Regularity of linear waves at the Cauchy horizon of black hole spacetimes

Peter Hintz joint with András Vasy

> Luminy April 29, 2016

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cauchy horizon of charged black holes (subextremal) Reissner-Nordström-de Sitter spacetime

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- solution of Einstein-Maxwell system,
- black hole mass M > 0, charge Q > 0,

Cauchy horizon of charged black holes

(subextremal) Reissner-Nordström-de Sitter spacetime

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- solution of Einstein-Maxwell system,
- black hole mass M > 0, charge Q > 0,
- cosmological constant $\Lambda > 0$,

Cauchy horizon of charged black holes

(subextremal) Reissner-Nordström-de Sitter spacetime

- solution of Einstein-Maxwell system,
- black hole mass M > 0, charge Q > 0,
- cosmological constant Λ > 0,
- ▶ topology: $\mathbb{R}_{t_*} imes (0, \infty)_r imes \mathbb{S}^2$,
- metric: $g = \mu(r) dt^2 \mu(r)^{-1} dr^2 r^2 d\sigma^2$; $t_* = t F(r)$.

イロト イポト イヨト イヨト 一日

Penrose diagram:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Penrose diagram:

Cauchy horizon CH^+ : boundary of domain of uniqueness of solution u to wave equation $\Box_g u = 0$ with Cauchy data on H_I

・ロト・日本・日本・日本・日本・日本

Blue-shift effect and strong cosmic censorship

(Simpson–Penrose '73.)

Observer A crosses CH^+ in finite time.

Blue-shift effect and strong cosmic censorship

(Simpson-Penrose '73.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observer *A* crosses CH^+ in finite time.

Observer **B** lives forever.

Conjecture (Penrose's Strong Cosmic Censorship)

The maximal globally hyperbolic development of generic initial data for Einstein's field equations is inextendible as a suitably regular Lorentzian manifold.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture (Penrose's Strong Cosmic Censorship)

The maximal globally hyperbolic development of generic initial data for Einstein's field equations is inextendible as a suitably regular Lorentzian manifold.

Related work:

- Christodoulou (...,'99, '08),
- Dafermos ('03, '05, '13),
- ongoing work by Dafermos-Luk, Luk-Oh.

Toy model: linear wave equation

Cauchy problem for $\Box_g u = 0$ on Reissner–Nordström.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Toy model: linear wave equation

Cauchy problem for $\Box_g u = 0$ on Reissner–Nordström.

Theorem (Franzen, '14)

For C^{∞} initial data, u remains uniformly bounded near CH^+ .

Toy model: linear wave equation

Cauchy problem for $\Box_g u = 0$ on Reissner–Nordström.

Theorem (Franzen, '14)

For \mathcal{C}^{∞} initial data, u remains uniformly bounded near \mathcal{CH}^+ .

Theorem (Luk–Oh, '15)

For generic C^{∞} initial data, u is **not** in H^1_{loc} near any point of CH^+ .

Theorem (H.–Vasy, '15) For C^{∞} initial data on Reissner–Nordström–de Sitter, u solving $\Box_g u = 0$ has a partial asymptotic expansion near i^+ ,

$$u = u_0 + u', \quad u_0 \in \mathbb{C}, \ |u'(t_*)| \lesssim e^{-\alpha t_*},$$

where $\alpha > 0$ depends only on the spacetime.

Theorem (H.–Vasy, '15) For C^{∞} initial data on Reissner–Nordström–de Sitter, u solving $\Box_g u = 0$ has a partial asymptotic expansion near i^+ ,

$$u = u_0 + u', \quad u_0 \in \mathbb{C}, \ |u'(t_*)| \lesssim e^{-\alpha t_*},$$

where $\alpha > 0$ depends only on the spacetime. More precisely, u' and its derivatives tangential to \mathcal{CH}^+ lie in $e^{-\alpha t_*} H^{1/2+\alpha/\kappa-0}$.

