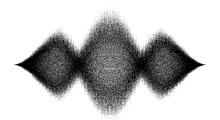
Cyclotomic Coefficients: Progress and Promise

Pieter Moree (MPIM, Bonn)



CIRM, Luminy March 29, 2016

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$
Write $\Phi_n(X) = \sum_{j=1}^\infty 2^{-j} (k) X^k$

Write $\Phi_n(X) = \sum_{k=0}^{\infty} a_n(k) X^k$.

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

Write $\Phi_n(X) = \sum_{k=0}^{\infty} a_n(k) X^k$. The height of $\Phi_n(X)$, A(n), is defined as $\max\{|a_n(k)| : k \ge 0\}$.

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

Write $\Phi_n(X) = \sum_{k=0}^{\infty} a_n(k)X^k$. The height of $\Phi_n(X)$, A(n), is defined as $\max\{|a_n(k)| : k \ge 0\}$. If A(n) = 1, then $\Phi_n(X)$ is said to be flat

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

Write $\Phi_n(X) = \sum_{k=0}^{\infty} a_n(k)X^k$. The height of $\Phi_n(X)$, A(n), is defined as $\max\{|a_n(k)| : k \ge 0\}$. If A(n) = 1, then $\Phi_n(X)$ is said to be flat Example: $\Phi_{21}(X) = X^{12} - X^{11} + X^9 - X^8 + X^6 - X^4 + X^3 - X + 1$.

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

Write $\Phi_n(X) = \sum_{k=0}^{\infty} a_n(k)X^k$. The height of $\Phi_n(X)$, A(n), is defined as $\max\{|a_n(k)| : k \ge 0\}$. If A(n) = 1, then $\Phi_n(X)$ is said to be flat Example: $\Phi_{21}(X) = X^{12} - X^{11} + X^9 - X^8 + X^6 - X^4 + X^3 - X + 1$. It seems that the coefficients are small, e.g., A(n) = 1 for

n < 105.

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

Write $\Phi_n(X) = \sum_{k=0}^{\infty} a_n(k)X^k$. The height of $\Phi_n(X)$, A(n), is defined as $\max\{|a_n(k)| : k \ge 0\}$. If A(n) = 1, then $\Phi_n(X)$ is said to be flat Example:

 $\Phi_{21}(X) = X^{12} - X^{11} + X^9 - X^8 + X^6 - X^4 + X^3 - X + 1.$ It seems that the coefficients are small, e.g., A(n) = 1 for

n < 105.

Connections

-simplicial complexes (G. Musiker and V. Reiner, 2012)

- -Kloosterman sums
- -numerical semigroups
- -cryptography

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$ -integer coefficients

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$ -integer coefficients

-irreducible over ${\mathbb Q}$

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$ -integer coefficients

-irreducible over $\ensuremath{\mathbb{Q}}$

 $-X^{\varphi(n)}\Phi_n(1/X) = \Phi_n(X)$ if n > 1 (self-reciprocal)

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$ -integer coefficients

$$-X^{\varphi(n)}\Phi_n(1/X) = \Phi_n(X)$$
 if $n > 1$ (self-reciprocal)
 $-X^n - 1 = \prod_{d|n} \Phi_d(X)$

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$ -integer coefficients

$$-X^{\varphi(n)}\Phi_n(1/X) = \Phi_n(X)$$
 if $n > 1$ (self-reciprocal)
 $-X^n - 1 = \prod_{d|n} \Phi_d(X)$
 $-\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)}$ (by Möbius inversion)

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$ -integer coefficients

$$-X^{\varphi(n)}\Phi_n(1/X) = \Phi_n(X)$$
 if $n > 1$ (self-reciprocal)
 $-X^n - 1 = \prod_{d|n} \Phi_d(X)$
 $-\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)}$ (by Möbius inversion)
 $-\Phi_n(X) = \Phi_{\gamma(n)}(X^{n/\gamma(n)}), \ \gamma(n) = \prod_{p|n} p$

