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Some definitions

Φn(X ) =
n∏

j=1, (j,n)=1

(X − ζ j
n)

Write Φn(X ) =
∑∞

k=0 an(k)X k .
The height of Φn(X ), A(n), is defined as max{|an(k)| : k ≥ 0}.
If A(n) = 1, then Φn(X ) is said to be flat

Example:

Φ21(X ) = X 12 − X 11 + X 9 − X 8 + X 6 − X 4 + X 3 − X + 1.
It seems that the coefficients are small, e.g., A(n) = 1 for

n < 105.
Connections
-simplicial complexes (G. Musiker and V. Reiner, 2012)
-Kloosterman sums
-numerical semigroups
-cryptography
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Elementary properties

Φn(X ) =
n∏

j=1, (j,n)=1

(X − ζ j
n)

-deg(Φn) = ϕ(n)
-integer coefficients

-irreducible over Q

-Xϕ(n)Φn(1/X ) = Φn(X ) if n > 1 (self-reciprocal)

-X n − 1 =
∏

d |n Φd (X )

-Φn(X ) =
∏

d |n(X d − 1)µ(n/d) (by Möbius inversion)

-Φn(X ) = Φγ(n)(X n/γ(n)), γ(n) =
∏

p|n p

-Φ2n(X ) = Φn(−X ), n > 1 odd
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Some plots...

Courtesy of Andrew
Arnold

4849845 =
3 · 5 · 7 · 11 ·
13 · 17 · 19
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Φ111546435(X ) and Φ3234846615(X )

111546435 =
3 ·5 ·7 ·11 ·13 ·
17 · 19 · 23

3234846615 =
3 ·5 ·7 ·11 ·13 ·
17 · 19 · 23 · 29
height
2888582082
500892851
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Very rough outline of talk

Behaviour of Φn depends on ωodd(n) =
∑

p|n, p>2 1.

Φn with ωodd(n) small
Mostly elementary methods.
Recently methods from analytic number theory. PROMISE?
Computer experiments (Yves Gallot).
Young mathematicians playground:
Some stubbornly keep playing:
Examples: Florian Luca, M., Igor Shparlinski

Numerical semigroups
New approach. PROMISE?

Φn with ωodd(n) large
The exclusive realm of analytic number theory.
Bateman, Maier, Pomerance, Vaughan...
Will not be discussed here...
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Which an(k) do occur?

I. Schur in letter to E. Landau: set of all an(k) is infinite.

{an(k) : n ≥ 1, k ≥ 0} = Z (Jiro Suzuki, 1987)

Problem: Given m ≥ 1, determine {amn(k) : n ≥ 1, k ≥ 0}

Christine Jost
PhD in AG
2013
Stockholm
University

Janina Müttel
PhD in OR
2013
Ulm
University

This problem remained unsolved...
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Ji and Li and . . .

Chun-Gang Ji and Wei-Ping Li (2008):

{apen(k) : n ≥ 1, k ≥ 0} = Z

Ji, Li and M. then solved the Problem (2009):

Theorem. Let m ≥ 1 be fixed. Then

{amn(k) : n ≥ 1, k ≥ 0} = Z

Jessica Fintzen (2011) determined

{an(k) : n ≡ a(mod d), k ≡ b(mod f )}

This is still the state of the art in this direction.
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Jessica Fintzen

Defended her PhD in 2015 in Harvard...
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Binary cyclotomic polynomials

Note that Φp(X ) = (1−X p)/(1−X ) = 1 + X + X 2 + · · ·+ X p−1.

We have

Φpq(X ) =

ρ−1∑
i=0

X ip
σ−1∑
j=0

X jq − X−pq
q−1∑
i=ρ

X ip
p−1∑
j=σ

X jq,

where

1 + pq = ρp + σq, 0 ≤ ρ ≤ q − 1, 0 ≤ σ ≤ p − 1.

Thus the cyclotomic coefficient apq(m) equals
1 if m = ip + jq with 0 ≤ i ≤ ρ− 1, 0 ≤ j ≤ σ − 1;

−1 if m = ip + jq − pq with ρ ≤ i ≤ q − 1, σ ≤ j ≤ p − 1;

0 otherwise.
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Flatness

Φp,Φpq are flat

(X − 1)Φpqr (X ) is flat (Gallot and M., 2009)
Φpqr is flat if:
-q ≡ −1(mod p), r ≡ 1(mod pq)
-r ≡ ±1(mod pq)
-r ≡ w(mod pq),p ≡ 1(mod w),q ≡ 1(mod pw)

Bachman, 2006
Kaplan, 2007
Elder, 2013

Φpqrs is flat if:
q ≡ −1(mod p), r ≡ ±1(mod pq), s ≡ 1(mod pqr)
Φpqrst :
Conjecture: Is never flat...