◆□> ◆□> ◆豆> ◆豆> □目

Theorem (H.–Vasy, '15) For C^{∞} initial data on Reissner–Nordström–de Sitter, u solving $\Box_g u = 0$ has a partial asymptotic expansion near i^+ ,

$$u = u_0 + u', \quad u_0 \in \mathbb{C}, \ |u'(t_*)| \lesssim e^{-\alpha t_*},$$

where $\alpha > 0$ depends only on the spacetime. More precisely, u' and its derivatives tangential to \mathcal{CH}^+ lie in $e^{-\alpha t_*} H^{1/2+\alpha/\kappa-0}$.

 $\kappa > 0$: surface gravity of the Cauchy horizon

Previous work

Microlocal analysis/scattering theory approach:

- Melrose ('93)
- Sá Barreto–Zworski ('97), Bony–Häfner ('08)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Melrose–Sá Barreto–Vasy ('14)
- Wunsch–Zworski ('11), Dyatlov ('11–'15)

Previous work

Microlocal analysis/scattering theory approach:

- Melrose ('93)
- Sá Barreto–Zworski ('97), Bony–Häfner ('08)
- Melrose–Sá Barreto–Vasy ('14)
- Wunsch–Zworski ('11), Dyatlov ('11–'15)
- Vasy ('13), H.–Vasy ('13)

Energy estimates:

Dafermos–Shlapentokh-Rothman ('15)

Luk–Sbierski ('15)

Analysis near the exterior region

Given $u \in e^{-\ell t_*} H^{s_0}$, vanishing near H_I ,

$$\Box_g u = f \in \mathcal{C}^{\infty}_{c},$$

イロト イポト イヨト イヨト

э

study regularity and decay of u.

Analysis near the exterior region

Given $u \in e^{-\ell t_*} H^{s_0}$, vanishing near H_I ,

$$\Box_g u = f \in \mathcal{C}^{\infty}_{\mathrm{c}},$$

イロト イポト イヨト イヨト

-

study regularity and decay of u. (E.g. $\ell \ll 0$, $s_0 = 0$.)

Analysis near the exterior region

Given $u \in e^{-\ell t_*} H^{s_0}$, vanishing near H_I ,

$$\Box_g u = f \in \mathcal{C}^{\infty}_{c},$$

イロト 不得 トイヨト イヨト

э

study regularity and decay of u. (E.g. $\ell \ll 0$, $s_0 = 0$.) u is C^{∞} . Quantitative bounds as $t_* \to \infty$?

 $\Box_g u = f \in \mathcal{C}^{\infty}_{c}$, u smooth.

 $\Box_g u = f \in \mathcal{C}^{\infty}_{c}$, u smooth.

Partial compactification suited for global analysis:

$$M:=[0,\infty)_{\tau}\times(0,\infty)_{r}\times\mathbb{S}^{2},$$

where $\tau = e^{-t_*}$.

 $\Box_g u = f \in \mathcal{C}^{\infty}_{c}$, u smooth.

Partial compactification suited for global analysis:

$$M:=[0,\infty)_{\tau}\times(0,\infty)_{r}\times\mathbb{S}^{2},$$

where $\tau = e^{-t_*}$.

Propagation of singularities on 'uniform' version ${}^{\mathrm{b}}T^*M$ of the cotangent bundle down to $\tau = 0$. \mathcal{R} : saddle point for the null-geodesic flow lifted to ${}^{\mathrm{b}}T^*M$.

 $\Box_g u = f \in \mathcal{C}^{\infty}_{c}$, u smooth.

Partial compactification suited for global analysis:

$$M:=[0,\infty)_{\tau}\times(0,\infty)_{r}\times\mathbb{S}^{2},$$

where $\tau = e^{-t_*}$.

Propagation of singularities on 'uniform' version ${}^{\mathrm{b}}T^*M$ of the cotangent bundle down to $\tau = 0$. \mathcal{R} : saddle point for the null-geodesic flow lifted to ${}^{\mathrm{b}}T^*M$.

If $u \in e^{-\ell t_*} H^{s_0}$ near \mathcal{R} , and $s_0 > 1/2 + \ell/\kappa$, then $u \in e^{-\ell t_*} H^{\infty}$ near \mathcal{R} .

'Spectral' family $\widehat{\Box_g}(\sigma) = e^{it_*\sigma} \Box_g e^{-it_*\sigma}$.

'Spectral' family
$$\widehat{\Box_g}(\sigma) = e^{it_*\sigma} \Box_g e^{-it_*\sigma}$$
.

