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Intertwining order and chaos in Hamiltonian dynamics

In 1969, Michel Hénon (Nice Observatory) constructed this toy model

LRHen : x ′ = y , y ′ = −x + y2 + a

Area-preserving, polynomial automorphism of R2 with invariant (KAM)
curves intertwined to every magnification with chaotic orbits.

Open Problem: Rigorously show the measure of chaotic orbits is
positive.
Happy April Fool’s Day! Happy Birthday Igor!
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In 1969, Michel Hénon (Nice Observatory) constructed this toy model

LRHen : x ′ = y , y ′ = −x + y2 + a

Area-preserving, polynomial automorphism of R2 with invariant (KAM)
curves intertwined to every magnification with chaotic orbits.

Open Problem: Rigorously show the measure of chaotic orbits is
positive.
Happy April Fool’s Day! Happy Birthday Igor!

John A G Roberts CIRM



Plot of orbit over F2
p!
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Period distributions of dynamics over finite phase space

Family of reversible polynomial automorphisms of R2

LRHen : x ′ = y , y ′ = −x + y2 + a

Take x ,y ,a ∈ {0, 1, 2, . . . , p − 1} and operate mod p, p prime ⇒
reduced LRHen

p , reversible polynomial automorphism of F2
p

Period t(z) distribution function for the induced permutation:
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Rp(x) =
#{z ∈ F2

p : t(z) ≤ κx}
#F2

p

,

κ = T̄ =
p2

#{cycles}
≈ p

Case p=997 versus limp→∞Rp(x) = R(x) = 1− e−x(1 + x)
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Outline

1 Motivation

2 Arithmetic exponents in Q2 to separate order and chaos in PWL or
PWA maps (cf. Lyapunov exponents for R2) [joint with Franco
Vivaldi]

3 A universal period distribution for Piece-wise Cat maps (gives a
PWL map over F2

p) [joint with Tim Siu]

4 Complexity, Divisibility and Recurrence in PWL over F2
p [joint with

Franco Vivaldi]
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I. Arithmetic exponents in Q2 to separate order and chaos

F : R2 → R2 (x , y) 7→ (f (x)− y , dx) (1)

with d = 1 (the map is area-preserving) and piecewise-affine function

f (x) =


3
2x + 3

2 x < −1

0 −1 6 x 6 1
3
2x − 3

2 x > 1

(2)
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When affine map parameters are in Q, then F : Q2 → Q2. We
wish to monitor the arithmetic complexity of the orbits

Height

H(m/n) = max(|m|, |n|) gcd(m, n) = 1. (3)

Extend to two dimensions:

H(z) = max(H(x),H(y)) z = (x , y).

and define arithmetic exponent of z

λ(z) = lim
t→∞

1

t
log H(F t(z)) (4)

John A G Roberts CIRM



p-adic valuation.
For m ∈ Z, define order νp(m) to be largest non-negative integer k

such that pk divides m, with ν(0) =∞ [νp(m) 6 logm
log p ].

r =
m

n
=⇒ νp(r) = νp(m)− νp(n)

and define p-adic (arithmetic) exponent of z

λp(z) = lim
t→∞

−1

t
νp(F t(z)) (5)

where νp(z) = min(νp(x), νp(y)).

These exponents relate to arithmetic entropy and canonical height
– see The arithmetic of dynamical systems by J. Silverman and his
recent arXiv articles.

John A G Roberts CIRM



Figure 1: νp(F t(z0)) versus t for
rational z0 = (2, 0) in island.

.
Figure 2: νp(F t(z1)) for z1 close
to z0 in island
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Figure 3: Phase Portrait of F
with d = 1.

.

Figure 4: Behaviour of λ2(z0)
with initial conditions
z0 = (x , 0).
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Figure 5: Phase Portrait of F
with d = 497/499.

.

Figure 6: Behaviour of λ2(z0)
with initial conditions
z0 = (x , 0).
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Theorem (R+Vivaldi 15)

Almost all points of a rational island have the same exponents λ and λp
for all primes p. The latter are rational numbers.