Sam Elder
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Coefficient convexity

-Put C(n) = {an(k) : k ≥ 0}.

-C(n) is coefficient convex if it consists of consecutive integers.

Gallot and M. (2009):

A((X − 1)Φpqr (X )) = 1, that is |apqr (k)− apqr (k − 1)| ≤ 1

A ternary Φn has the jump one property

C(p) = [0,1], C(pq) = [−1,1], C(pqr) = [−a,b], max(a,b) = A(pqr)

C(5 · 7 · 13 · 17) = {−9} ∪ [−7,5]
We have #C(pqr) = b + a ≤ p. If equality holds, then Φpqr (X )
is said to have an optimally large set of coefficients.
Example: Lehmer/Möller infinite family satisfies

C(pqr) = [−p−1
2 , p+1

2 ], (Bachman, 2004)
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Jumps

-Gallot-M.: consecutive coefficients of ternary cyclotomic
polynomials differ by at most one.

-Bzdȩga: different reproof of this result.
Initiated the study of the number of “jumps”.

Number of jumps up with an(k) = an(k − 1) + 1 is the same as
the number of jumps down with an(k) = an(k − 1)− 1.

We denote this common number by Jn.

-Bzdȩga: Jn > n1/3.

-Camburu-Ciolan-Luca-M.-Shparlinski (2016): For infinitely
many n = pqr with pairwise distinct odd primes p, q and r , we
have

Jn � n7/8+o(1).
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-Bzdȩga: Jn > n1/3.

-Camburu-Ciolan-Luca-M.-Shparlinski (2016): For infinitely
many n = pqr with pairwise distinct odd primes p, q and r , we
have

Jn � n7/8+o(1).



Jumps

-Gallot-M.: consecutive coefficients of ternary cyclotomic
polynomials differ by at most one.
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Is Φn(X ) a special divisor of X n − 1?

If Φn(X )|X p2q − 1, then

Φn = Φk1
1 Φk2

p Φk3
q Φk4

pqΦk4
p2Φk5

p2q, ki ∈ {0,1}

If q is odd, then all 64 divisors are coefficient convex
(Andreas Decker and M., Sarajevo Math. J., 2012)
Extends work of C. Pomerance, N.C. Ryan and N. Kaplan

Andreas Decker
PhD student
comp. analytic number th.
Bonn University
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Φ1 Φp Φq Φpq Φp2 Φp2q coefficients
1 0 0 0 1 0 [−1,1]

0 1 0 0 1 0 {1}
1 1 0 0 1 0 [−1,1]

0 0 1 0 1 0 [min([q
p ],1),min([q−1

p ] + 1,p)]

1 0 1 0 1 0 [−1,1]

0 1 1 0 1 0 [1,min(p2,q)]

1 1 1 0 1 0 [−1,1]

0 0 0 1 1 0 [−min(p,q − p∗),min(p,p∗)]

1 0 0 1 1 0 [−γ(p,q), γ(p,q)]

0 1 0 1 1 0 [0,1]

1 1 0 1 1 0 [−1,1]

0 0 1 1 1 0 [0,min(p,q)]

1 0 1 1 1 0 [−min(p,q),min(p,q)]

0 1 1 1 1 0 [1,min(p,q)]

γ(p.q) = min(p,p∗) + min(p,q − p∗).



Inverse cyclotomic polynomials

(Introduced by M. in 2009)
Consider

Ψn(X ) =
X n − 1
Φn(X )

=
∏

d |n, d<n

Φd (X ) =
∞∑

k=0

cn(k)X k .

Put B(n) = max{|cn(k)| : k ≥ 0}

We have B(n) = 1 for n < 561
We have B(pqr) ≤ p − 1.

B(pqr) = p − 1 ⇐⇒ q ≡ r ≡ ±1(mod p) and r <
p − 1
p − 2

(q − 1)
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Maximum gaps, I

- Maximum gap: Given f (X ) = c1X e1 + · · ·+ ctX et ∈ Z[X ], with
ci 6= 0 and e1 < · · · < et , we define the maximum gap of f as

g(f ) = max
1≤i<t

(ei+1 − ei).

- Study of g(Φn) and g(Ψn) has been initiated by Hong, Lee,
Lee and Park (2012) who reduced the study of these gaps to
the case where n is square-free and odd.

- Simple and exact formula for the minimum Miller loop length in
the Atei pairing arising in elliptic curve cryptography (2015):

- More managable when turned into a problem involving the
maximum gaps of inverse cyclotomic polynomials.
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Maximum gaps, II

g(Φp) = 1, g(Ψp) = 1, g(Φpq) = p−1, g(Ψpq) = q−p+1.

