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Introduction

Let R = R(+, ·) be a ring and A,B ⊆ R be any finite sets.

A+ B := {a + b : a ∈ A, b ∈ B} (sumset)

A · B := {a · b : a ∈ A, b ∈ B} (product set)

General question

What can we say about the structure of sets S equal

A+ B or A+ A or A− A ?

S = S + {0} or S = (S + x)− {x}, so we consider
|A|, |B | > 1.
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Fourier analysis and almost periodicity, I

We want to understand the structure of A+ B .

Instead of studying the characteristic function of A+ B

consider the function

fA,B(x) = |A ∩ (x − B)| = (1A ∗ 1B)(x)

with the same support

supp fA,B = A+ B .

We have
f̂A,B = 1̂A · 1̂B .
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Fourier analysis and almost periodicity, I

Theorem (Croot–Sisask, 2010)

Let ε ∈ (0, 1), K ≥ 1, p ∈ N, f : G → C and

|A+ A| ≤ K |A| .

Then there is a set T , |T | ≥ |A| exp(−O(ε−2p log |K |)) s.t.
∀t ∈ T one has

‖(f ∗ 1A)(x + t)− (f ∗ 1A)(x)‖p ≤ ε|A|‖f ‖p

In particular,

‖(1B ∗ 1A)(x + t)− (1B ∗ 1A)(x)‖p ≤ ε|A||B |1/p .
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Fourier analysis and almost periodicity, I

In other words, (1B ∗ 1A)(x) ≈ (1B ∗ 1A)(x + t) for any t ∈ T .

By the triangle inequality

(1B∗1A)(x) ≈ (1B∗1A)(x+t) ≈ (1B∗1A)(x+2t) ≈ (1B∗1A)(x+kt)

It implies that A+ B contains long arithmetic progressions.

Theorem (Croot–Laba–Sisask, 2011)

Let A,B ⊆ {1, 2, . . . ,N}, |A| = αN, |B | = βN. Then A+ B

contains an arithmetic progression of length at least

(
c

(
α logN

(log 2β−1)3

)1/2

− log(β−1 logN)

)
.
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One can find another structures in A+ B :

uniformly distributed sequences,
large divisors (Sárközy, . . . )
and so on.

Works ⇔ Fourier works ⇔
works for sets with small ratio |A+ B |/|A|, |A+ B |/|B |.
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Non almost periodicity approaches, II

Theorem (Croot–Ruzsa–Schoen, 2005)

Let |A+ A| ≤ K |A| or |A− A| ≤ K |A|. Then A+ A or A− A

contains an arithmetic progression of length at least

log |A|/ logK .

Works for another structures as well (not only AP).

Sketch. We prove a weaker statement

A ⊆ Fp, |A| ≥ p/K ⇒ A− A contains AP of size

≫ log p/ logK .
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Consider

Sj := Ak + j · (1, 2, . . . , k) ⊆ F
k
p , j = 0, 1, . . . , p − 1 .

We have |Sj | = |A|k and

∅ 6= Si ∩ Sj ⇒ (i − j) · (1, 2, . . . , k) ∈ Ak − Ak = (A− A)k .

If
|A|kp > pk ⇔ k ≪ log p/ logK

then A− A contains an arithmetic progression of length k.
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Non almost periodicity approaches, III

Katz–Koester’s observation

Put D := A− A. Then

|D ∩ (D + d)| ≥ |A|+ ε(d) for all d ∈ D ,

where ε(d) ≥ 0.

Let us prove a simpler observation

|D∩(D+d)| = |D∩(D+a1−a2)| = |(D+a1)∩(D+a2)| ≥ |A| ,

where d = a1 − a2 ∈ D.
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We have

D = A− A =
⋃

a∈A

(A− a) ⊇ A− a, ∀a ∈ A .

and hence
A ⊆ (D + a1) ∩ (D + a2)

for any a1, a2 ∈ A.