Islands in the piecewise affine map correspond to invariant regions of a
suitable affine map so need to do p-adic linear dynamics.

Theorem (R+Vivaldi 15)

Let F : Q2 → Q2 with z = (x , y) 7→ M z + s and M ∈ (2,Q),
T = trace(M) and D = det(M). If s = (0, 0), then for almost all z ∈ Q2

we have:

i) if νp(D) > 2νp(T ) then λp(z) = −νp(T );

ii) if νp(D) 6 2νp(T ) then λp(z) = −νp(D)/2.

If s 6= (0, 0) then the above expressions for λp must be replaced by
max(−νp(T ), 0) and max(−νp(D)/2, 0), respectively.
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Explicit formulae
In many cases, one can describe νp(F t(z)) explicitly as a piecewise affine
function of t:

Mt = Ut M− D Ut−1 , (6)

Ut = Ut(T ,D) obey the Lucas sequence of the first kind:

U0 = 0, U1 = 1, Ut+1(T ,D) = T Ut(T ,D)−D Ut−1(T ,D), t > 1.
(7)

with solution

Ut(T ,D) =

b(t−1)/2c∑
k=0

c
(t)
k T t−2k−1 (−D)k (8)

where

c
(t)
k =

(
t − k − 1

k

)
.
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zt =

(
xt
yt

)
= Ut(T ,D)

(
x ′1
y ′1

)
− D Ut−1(T ,D)

(
x ′0
y ′0

)
+

(
x∗

y∗

)
(9)

Use the ultrametric inequality :

νp(xt) > min(νp(T (1)
t ), νp(T (0)

t ), νp(x∗)). (10)

For example, if νp(D) > 2νp(T ):

νp(xt) > min{νp(x ′1)+(t−1)νp(T ), νp(x ′0)+(t−2) νp(T )+νp(D), νp(x∗)}.
(11)

If νp(T ) > 0, linear terms are increasing, and we have two possibilities. If
x∗ 6= 0, then eventually νp(xt) = νp(x∗). If, x∗ = 0, then eventually,
under the non-degeneracy condition

νp(x ′1) + νp(T ) 6= νp(x ′0) + νp(D) (12)

a unique minimum emerges in (11), and νp(xt) becomes affine.
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Remark that arbitrarily close to each rational z0 in an island
with generic behaviour of νp(F t(z0)) can be found a rational
initial condition that initially grows in the wrong direction!

λ(z) = limt→∞
1
t log H(F t(z)) can also be proved to be

constant in rational islands of piecewise affine planar maps.

We conjecture that the arithmetic exponents of a piecewise
affine map of Q2 exist for almost all points with bounded
orbit. We are exploring how νp(F t(z0)) behaves for z0 in a
chaotic region of the map to see how the arithmetic
exponents ”see” the border of regular and chaotic behaviour.
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Figure 7: Chaotic orbit of z0 of
F with d = 1.

. Figure 8: νp(F t(z0)) versus t
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Figure 9: Phase Portrait of F
with d = 1.

.

Figure 10: Behaviour of λ2(z0)
with initial conditions
z0 = (x , 0).

Conjecture. Let f be an area-preserving piecewise affine map of Q2.
Then any arithmetic exponent has a (non-strict) local maximum at
almost all points z ∈ Q2 for which the Lyapunov exponent is zero.
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II. Universal period distribution for PWL over F2
p

Consider the matrix

A =

(
a −1
1 0

)
where a ∈ Z. (13)

We induce the dynamical system S on the 2-torus T2

S(x , y) =

(
a −1
1 0

)(
x
y

)
mod 1 =

(
ax − y

x

)
mod 1. (14)

When |a| > 2, such cat maps are chaotic mappings significant in theory
and applications.
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Periodic orbits

Rational points of the form ( x
N ,

y
N ) will get sent to rational

points ( x
′

N ,
y ′

N ) with x ′, y ′ < N.

There are a N2 rational points of such form.

All rational points are periodic (finite number of points in its
orbit).

For |a| > 2 all periodic points are rational.