Hong-Lee-Lee-Park:
Put Q3 = {n = pqr : 2 < p < q < r primes}.

Put R3 = {n ∈ Q3 : 4(p − 1) > q, p2 > r}.

Then
g(Ψn) =

2n
p
− deg Ψn if n 6∈ R3.

Claim: R3(x) = o(Q3(x)).
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Maximum gaps, III

Camburu-Ciolan-Luca-M.-Shparlinksi (2016):
"Cyclotomic coefficients: gaps and jumps":

Working title: “Cyclotomic coefficients: an extramarginal affair.”

Showed that

#R3(x) =
cx

(log x)2 + O
(

x log log x
(log x)3

)
,

with c = (1 + log 4) log 4 = 3.30811 . . . .

Classical estimate (Gauss, Landau):

#Q3(x) = (1 + o(1))
x(log log x)2

2 log x
.

Thus the claim is true and in particular

#R3(x) ∼ c#Q3(x)

2(log x)(log log x)2 .
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ω(n) = 3: THE TERNARY CASE

...where Kloosterman and Sister Beiter meet...
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M(p): main problem

Recall that A(n) = max{|an(k)| : k ≥ 0}.

Φn is ternary, if n = pqr with 2 < p < q < r .

For ternary n we can have A(n) > 1, e.g. a105(7) = −2 and

A(105) = 2.
If 2 < p1 < . . . < ps then A(p1p2 · · · ps) ≤ f (p1,p2, . . . ,ps−2).

(J. Justin, 1969)
For fixed p, M(p) = max{A(pqr) : p < q < r} is well-defined.

Main Question: Determine M(p).
Question: Is there a finite procedure to compute M(p)?
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M(p): results and conjectures

Sister Beiter Conjecture (1968): M(p) ≤ (p + 1)/2.

Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3

M(p) ≤ d3p/4e.
Emma Lehmer (1936): M(p) ≥ (p − 1)/2 for p ≥ 5.

Herbert Möller (1971): M(p) ≥ (p + 1)/2 for p ≥ 5.

Gallot and M. (2008):

-M(p) > (p + 1)/2 for p ≥ 11
-M(p) ≥ (2/3− ε)p, p sufficiently large.
Zhao and Zhang (2010): M(7) = 4.

Corrected Sister Beiter Conjecture (2008): M(p) ≤ 2p/3.
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The Sister Beiter conjecture: M(p) ≥ (p + 1)/2

Crosses are at (x , y) with xy ≡ 1(mod p) (p = 241 in figure).

Each point (x , y) in a triangle leads to triples (p,q, r) with
q ≡ x(mod p) such that A(pqr) ≥ p − x .
As x ≥ p/3, p − x ≤ 2p/3.

It follows that M(p) ≥ p −min{x : (x , y) ∈ T1(p) ∪ T2(p)}.
For p ≥ 11, at least one of the two triangles is non-empty.
For p large enough, M(p) ≥ (2/3− ε)p.
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Sister Beiter and Kloosterman I

K (a,b; m) =
∑

0≤x≤m−1
gcd(x,m)=1

e
2πi
m (ax+bx∗)

|K (a,b; p)| ≤ 2
√

p (Weil, 1948)
Modular hyperbola:
{(x , y) : 1 ≤ x ≤ p − 1, 1 ≤ y ≤ p − 1, xy ≡ 1(mod p)}
Let R be a rectangle with area A.

Put NR(p) := #{(x , y) ∈ R : xy ≡ 1(mod p)}.
We have |NR(p)− A/p| ≤ √p(2 + log p)2.

Problem: Estimate the number of modular hyperbolic points in

the triangles T1(p) and T2(p).
Cobeli, Gallot, M. and Zaharescu (Indag. Math., 2013):∣∣∣#T1(p) ∪ T2(p)− p

16

∣∣∣ ≤ 24p3/4 log p.
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Sister Beiter and Kloosterman II



NUMERICAL SEMIGROUP APPROACH



Φpq and the Frobenius number

S(p,q) = {αp + βq : α ≥ 0, β ≥ 0}
Numerical semigroup generated by p and q

Example: S(3,5)

0 1 2 3 4 5 6 7 8 9 10 . . . . . .

1 0 0 1 0 1 1 0 1 1 1 . . . 1
1 -1 0 1 -1 1 0 -1 1 0 0 . . . 0

Largest number not in S(p,q) is the Frobenius number
F (S(3,5)) = 7
Claim: Φpq(X ) = (1− X )

∑
j∈S(p,q) X j

F (S(p,q)) = deg(Φpq(X ))− 1 = (p− 1)(q− 1)− 1 = pq− p− q

(Sylvester, 1884)
In example: Φ15(X ) = 1− X + X 3 − X 4 + X 5 − X 7 + X 8
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Cyclotomic numerical semigroups, I

with
Pedro Garcia-
Sanchez and
Alexandru
Ciolan

to appear in
SIAM Journal
on Discrete
Mathematics
(SIDMA)

Note that PS(x) = (1− X )
∑

s∈S X s is a polynomial.

