uniqueness of
solution u to wave equation �gu = 0 with Cauchy data on HI
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Observer A crosses CH+ in finite time.

Observer B lives forever.
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Conjecture (Penrose’s Strong Cosmic Censorship)

The maximal globally hyperbolic development of generic initial
data for Einstein’s field equations is inextendible as a suitably
regular Lorentzian manifold.

Related work:

I Christodoulou (. . . ,’99, ’08),

I Dafermos (’03, ’05, ’13),

I ongoing work by Dafermos–Luk, Luk–Oh.
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Toy model: linear wave equation

Cauchy problem for �gu = 0 on
Reissner–Nordström.

Theorem (Franzen, ’14)

For C∞ initial data, u remains uniformly bounded near CH+.

Theorem (Luk–Oh, ’15)

For generic C∞ initial data, u is not in H1
loc near any point of CH+.
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Theorem (H.–Vasy, ’15)

For C∞ initial data on
Reissner–Nordström–de Sitter, u
solving �gu = 0 has a partial
asymptotic expansion near i+,

u = u0+u′, u0 ∈ C, |u′(t∗)| . e−αt∗ ,

where α > 0 depends only on the
spacetime.

More precisely, u′ and its
derivatives tangential to CH+ lie in
e−αt∗H1/2+α/κ−0.

κ > 0: surface gravity of the Cauchy
horizon
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Analysis near the exterior region

Given u ∈ e−`t∗Hs0 , vanishing near HI ,

�gu = f ∈ C∞c ,

study regularity and decay of u.

(E.g. `� 0, s0 = 0.)

u is C∞. Quantitative bounds as t∗ →∞?
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Microlocal red-shift effect

�gu = f ∈ C∞c , u smooth.

Partial compactification
suited for global analysis:

M := [0,∞)τ×(0,∞)r×S2,

where τ = e−t∗ .

Propagation of singularities on ‘uniform’ version bT ∗M of the
cotangent bundle down to τ = 0. R: saddle point for the
null-geodesic flow lifted to bT ∗M.

If u ∈ e−`t∗Hs0 near R, and s0 > 1/2 + `/κ, then u ∈ e−`t∗H∞

near R.
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Resonance expansions

‘Spectral’ family �̂g (σ) = e it∗σ�ge−it∗σ.

Meromorphic continuation and quantitative bounds for �̂g (σ)−1

(Mazzeo–Melrose ’87, Guillarmou ’04, Vasy ’13, Wunsch–Zworski
’11, Dyatlov ’11–’15). Poles: resonances.

Obtain:
u = u0 + u′, u0 ∈ C, u′ ∈ e−αt∗H∞.
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This gives asymptotics and decay in r ≥ rCH+ + ε, ε > 0.



Analysis near the Cauchy horizon
Need to work in domain containing CH+. Choice of extension does
not affect waves in r > rCH+!

Modify spacetime beyond CH+: Add artificial exterior region.

g̃ = µ∗ dt2 − µ−1∗ dr2 − r2 dσ2.
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Setup for the extended problem

Study forcing problem �g̃u = f , with u = 0 near HI ∪ HI ,a.

(Add complex absorbing potential Q ∈ Ψ2
b beyond CH+ to hide

additional trapping and Ha. Study �g̃ − iQ.)
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Microlocal blue-shift effect

�g̃u = f ∈ C∞c . Work near CH+. Recall τ = e−t∗ .

If u ∈ e−`t∗H−∞ near R, and u ∈ e−`t∗Hs in a punctured
neighborhood of R within {τ = 0}, then u ∈ e−`t∗Hs near R,
provided s < 1/2 + `/κ.
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Microlocal analysis of the extended problem

Green arrows: Future directed timelike vectors.

Control u solving �g̃u = f using standard hyperbolic theory near
dashed surfaces, and microlocal elliptic regularity and propagation
of singularities.
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Obtain

‖u‖e−`t∗Hs . ‖�g̃u‖e−`t∗Hs−1 + ‖u‖e−`t∗Hs0 ,

where

s > s0 > 1/2 + `/κ at H+,H+
,

s < 1/2 + `/κ at CH+.

(s is a variable order function, and ` < 0.)

If there are no resonances σ with Imσ = −`, have better error
term ‖u‖e−(`−1)t∗Hs0 ⇒ (non-elliptic) Fredholm problem!

Get solvability of extended problem �g̃u = f , and control of u
near CH+.
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Resonance expansion

Solution u of �g̃u = f has partial expansion

u|r>rCH+ = u0 + u′, u0 ∈ C, u′ ∈ e−αt∗H1/2+α/κ−0 near CH+.

α > 0: spectral gap of �g .

u′(t∗, r , ω) is smooth in t∗, ω. (Haber-Vasy ‘13.)
H1/2+0(Rr ) ↪→ L∞(Rr ) yields |u′(t∗)| . e−αt∗ .
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Other settings

Our methods apply directly to

I subextremal Kerr-de Sitter black holes, small angular
momentum a 6= 0,

I subextremal Kerr-Newman-de Sitter black holes, charge Q,
small angular momentum a 6= 0.

I differential forms (Maxwell)

With some additional work:

I symmetric 2-tensors (linearized gravity)

Only potential issue for large a: resonances in Imσ ≥ 0 (‘mode
stability,’ see Whiting ’89, Shlapentokh-Rothman ’14 for Kerr)
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Outlook

Shallow resonances. Mode solution �g (e−iσt∗v(x)) = 0 has
v ∈ H1/2−Imσ/κ−0 at CH+; could be C∞ in principle. Study
location and regularity properties of shallow resonances.

Λ = 0. Localize analysis near black hole region; in the exterior,
polynomial decay according to Price’s law (Tataru ’13,
Metcalfe–Tataru–Tohaneanu ’12). Get polynomial decay near
CH+. (Luk–Sbierski ’15, H. ’15)

Nonlinear problems. Einstein’s field equations. Work in progress by
Luk–Rodnianski, Dafermos–Luk, Luk–Oh.
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