Meromorphic continuation and quantitative bounds for $\widehat{\Box}_{g}(\sigma)^{-1}$ (Mazzeo–Melrose '87, Guillarmou '04, Vasy '13, Wunsch–Zworski '11, Dyatlov '11–'15). Poles: resonances.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

'Spectral' family
$$\widehat{\Box_g}(\sigma) = e^{it_*\sigma} \Box_g e^{-it_*\sigma}$$
.

Meromorphic continuation and quantitative bounds for $\widehat{\Box}_g(\sigma)^{-1}$ (Mazzeo–Melrose '87, Guillarmou '04, Vasy '13, Wunsch–Zworski '11, Dyatlov '11–'15). Poles: resonances.

'Spectral' family
$$\widehat{\Box_g}(\sigma) = e^{it_*\sigma} \Box_g e^{-it_*\sigma}$$
.

Meromorphic continuation and quantitative bounds for $\widehat{\Box}_g(\sigma)^{-1}$ (Mazzeo–Melrose '87, Guillarmou '04, Vasy '13, Wunsch–Zworski '11, Dyatlov '11–'15). Poles: resonances.

Obtain:

$$u = u_0 + u', \quad u_0 \in \mathbb{C}, \ u' \in e^{-\alpha t_*} H^{\infty}$$

This gives asymptotics and decay in $r \ge r_{CH^+} + \epsilon$, $\epsilon > 0$.

Analysis near the Cauchy horizon

Need to work in domain containing CH^+ . Choice of extension does not affect waves in $r > r_{CH^+}!$

Analysis near the Cauchy horizon

Need to work in domain containing CH^+ . Choice of extension does not affect waves in $r > r_{CH^+}!$

Modify spacetime beyond CH^+ : Add artificial exterior region.

Analysis near the Cauchy horizon

Need to work in domain containing CH^+ . Choice of extension does not affect waves in $r > r_{CH^+}!$

Modify spacetime beyond CH^+ : Add artificial exterior region.

ъ

Setup for the extended problem

Study forcing problem $\Box_{\widetilde{g}} u = f$, with u = 0 near $H_I \cup H_{I,a}$.

イロト イポト イヨト イヨト

э

Setup for the extended problem

Study forcing problem $\Box_{\widetilde{g}} u = f$, with u = 0 near $H_I \cup H_{I,a}$.

(Add complex absorbing potential $Q \in \Psi_{\rm b}^2$ beyond $C\mathcal{H}^+$ to hide additional trapping and \mathcal{H}^a . Study $\Box_{\tilde{g}} - iQ$.)

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

 $\Box_{\widetilde{g}} u = f \in \mathcal{C}^{\infty}_{c}$. Work near \mathcal{CH}^{+} . Recall $\tau = e^{-t_{*}}$.

 $\Box_{\widetilde{g}} u = f \in \mathcal{C}^{\infty}_{c}$. Work near \mathcal{CH}^{+} . Recall $\tau = e^{-t_{*}}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\Box_{\widetilde{g}} u = f \in \mathcal{C}^{\infty}_{c}$. Work near \mathcal{CH}^{+} . Recall $\tau = e^{-t_{*}}$.

If $u \in e^{-\ell t_*} H^{-\infty}$ near \mathcal{R} , and $u \in e^{-\ell t_*} H^s$ in a punctured neighborhood of \mathcal{R} within $\{\tau = 0\}$, then $u \in e^{-\ell t_*} H^s$ near \mathcal{R} , provided $s < 1/2 + \ell/\kappa$.

Microlocal analysis of the extended problem

Green arrows: Future directed timelike vectors.

Microlocal analysis of the extended problem

Green arrows: Future directed timelike vectors.