It is called semigroup polynomial and can be rewritten as:

PS(X ) = 1 + (X − 1)
∑
s 6∈S

X s, deg(PS) = F (S) + 1.

Question: To what extent are the properties of S reflected in PS
and vice versa?
Example: S is symmetric iff PS is self-reciprocal
S is symmetric if S ∪ (F (S)− S) = Z.
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Cyclotomic numerical semigroups, II

S = 〈3,7〉 : 0,1,2,3,4,5,6,7,8,9,10,11,12,13, . . .

F (S)− S : 0,1,2,3,4,5,6,7,8,9,10,11
Either s ∈ S or s ∈ F (S)− S
S = 〈3,7〉 is symmetric since Φ21(X ) is self-reciprocal
Definition: We say S is cyclotomic if the roots of PS are on the
unit circle.

⇒ PS(X ) =
∏
d∈D

Φd (X )ed .

Q: Is S cyclotomic iff S is symmetric?
A: NO. E.g., S = 〈5,6,7,8〉 (cyclotomic but not symmetric).
True: If e(S) ≤ 3 the answer is YES, however.
Conjecture: S is cyclotomic iff S is a complete intersection
numerical semigroup.
Easy: S complete intersection⇒ S is cyclotomic.
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Numerical semigroup view of gaps

Let PS(X ) = a0 + a1X + · · ·+ akX k . Then

as =


1 if s ∈ S and s − 1 6∈ S,
−1 if s 6∈ S and s − 1 ∈ S,
0 otherwise.

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): For p < q primes
-g (Φpq) = p − 1 and # maximum gaps = 2 bq/pc;
-Φpq(X ) contains the sequence of consecutive coefficients of
the form ±1, {0}m,∓1 for all m = 0,1, . . . ,p − 2 if and only if
q ≡ ±1(mod p).
-Let S = 〈p,q〉. Coefficients gaps are related to gapblocks and
elementblocks of S.
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Thank you for listening!



Non-zero binary coefficients

Let θ(pq) denote number of non-zero coefficients of Φpq(x).

We have θ(m) = ρσ + (q − ρ)(p − σ) = 2ρσ − 1.
Recall that

ρp + σq = 1 + pq.

This result is due to Carlitz (1966).
Example. Take p = 5, q = 7.

ρ = 5−1(mod 7) = 3,

σ = 7−1(mod 5) = 3.

Hence
θ(35) = 2 · 3 · 3− 1 = 17.
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Sparse binary cyclotomic polynomials

Put Hγ(x) := {m = pq ≤ x : θ(m) ≤ m1/2+γ}.

Bzdȩga (2012) showed:

c(ε, γ)x1/2+γ−ε ≤ Hγ(x) ≤ C(γ)x1/2+γ .

Fouvry (2013): For γ ∈ (12
25 ,

1
2) we have

Hγ(x) ∼ D(γ)
x1/2+γ

log x
,

with D(γ) an explicit constant.
-Bounds for Kloosterman-Ramanujan sums over primes
-Bombieri-Vinogradov theorem
-Two-dimensional sieve
-Linnik’s famous theorem concerning the least prime in AP
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The Roşu construction I

Question: Can one construct non-Beiter ternary Φn with an
optimally large set of coefficients. That is given l ≥ 1 can one
construct Φpqr with C(pqr) = [−(p − 1)/2 + l , (p + 1)/2 + l]?
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The Roşu construction II

-For every l ≥ 1 Eugenia answered the Question in the positive.

-Leads to a conjecture of Wilms (earlier intern) being resolved.

-Leads to triangle T3(p) satisfying T2(p) ⊂ T3(p)

-Leads to MR(p) ≤ M(p).

-Gallot/Moree construction gives MGM(p) ≤ M(p).

There are likely infinitely many primes p with MR(p) > MGM(p):
29,37,41,83,107,109,149,179,181,223,227,233,241,269 . . .
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Gallot/Moree versus Roşu p = 241

xy ≡ 1(mod p)

B1(p) = {x : 1 ≤ x ≤ p−3
2 , x + y ≥ p, y ≤ 2x}

B2(p) = {x : 1 ≤ x ≤ p−3
2 , x + 2y + 1 ≥ p, x > y}

B3(p) = {x : 1 ≤ x ≤ p−3
2 , 2x + y ≥ p, x ≥ y}
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