$$\Phi_n(X) = \prod_{j=1, (j,n)=1}^n (X - \zeta_n^j)$$

 $-\deg(\Phi_n) = \varphi(n)$ -integer coefficients

$$\begin{split} -X^{\varphi(n)} \Phi_n(1/X) &= \Phi_n(X) \text{ if } n > 1 \text{ (self-reciprocal)} \\ -X^n - 1 &= \prod_{d|n} \Phi_d(X) \\ -\Phi_n(X) &= \prod_{d|n} (X^d - 1)^{\mu(n/d)} \text{ (by Möbius inversion)} \\ -\Phi_n(X) &= \Phi_{\gamma(n)} (X^{n/\gamma(n)}), \ \gamma(n) &= \prod_{p|n} p \\ -\Phi_{2n}(X) &= \Phi_n(-X), \ n > 1 \text{ odd} \end{split}$$

Some plots...

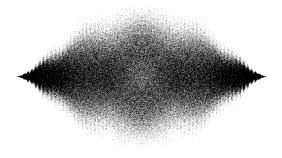
Courtesy of

Andrew Arnold

Some plots...

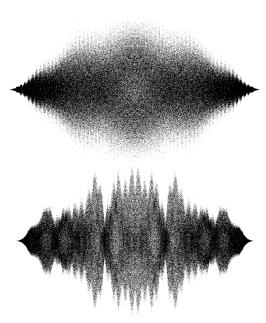


$\Phi_{111546435}(X)$ and $\Phi_{3234846615}(X)$



 $\begin{array}{rl} 111546435 & = \\ 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot \\ 17 \cdot 19 \cdot 23 \end{array}$

$\Phi_{111546435}(X)$ and $\Phi_{3234846615}(X)$



 $\begin{array}{rl} 111546435 & = \\ 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot \\ 17 \cdot 19 \cdot 23 \end{array}$

3234846615 = $3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot$ $17 \cdot 19 \cdot 23 \cdot 29$ height 2888582082500892851

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

 Φ_n with $\omega_{\text{odd}}(n)$ small

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

 Φ_n with $\omega_{\text{odd}}(n)$ small Mostly elementary methods.

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

Φ_n with $\omega_{\text{odd}}(n)$ small

Mostly elementary methods. Recently methods from analytic number theory. PROMISE?

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

 Φ_n with $\omega_{odd}(n)$ small Mostly elementary methods. Recently methods from analytic number theory. PROMISE? Computer experiments (Yves Gallot).

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

 Φ_n with $\omega_{odd}(n)$ small Mostly elementary methods. Recently methods from analytic number theory. PROMISE? Computer experiments (Yves Gallot). Young mathematicians playground:

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

 Φ_n with $\omega_{odd}(n)$ small Mostly elementary methods. Recently methods from analytic number theory. PROMISE? Computer experiments (Yves Gallot). Young mathematicians playground: Some stubbornly keep playing:

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

 Φ_n with $\omega_{odd}(n)$ small Mostly elementary methods. Recently methods from analytic number theory. PROMISE? Computer experiments (Yves Gallot). Young mathematicians playground: Some stubbornly keep playing: Examples: Florian Luca, M., Igor Shparlinski

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

 Φ_n with $\omega_{odd}(n)$ small Mostly elementary methods. Recently methods from analytic number theory. PROMISE? Computer experiments (Yves Gallot). Young mathematicians playground: Some stubbornly keep playing: Examples: Florian Luca, M., Igor Shparlinski

Numerical semigroups

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

Numerical semigroups New approach. PROMISE?

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

Numerical semigroups New approach. PROMISE?

 Φ_n with $\omega_{\text{odd}}(n)$ large

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

Numerical semigroups New approach. PROMISE?

Φ_n with $\omega_{\text{odd}}(n)$ large

The exclusive realm of analytic number theory.

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

Numerical semigroups New approach. PROMISE?

Φ_n with $\omega_{\text{odd}}(n)$ large

The exclusive realm of analytic number theory. Bateman, Maier, Pomerance, Vaughan...

Behaviour of Φ_n depends on $\omega_{\text{odd}}(n) = \sum_{p|n, p>2} 1$.

Numerical semigroups New approach. PROMISE?

Φ_n with $\omega_{\text{odd}}(n)$ large

The exclusive realm of analytic number theory. Bateman, Maier, Pomerance, Vaughan... Will not be discussed here...