Control *u* solving $\Box_{\tilde{g}} u = f$ using standard hyperbolic theory near dashed surfaces, and microlocal elliptic regularity and propagation of singularities.

$$\|u\|_{e^{-\ell t_*}H^s} \lesssim \|\Box_{\widetilde{g}} u\|_{e^{-\ell t_*}H^{s-1}} + \|u\|_{e^{-\ell t_*}H^{s_0}},$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where

$$\|u\|_{e^{-\ell t_*}H^s} \lesssim \|\Box_{\widetilde{g}} u\|_{e^{-\ell t_*}H^{s-1}} + \|u\|_{e^{-\ell t_*}H^{s_0}},$$

where

$$s>s_0>1/2+\ell/\kappa$$
 at $\mathcal{H}^+,\overline{\mathcal{H}}^+,$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\|u\|_{e^{-\ell t_*}H^s} \lesssim \|\Box_{\widetilde{g}} u\|_{e^{-\ell t_*}H^{s-1}} + \|u\|_{e^{-\ell t_*}H^{s_0}},$$

where

$$egin{aligned} s > s_0 > 1/2 + \ell/\kappa \ \mbox{at} \ \mathcal{H}^+, \overline{\mathcal{H}}^+, \ s < 1/2 + \ell/\kappa \ \mbox{at} \ \mathcal{CH}^+. \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

(s is a variable order function, and $\ell < 0$.)

$$\|u\|_{e^{-\ell t_*}H^s} \lesssim \|\Box_{\widetilde{g}} u\|_{e^{-\ell t_*}H^{s-1}} + \|u\|_{e^{-\ell t_*}H^{s_0}},$$

where

$$s > s_0 > 1/2 + \ell/\kappa$$
 at $\mathcal{H}^+, \overline{\mathcal{H}}^+,$
 $s < 1/2 + \ell/\kappa$ at $\mathcal{CH}^+.$

(s is a variable order function, and $\ell < 0$.) If there are no resonances σ with Im $\sigma = -\ell$, have better error term $\|u\|_{e^{-(\ell-1)t_*}H^{s_0}}$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\|u\|_{e^{-\ell t_*}H^s} \lesssim \|\Box_{\widetilde{g}} u\|_{e^{-\ell t_*}H^{s-1}} + \|u\|_{e^{-\ell t_*}H^{s_0}},$$

where

$$s > s_0 > 1/2 + \ell/\kappa$$
 at $\mathcal{H}^+, \overline{\mathcal{H}}^+,$
 $s < 1/2 + \ell/\kappa$ at $\mathcal{CH}^+.$

(s is a variable order function, and $\ell < 0$.)

If there are no resonances σ with Im $\sigma = -\ell$, have better error term $||u||_{e^{-(\ell-1)t_*}H^{s_0}} \Rightarrow$ (non-elliptic) Fredholm problem!

$$\|u\|_{e^{-\ell t_*}H^s} \lesssim \|\Box_{\widetilde{g}} u\|_{e^{-\ell t_*}H^{s-1}} + \|u\|_{e^{-\ell t_*}H^{s_0}},$$

where

$$s > s_0 > 1/2 + \ell/\kappa$$
 at $\mathcal{H}^+, \overline{\mathcal{H}}^+,$
 $s < 1/2 + \ell/\kappa$ at $\mathcal{CH}^+.$

(s is a variable order function, and $\ell < 0$.)

If there are no resonances σ with Im $\sigma = -\ell$, have better error term $\|u\|_{e^{-(\ell-1)t_*}H^{s_0}} \Rightarrow$ (non-elliptic) Fredholm problem!

Get solvability of extended problem $\Box_{\widetilde{g}} u = f$, and control of u near \mathcal{CH}^+ .

Solution u of $\Box_{\widetilde{g}} u = f$ has partial expansion

$$|u|_{r>r_{\mathcal{CH}^+}} = u_0 + u', \quad u_0 \in \mathbb{C}, \ u' \in e^{-\alpha t_*} \mathcal{H}^{1/2 + \alpha/\kappa - 0} \ \text{near} \ \mathcal{CH}^+.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Solution u of $\Box_{\widetilde{g}} u = f$ has partial expansion

$$u|_{r>r_{\mathcal{CH}^+}} = u_0 + u', \quad u_0 \in \mathbb{C}, \ u' \in e^{-\alpha t_*} \mathcal{H}^{1/2 + \alpha/\kappa - 0} \text{ near } \mathcal{CH}^+.$$

 $\alpha > 0$: spectral gap of \Box_g .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Solution u of $\Box_{\widetilde{g}} u = f$ has partial expansion

$$u|_{r>r_{\mathcal{CH}^+}} = u_0 + u', \quad u_0 \in \mathbb{C}, \ u' \in e^{-\alpha t_*} \mathcal{H}^{1/2 + \alpha/\kappa - 0} \text{ near } \mathcal{CH}^+.$$

 $\alpha > 0$: spectral gap of \Box_g .