Then to study the periodic orbits we consider only the rational
points.
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Prime lattice

We discretise our mapping and focus on rational points with prime
denominators ( x

p ,
y
p ).

Then for a fixed p we obtain a reduced dynamical

system Sp on the rational lattice Λp = {( x
p ,

y
p ) | 0 ≤ x , y < p}

Sp(x , y) =

(
a −1
1 0

)(
x
y

)
mod 1 ≡ Sp : F2

p → F2
p :

(
ax − y

x

)

We can find the orbit and period of every point (by explicit
computation).

What is the distribution of orbit lengths?

For any prime p and a 6= ±2 all orbits (except the origin) have the
same period (e.g. via ideal theory of Percival+Vivaldi ’87).

Example

For a = 3, p = 7 we have 6 orbits each with period 8 and 1 fixed point
(the origin).
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Distribution function

Define the distribution function

Dp(x) =
#{z ∈ F2

p : t(z) ≤ κx}
#F2

p
(15)

where κ = p2

#orbits
= mean period length.

Figure 11: An example of the period distribution function Dp(x) for Sp
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Cat map

Figure 12: We apply the mapping to the whole phase space one iteration
at a time with p = 509, a = 4. We come back after 17 iterations.
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Piecewise Cat Map

Piecewise Cat Map

We introduce a family of piecewise Cat maps Tab : Λp → Λp:

Tab(x , y) =

{
(bx − y , x) mod 1 if 0 ≤ x < s

(ax − y , x) mod 1 if s ≤ x < 1

with parameters a, b ∈ Z.

Alternate form

This map can also be written as Tab : F2
p → F2

p

Tab(x , y) =

[
Fab(x) −1

1 0

] [
x
y

]
,

where

Fab(x) =

{
b ∈ Fp if x ∈ {0, 1, . . . , bs pc}
a ∈ Fp if x ∈ {bs pc+ 1, . . . , p − 1}

John A G Roberts CIRM



R-reversibility

Definition

An involution is a map G which is equal to its inverse,

G = G−1.

A map acting on a space of p2 points is said to be R-reversible
if it is the composition of two involutions G and H,

L = H ◦ G

and G and H have p fixed points.

Involutions for Piecewise Cat map

G : x ′ = x , y ′ = Fab(x)x − y H : x ′ = y , y ′ = x .

Fix(G ) = {(x , y) : 2y = Fab(x)x}, Fix(H) = {(x , x)}.
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Roberts and Vivaldi 2005

Definition

Below we define our empirical period distribution function:

Dp(x) =
#{z ∈ F2

p : t(z) ≤ κx}
#F2

p

Conjecture

Let L be an R-reversible map (with a single family of reversing
symmetries) acting on a space of p2 points. Then

lim
p→∞

Dp(x) = R(x) := 1− e−x(1 + x), x ≥ 0

where the normalisation constant κ is the mean period of the
orbits,

κ =
p2

#orbits
.

John A G Roberts CIRM



Conjecture

For our Piecewise Cat Map Tab and any fixed switch 0 < s < 1,
then for almost all parameters (a, b) ∈ F2

p, we have

lim
p→∞

Dp(x) = R(x) := 1− e−x(1 + x), x ≥ 0,

to be compared to the singular distribution when s = 0 (i.e. for
the single cat map).

Previous work confirming R(x)

Polynomial automorphisms on finite fields (e.g. Hénon map) -
Roberts and Vivaldi 2005

Casati-Prosen map (piece-wise constant map on the torus) -
Neumarker, Roberts and Vivaldi 2012

Wehler K3 Surfaces over Finite Fields - Faria and Hutz (2015)
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Plot of distribution with fixed prime and changing switch
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Plot of distribution with increasing prime
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Quantifying convergence

Quantifying convergence

In order to quantify convergence, we define a function to represent the
distance (in 1-norm) between the exponential distribution function R and
the empirical distribution function Dp. This is written as

Ep(a, b) =

∫ ∞
0

|Dp,a,b(x)−R(x)|dx .