I. Schur in letter to E. Landau: set of all $a_n(k)$ is infinite.

I. Schur in letter to E. Landau: set of all $a_n(k)$ is infinite.

 $\{a_n(k) : n \ge 1, k \ge 0\} = \mathbb{Z}$ (Jiro Suzuki, 1987)

I. Schur in letter to E. Landau: set of all $a_n(k)$ is infinite.

 $\{a_n(k) : n \ge 1, k \ge 0\} = \mathbb{Z}$ (Jiro Suzuki, 1987) Problem: Given $m \ge 1$, determine $\{a_{mn}(k) : n \ge 1, k \ge 0\}$

I. Schur in letter to E. Landau: set of all $a_n(k)$ is infinite.

 $\{a_n(k) : n \ge 1, k \ge 0\} = \mathbb{Z}$ (Jiro Suzuki, 1987) Problem: Given $m \ge 1$, determine $\{a_{mn}(k) : n \ge 1, k \ge 0\}$

Christine Jost PhD in AG 2013 Stockholm University

Janina Müttel PhD in OR 2013 Ulm University

I. Schur in letter to E. Landau: set of all $a_n(k)$ is infinite.

 $\{a_n(k) : n \ge 1, k \ge 0\} = \mathbb{Z}$ (Jiro Suzuki, 1987) Problem: Given $m \ge 1$, determine $\{a_{mn}(k) : n \ge 1, k \ge 0\}$

Christine Jost PhD in AG 2013 Stockholm University

Janina Müttel PhD in OR 2013 Ulm University

This problem remained unsolved...

Chun-Gang Ji and Wei-Ping Li (2008):

$$\{a_{p^en}(k):n\geq 1,\ k\geq 0\}=\mathbb{Z}$$

Chun-Gang Ji and Wei-Ping Li (2008):

$$\{a_{p^en}(k):n\geq 1,\ k\geq 0\}=\mathbb{Z}$$

Ji, Li and M. then solved the Problem (2009):

Chun-Gang Ji and Wei-Ping Li (2008):

$$\{a_{p^en}(k):n\geq 1,\ k\geq 0\}=\mathbb{Z}$$

Ji, Li and M. then solved the Problem (2009): Theorem. Let $m \ge 1$ be fixed. Then

$$\{a_{mn}(k): n \geq 1, k \geq 0\} = \mathbb{Z}$$

Chun-Gang Ji and Wei-Ping Li (2008):

$$\{a_{p^en}(k):n\geq 1,\ k\geq 0\}=\mathbb{Z}$$

Ji, Li and M. then solved the Problem (2009): Theorem. Let $m \ge 1$ be fixed. Then

$$\{a_{mn}(k):n\geq 1, k\geq 0\}=\mathbb{Z}$$

Jessica Fintzen (2011) determined

$$\{a_n(k): n \equiv a \pmod{d}, k \equiv b \pmod{f}\}$$

Chun-Gang Ji and Wei-Ping Li (2008):

$$\{a_{p^en}(k):n\geq 1,\ k\geq 0\}=\mathbb{Z}$$

Ji, Li and M. then solved the Problem (2009): Theorem. Let $m \ge 1$ be fixed. Then

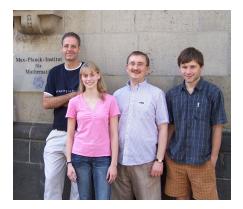
 $\{a_{mn}(k):n\geq 1, k\geq 0\}=\mathbb{Z}$

Jessica Fintzen (2011) determined

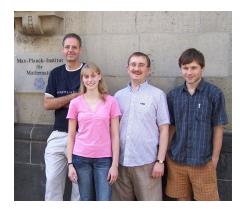
$$\{a_n(k): n \equiv a \pmod{d}, k \equiv b \pmod{f}\}$$

This is still the state of the art in this direction.

Jessica Fintzen



Jessica Fintzen



Defended her PhD in 2015 in Harvard...

Binary cyclotomic polynomials

Note that $\Phi_p(X) = (1 - X^p)/(1 - X) = 1 + X + X^2 + \dots + X^{p-1}$.

