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Truncation (computer arithmetic).

Restricting coordinates to a discrete field (ring, module).

Geometric discretization.

Reduction to a finite field.
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Very large lattice (248 x 248 points).

90 hours of CPU on the Cray-I computer.

Detected non-exponential correlation decay 
caused by structure of chaos boundary.

Early investigations:
C. Karney (1982)
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Injective maps become strongly 
non-injective.

Irreversible behaviour: long 
transients, short limit cycles.

Points of a limit cycle arrange 
themselves according to the 
invariant measure.
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Take a planar rotation, of infinite order.

Force it on a lattice via a translation-invariant round-off procedure in 
such a way that the lattice map remains invertible.
Invariably, all orbits will be found to be periodic, but not a single 
example is known where this has been proved.

What do we know?

orbits overlap:

no bounding 
invariant sets.
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Take a planar rotation, of infinite order.

Force it on a lattice via a translation-invariant round-off procedure in 
such a way that the lattice map remains invertible.
Invariably, all orbits will be found to be periodic, but not a single 
example is known where this has been proved.

If l is rational with a single prime divisor p 
at denominator, then the round-off map may 
be embedded into a positive-entropy map 
of the ring of p-adic integers. [Bosio, fv]
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orbits overlap:

no bounding 
invariant sets.
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Difficult to compute.
Very large fluctuations, within a 
highly organised structure.
Average order is linear.
Normalized period T(r)/r admits a 
piecewise-smooth distribution.
At infinity, the orbits approach the 
invariant curves (in the Hausdorff 
metric).

r6/5

 Observations:

r3/5

 Results:
The departure of round-off orbits from exact orbits obeys a central limit 
theorem. [Vladimirov, fv]

The period function is defined at infinitely many points on the symmetry 
axis. [Akiyama]
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Establishing the stability of regular orbits with round-off requires 
knowledge of the fluctuations of the associated period function.

Look for different discrete structures, for which bounding 
invariant sets exist.

Look for systems with more manageable (zero entropy) 
fluctuations.

?
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A flow with a piecewise-constant 
vector field is diffracted by a line

replace the flow 
by a map, using 

the same vectors

flow and map differ 
within a strip

The lattice 
generated by the 

vectors is invariant 
under the map
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stability.

If the rationality conditions are not satisfied, then there are unbounded 
orbits (Schwartz, 2007).
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A discrete twist map of the torus

There is a small number of very long cycles.
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A discrete twist map of the torus

There is a small number of very long cycles.

Islands of stability exist, for selected rotation numbers.
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A discrete twist map of the torus

There is a small number of very long cycles.

Islands of stability exist, for selected rotation numbers.

what is the 
motion inside an 

island?
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The local map for an island

A NONLINEAR RESONANCE ON A DISCRETE SPACE

1. INTRODUCTION

Regular motions in two-dimensional symplectic maps are rotations on smooth
invariant curves. If the space is discrete, then lack of smoothness is commonplace,
and new phenomena arise. These phenomena have attracted the attention of re-
searchers for many years, but the present developments do not form a coherent
body of knowledge, let alone a mathematical theory.

Following the pioneering work of Rannou [?], the space has been discretised for
the most varied reasons: to achieve invertibility in a delicate numerical experiment
[?], to mimic quantum effects in classical systems [?], to characterize chaotic orbits
arithmetically [?, ?, ?, ?], to explore the structure of numerical orbits [?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Discrete spaces emerge naturally in the study study of
piecewise isometric systems [?, ?], and in shift-radix systems in arithmetic [?, ?].

The stability problem remains in centre stage, but it assumes different connota-
tions. The main difficulty is lack of smoothness: there are no invariant ‘circles’
to confine orbits, and standard methods of Hamiltonian perturbation theory do not
apply. Many of the systems mentioned above are found to be globally stable, even
though this result has been established only in few cases.

In this work we investigate a prototypical parametrised family of twist maps on a
lattice, given by [?]

(1) F : Z2 ! Z2 yt+1 = yt � sign(xt)
xt+1 = xt +ayt+1 +b 0 6 b < a

where a and b are integers and

sign(x) =

(
1 if x > 0
�1 if x < 0.

This map is chosen for two reasons: it features nonlinear oscillations in skeletal
form; its dynamics have an immediate arithmetical interpretation. The latter results
from the fact that the first-return map F to the ray {(x,0)2Z2 : x> 0} is an interval-
exchange transformation over infinitely many intervals. At large amplitudes, this
map admits a weak form of translational invariance. As a result, the orbits are either
all periodic, or they all escape to infinity, depending on the choice of parameters.

The map F will be constructed in section ??, where we also establish a sym-
metry that allows us to restrict the parameters to the range a > 2b (propositions
?? and ??). In section ?? we show that F is an interval-exchange transformation
over infinitely many intervals. The main result of this section establishes that the

1
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Conjecture (Zhang, fv).  If gcd(a,2b) is odd, then all orbits are periodic, and 
their period, sufficiently far from the origin, eventually becomes constant. 
Otherwise all orbits are unbounded.
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The Poincaré return map is an interval-exchange transformation over the 
integers, with infinitely many intervals.

1 2 3 4 5 6 7 8

2 4 1 6 3 8 5 10 7

Asymptotically, after scaling, this structure becomes spatially periodic,

with the same combinatorics.

a-2b 2b
a

+4b-(a-2b)

The conjecture is true for the scaled system (from symmetry and 
uniform distribution modulo a).
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