 $u'(t_*, r, \omega)$ is smooth in t_*, ω . (Haber-Vasy '13.)

Solution u of $\Box_{\widetilde{g}} u = f$ has partial expansion

$$|u|_{r>r_{\mathcal{CH}^+}} = u_0 + u', \quad u_0 \in \mathbb{C}, \ u' \in e^{-\alpha t_*} \mathcal{H}^{1/2 + \alpha/\kappa - 0} \text{ near } \mathcal{CH}^+.$$

 $\alpha > 0$: spectral gap of \Box_g .

 $u'(t_*, r, \omega)$ is smooth in t_*, ω . (Haber-Vasy '13.) $H^{1/2+0}(\mathbb{R}_r) \hookrightarrow L^{\infty}(\mathbb{R}_r)$ yields $|u'(t_*)| \lesssim e^{-\alpha t_*}$.

Our methods apply directly to

 subextremal Kerr-de Sitter black holes, small angular momentum a ≠ 0,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our methods apply directly to

- ► subextremal Kerr-de Sitter black holes, small angular momentum a ≠ 0,
- ► subextremal Kerr-Newman-de Sitter black holes, charge Q, small angular momentum $a \neq 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our methods apply directly to

- ► subextremal Kerr-de Sitter black holes, small angular momentum a ≠ 0,
- ► subextremal Kerr-Newman-de Sitter black holes, charge Q, small angular momentum $a \neq 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

differential forms (Maxwell)

Our methods apply directly to

- ► subextremal Kerr-de Sitter black holes, small angular momentum a ≠ 0,
- ► subextremal Kerr-Newman-de Sitter black holes, charge Q, small angular momentum $a \neq 0$.

differential forms (Maxwell)

With some additional work:

symmetric 2-tensors (linearized gravity)

Our methods apply directly to

- Subextremal Kerr-de Sitter black holes, small angular momentum a ≠ 0,
- subextremal Kerr-Newman-de Sitter black holes, charge Q, small angular momentum a ≠ 0.
- differential forms (Maxwell)

With some additional work:

symmetric 2-tensors (linearized gravity)

Only potential issue for large *a*: resonances in $\text{Im } \sigma \ge 0$ ('mode stability,' see Whiting '89, Shlapentokh-Rothman '14 for Kerr)

Outlook

Shallow resonances. Mode solution $\Box_g(e^{-i\sigma t_*}v(x)) = 0$ has $v \in H^{1/2-\operatorname{Im} \sigma/\kappa-0}$ at \mathcal{CH}^+ ; could be \mathcal{C}^∞ in principle. Study location and regularity properties of shallow resonances.

Outlook

- Shallow resonances. Mode solution $\Box_g(e^{-i\sigma t_*}v(x)) = 0$ has $v \in H^{1/2-\operatorname{Im} \sigma/\kappa-0}$ at \mathcal{CH}^+ ; could be \mathcal{C}^∞ in principle. Study location and regularity properties of shallow resonances.
- Λ = 0. Localize analysis near black hole region; in the exterior, polynomial decay according to Price's law (Tataru '13, Metcalfe–Tataru–Tohaneanu '12). Get polynomial decay near CH⁺. (Luk–Sbierski '15, H. '15)

Outlook

- Shallow resonances. Mode solution $\Box_g(e^{-i\sigma t_*}v(x)) = 0$ has $v \in H^{1/2-\operatorname{Im} \sigma/\kappa-0}$ at \mathcal{CH}^+ ; could be \mathcal{C}^∞ in principle. Study location and regularity properties of shallow resonances.
- Λ = 0. Localize analysis near black hole region; in the exterior, polynomial decay according to Price's law (Tataru '13, Metcalfe–Tataru–Tohaneanu '12). Get polynomial decay near CH⁺. (Luk–Sbierski '15, H. '15)
- Nonlinear problems. Einstein's field equations. Work in progress by Luk-Rodnianski, Dafermos-Luk, Luk-Oh.