Katz–Koester

A− (A− a1) ∩ (A− a2) ⊆ (D + a1) ∩ (D + a2)
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Non almost periodicity approaches, III

From Katz–Koester’s observation the number of solutions of

x + y = z , x , y , z ∈ D = A− A

is at least |A||D|. This bound is optimal.

Theorem (Shkredov, 2014)

The number of solutions of

x − x ′ = y − y ′ = z − z ′ , x , y , z ∈ D = A− A

is at least |D|7/4|A|9/4.

We do not know is this optimal or not. Other equations.
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Can a sumset be a multiplicative subgroup?

If we believe that sumsets have some additive structure then
can we prove that any multiplicatively rich set, say, a
multiplicative subgroup, is not a sumset?

Answer: not yet, this is complicated.

Conjecture (Sárközy, 2012)

Let R ⊂ Fp be the set of all quadratic residues. Is it true that

R 6= A+ B ∀A,B , |A|, |B | > 1?

Shkredov (2014) : yes, for A = B .
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Theorem (Shparlinski, 2013)

Let Γ ⊆ Fp be a multiplicative subgroup and for some
A,B ⊆ Fp one has

A+ B ⊆ Γ ,

where |A|, |B | > 1. Then

|A|, |B | ≤ |Γ|1/2+o(1)

as |Γ| → ∞. In particular, if A+ B = Γ then

|A|, |B | = |Γ|1/2+o(1) .

Sárközy: Γ = R .
Shkredov: Γ = R , slightly another method and better bounds.
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Let S = A+ B . We know that

A ⊆ (S − b1) ∩ (S − b2)

for any b1, b2 ∈ B .

A generalization

A ⊆ (S − b1) ∩ (S − b2) ∩ · · · ∩ (S − bk)

for any b1, b2, . . . , bk ∈ B .
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A ⊆ (S − b1) ∩ (S − b2) ∩ · · · ∩ (S − bk) .

If S = R then by Weil’s bound

|(R + x1) ∩ (R + x2) ∩ · · · ∩ (R + xk)| ≪k p1/2+o(1) .

For smaller subgroups Stepanov’s method works

Theorem (Vyugin–Shkredov, 2012)

Let Γ be a subgroup, |Γ| < p1−ε. Then for any xj

|(Γ + x1) ∩ (Γ + x2) ∩ · · · ∩ (Γ + xk)| ≪k |Γ|1/2+o(1) .
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Theorem (Shkredov, 2015)

Let Γ be a subgroup, |Γ| < p1/2−ε. Then

Γ 6= A+ B ,

where A is another subgroup and B is an arbitrary set.

Theorem (Shkredov, 2016)

Let Γ be a subgroup, |Γ| < p3/4−ε. Then

Γ 6= A− A ,

where A is an arbitrary set.
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The necessary condition: real case

Put D = A− A.

Theorem (Roche–Newton—Zhelezov, 2015)

Let A ⊂ R be a finite set, and ε > 0 be a real number. Then
for some constant C ′(ε) > 0 one has

|DD|, |D/D| ≫ε |D| · exp(C ′(ε) log1/3−o(1) |D|) .

Theorem (Shkredov, 2016)

Let A ⊂ R be a finite set. Put D = A− A. Then

|DD|, |D/D| ≫ |D|1+
1
12 log−

1
4 |D| .

Thus, say, {1, 2, 22, 23, . . . , 2n} is not a difference set.
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Theorem (Shkredov, 2015)

Let A ⊂ Fp be a set. Put D = A− A, |D| < p4/7. Then

|DD|, |D/D| ≫ |D|19/24|A|3/8 .

Again, the product set and the quotient set of D are large.
Hence

Theorem (Shkredov, 2016)

Let Γ be a subgroup, |Γ| < p3/4−ε. Then

Γ 6= A− A ,

where A is an arbitrary set.
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Sketch of the proof

For any A consider the set

R[A] =

{
a1 − a

a2 − a
: a, a1, a2 ∈ A, a2 6= a

}
⊆ D/D .