Example

In the previous figure, with a = 53, b = 13 we have

E71(a, b) = 0.755843573324966,

E281(a, b) = 0.217055546096392,

E523(a, b) = 0.127933982374603,

E809(a, b) = 0.080157583604951,

E1223(a, b) = 0.053647256826975.
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Plot of Ep(a, b)
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Figure 13: Plot of error Ep(a, b) capped at 5 with p = 769 for parameter
space a, b
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Anomalous distributions

Vertical lines

These occur when the underlying linear map contains orbits with
small period and is related to the spatial distribution of these
orbits.

Example

With p = 769 and a = 311 we find that Ma has 84480 orbits of
period 7. We also find that 665 of those orbits have 1/2 ≤ x < 1
for each point. This transfers directly to the map Tab explaining
the vertical line for a = 311.
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Impossible? to prove for a particular case but probabilistic approach over Fp

E (N) a subset of permutations of symmetric group SN and

expected period distribution 〈DN(x)〉 =
∑bxκc

t=1 〈Pt〉, x ≥ 0,

Pt =
1

N
#{x ∈ Ω : x has minimal period t}, t = 1, 2, . . . ,N.

E (N) = SN , 〈Pt〉 = 1
N ⇒ 〈DN(x)〉 = bxκc

N = x with κ = N.

Theorem (Roberts+Vivaldi 09)

E (N) = (H,G ): all pairs of random involutions of SN with g = #Fix G
and h = #Fix H satisfying

lim
N→∞

g(N) + h(N) =∞ lim
N→∞

g(N) + h(N)

N
= 0.

Then, as N →∞, 〈DN(x)〉 → R(x) for κ = 2N/(g(N) + h(N)).
Moreover, almost all points in Ω belong to symmetric cycles.
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III. Complexity, Divisibility and Recurrence in PWL

Fab : R2 → R2 (x , y) 7→ (fab(x)− y , x)

Now on the plane, area-preserving and piecewise-linear function:

fab(x) = a (x ≥ 0) and b (x < 0).

Lagarias Rains (2005): invariant curves? Proved existence for some
a, b ∈ R built piecewise from arcs of conic. Experiments suggested other
where a, b ∈ Q.
⇒ foliations of (closed) invariant curves for Fab : Q2 → Q2 (backed up
by theory of Herman), hence bounded rational orbits.
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Observations:
(1) The arithmetic exponents introduced in Part I are found to be
constant and independent of initial condition.
(2) The complexity of the orbit symbolic dynamics is near Sturmian e.g.
Cwt (n) = n + 7 for 2 symbols L and R for large t. So orbit is

xt = wt(

(
a −1
1 0

)
,

(
b −1
1 0

)
) x0.

Note wt is a matrix word over Q. Only one matrix in word and
mod p ⇒ special case of Lucas sequence: xt+1 = a xt − xt−1.

Questions about the orbit complexity:

(1) What’s the divisibility mod p of an orbit, e.g. if and when does

p | numerator(xt)?

(2) Does the reduction mod p of an orbit to F2
p reflect the ordered

motion in Q2 [Note: unlike Part II, we cannot reduce from Q2 the rule

for the PWL dynamics].
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Dynamics on ray space and ray graph

Consider the lattice Lp := {(k , `) | 0 ≤ k , ` < p} with p prime and

x ∼ y if x = j y mod p, for some j ∈ F×p .

Partitions Lp: 0 and the p + 1 equivalence classes (rays):

Rp := {(1, y) : y ∈ {0, 1, 2, . . . , p − 1} ∪ (0, 1)} ' P(Fp).

(
T −1
1 0

)
mod p ⇒ mT : P(Fp)→ P(Fp) y 7→ 1

T − y
mod p.

p | numerator(xt)⇔ hit ray p i.e ∞ at time t. Recover recurrence
result for Lucas sequence in terms of Legendre symbol.

For PWL problem, we study complexity of driving word
wt(mT1 ,mT2) in 2 symbols versus complexity of response word in the
p + 1 symbols of Rp and density of each ray in the response word.
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Thank you

Thanks for your attention!
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