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Truncation (computer arithmetic).

Restricting coordinates to a discrete field (ring, module).

Geometric discretization.

Reduction to a finite field.
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Floating-point dynamics

¥ Injective maps become strongly
non-injective.

= Irreversible behaviour: long
transients, short limit cycles.

® Points of a limit cycle arrange
themselves according to the
iInvariant measure.
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The period function (period vs. height)

Observations:

Difficult to compute.

Very large fluctuations, within a
highly organised structure.

Average order is linear.

I'(r)
Normalized period T(r)/rad%’csa\m3
piecewise-smooth distribution.

At infinity, the orbits approach the
invariant curves (in the Hausdorff
metric).

Results:
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.

The departure of round-off orbits from exact orbits obeys a central limit

theorem. [Vladimirov, fv]

The period function is defined at infinitely many points on the symmetry

axis. [Akiyama]
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Establishing the stability of regular orbits with round-off requires
knowledge of the fluctuations of the associated period function.

f)

Look for different discrete structures, for which bounding
iInvariant sets exist.

Look for systems with more manageable (zero entropy)
fluctuations.
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Geometric discretization: strip maps

strip

A flow with a piecewise-constant
vector field is diffracted by a line

The lattice
generated by the
vectors is invariant
under the map

™

replace the flow
by a map, using
the same vectors

flow and map differ
within a strip
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Invariant chains of polygons form countable families, ensuring global
stability.

If the rationality conditions are not satisfied, then there are unbounded
orbits (Schwartz, 2007).
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A discrete twist map of the torus

Yir1 = yi+€(x) (modN) +1 0<x<|N/2|

e(x) =
Xe+1 = Xt‘|‘yt—|—1 (mOdN) —1 \_N/2J <X<N

(Zhang, Alwani, fv)
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A discrete twist map of the torus

Yir1 = yi+€(x) (modN) +1 0<x<|N/2|

e(x) =
Xe+1 = Xt‘|‘)’t—|—1 (mOdN) —1 \_N/ZJ <X<N

(Zhang, Alwani, fv)
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® There is a small number of very long cycles.
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® There is a small number of very long cycles.

W Islands of stability exist, for selected rotation numbers.
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® There is a small number of very long cycles.

W Islands of stability exist, for selected rotation numbers.



The local map for an island
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Y — sign(x;)
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The parameters o and [3 depend on
the rotation number of the island.
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The local map for an island

(92 : ZZ N ZZ Yt+1
Xt 41

The parameters o and [3 depend on
the rotation number of the island.

Overlapping orbits

Conjecture (Zhang, fv). If gcd(o,2P3) is odd, then all orbits are periodic, and

their period, sufficiently far from the origin, eventually becomes constant.
Otherwise all orbits are unbounded.
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The parameters o and [3 depend on
the rotation number of the island.
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Poincare section

Overlapping orbits

Conjecture (Zhang, fv). If gcd(o,2P3) is odd, then all orbits are periodic, and

their period, sufficiently far from the origin, eventually becomes constant.
Otherwise all orbits are unbounded.
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® The conjecture is true for the scaled system (from symmetry and
uniform distribution modulo o).
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Thank you for your attention