Theorem (Jones, 2013 and Roche–Newton, 2015)

We have

|R[A]| ≫
|A|2

log |A|
≥ |D|1−o(1) .

Theorem (Aksoy–Murphy–Rudnev–Shkredov, 2015)

For any A ⊆ Fp, |A| < p2/3 one has

|R[A]| ≫ |A|3/2 .
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A crucial observation

R[A] =

{
a1 − a

a2 − a
: a, a1, a2 ∈ A, a2 6= a

}
⊆ D/D .

We have

1−
a1 − a

a2 − a
=

a2 − a1

a2 − a
=

a1 − a2

a − a2
∈ R[A] ,

and thus
R[A] = 1− R[A] .

So, R[A] is additively structured.
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General sum–product

General principle

If A belongs to a ring R(+, ·) and

|A+ A|, |AA| ≪ |A|1+ε

then A has ”large” intersection with a subring.

Finite fields of prime order (Bourgain, Katz, Tao, Konyagin,
Glibichuk, Chang, Garaev, Rudnev, Li, Roche–Newton,
Shkredov, ...)

Infinite fields and rings (Erdös, Szemerédi, Chang, Solymosi,
Konyagin, Rudnev, Roche–Newton, Shkredov, ...).

Applications: Number Theory, Cryptography, Additive
Combinatorics, Computer Science, Dynamical Systems.
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Sum–product in R and Fp

The real case.

Theorem (Konyagin–Shkredov, 2016)

Let A ⊂ R. Then

max{|A+ A|, |AA|} ≫ |A|4/3+c ,

where c > 0 is an absolute constant.

The prime fields case.

Theorem (Roche-Newton–Rudnev–Shkredov, 2015)

Let A ⊂ Fp, |A| < p5/8 Then

max{|A+ A|, |AA|} ≫ |A|1+1/5 .

I. D. Shkredov On multiplicative properties of difference sets



Introduction
A new necessary condition

By sum–product we know that a set cannot has good
multiplicative and additive structure simultaneously.

Lemma (a variant of sum–product phenomenon)

For any A,B ⊂ R and nonzero α, we have

|A ∩ (B + α)| ≪ |A|−2/3|AB |4/3 .

E.g. A = B and |AA| ≪ |A|. Then |A ∩ (A+ α)| ≪ |A|2/3,
α 6= 0.

Similar (but more complicated) result in Fp takes place.
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Let R = R[A]. By our main observation

|R| = |R ∩ (1− R)| ≪ |R|−2/3|RR|4/3 .

Hence (R ⊆ D/D)

|DD/DD| ≥ |RR| ≫ |R|5/4 ≫ |D|5/4−o(1) .

By some standard tools (Plünnecke inequality), we have

|DD|, |D/D| ≫ |D|1+c ,

where c > 0 is an absolute constant.
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Problems

Problem 1. It is known that

|D|3/2 ≫ |DD| ≫ |D|1+c ,

where c = 1/8− o(1). What is the right exponent?

Problem 2. Recall

R[A] =

{
a1 − a

a2 − a
: a, a1, a2 ∈ A, a2 6= a

}
⊆ D/D .

Is it true R[A] ≫ |A− A|, R[A] ≫ |A/A|?
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Problem 3. S ⊂ Fp, |S | ≤ p/2 is a perfect difference set iff
the number of solutions of the equation x = s1 − s2,
s1, s2 ∈ S , x 6= 0 does not depend on x .

Is it true that S 6= A− A?

Problem 4 (P. Hegarty) A set S = {s1 < s2 < · · · < sn} is
called strictly convex if the consecutive differences si − si−1 are
strictly increasing.

Let S ⊆ A+ A and S be a strictly convex (concave) set. Is it
true that |S | = o(|A|2)?
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Thank you for your attention!

I. D. Shkredov On multiplicative properties of difference sets


	Introduction
	A new necessary condition