Binary cyclotomic polynomials

Note that $\Phi_p(X) = (1 - X^p)/(1 - X) = 1 + X + X^2 + \dots + X^{p-1}$. We have

$$\Phi_{pq}(X) = \sum_{i=0}^{\rho-1} X^{ip} \sum_{j=0}^{\sigma-1} X^{jq} - X^{-pq} \sum_{i=\rho}^{q-1} X^{ip} \sum_{j=\sigma}^{p-1} X^{jq},$$

where

$$1 + pq = \rho p + \sigma q, \ 0 \le \rho \le q - 1, \ 0 \le \sigma \le p - 1.$$

Binary cyclotomic polynomials

Note that $\Phi_p(X) = (1 - X^p)/(1 - X) = 1 + X + X^2 + \dots + X^{p-1}$. We have

$$\Phi_{pq}(X) = \sum_{i=0}^{\rho-1} X^{ip} \sum_{j=0}^{\sigma-1} X^{jq} - X^{-pq} \sum_{i=\rho}^{q-1} X^{ip} \sum_{j=\sigma}^{p-1} X^{jq},$$

where

$$1 + pq = \rho p + \sigma q, \ 0 \le \rho \le q - 1, \ 0 \le \sigma \le p - 1.$$

Thus the cyclotomic coefficient $a_{pq}(m)$ equals

$$\begin{cases} 1 & \text{if } m = ip + jq \text{ with } 0 \le i \le \rho - 1, \ 0 \le j \le \sigma - 1; \\ -1 & \text{if } m = ip + jq - pq \text{ with } \rho \le i \le q - 1, \ \sigma \le j \le p - 1; \\ 0 & \text{otherwise.} \end{cases}$$

 $\Phi_{\rho}, \Phi_{\rho q}$ are flat

 Φ_p, Φ_{pq} are flat $(X - 1)\Phi_{pqr}(X)$ is flat (Gallot and M., 2009)

 Φ_p, Φ_{pq} are flat (X - 1) $\Phi_{pqr}(X)$ is flat (Gallot and M., 2009) Φ_{pqr} is flat if:

 Φ_p, Φ_{pq} are flat $(X - 1)\Phi_{pqr}(X)$ is flat (Gallot and M., 2009) Φ_{pqr} is flat if: $-q \equiv -1 \pmod{p}, \ r \equiv 1 \pmod{pq}$

```
\Phi_p, \Phi_{pq} are flat

(X - 1)\Phi_{pqr}(X) is flat (Gallot and M., 2009)

\Phi_{pqr} is flat if:

-q \equiv -1 \pmod{p}, \ r \equiv 1 \pmod{pq}

-r \equiv \pm 1 \pmod{pq}
```

 $\begin{array}{l} \Phi_p, \Phi_{pq} \text{ are flat} \\ (X-1)\Phi_{pqr}(X) \text{ is flat (Gallot and M., 2009)} \\ \Phi_{pqr} \text{ is flat if:} \\ -q \equiv -1(\text{mod } p), \ r \equiv 1(\text{mod } pq) \\ -r \equiv \pm 1(\text{mod } pq) \\ -r \equiv w(\text{mod } pq), p \equiv 1(\text{mod } w), q \equiv 1(\text{mod } pw) \end{array}$

 $\begin{array}{l} \Phi_p, \Phi_{pq} \text{ are flat} \\ (X-1)\Phi_{pqr}(X) \text{ is flat (Gallot and M., 2009)} \\ \Phi_{pqr} \text{ is flat if:} \\ -q \equiv -1(\text{mod } p), \ r \equiv 1(\text{mod } pq) \\ -r \equiv \pm 1(\text{mod } pq), \ p \equiv 1(\text{mod } w), \ q \equiv 1(\text{mod } pw) \end{array} \begin{array}{l} \text{Bachman, 2006} \\ \text{Kaplan, 2007} \\ \text{Elder, 2013} \end{array}$

 Φ_{pqrs} is flat if:

 Φ_{pqrs} is flat if: $q \equiv -1 \pmod{p}, r \equiv \pm 1 \pmod{pq}, s \equiv 1 \pmod{pqr}$

 $\begin{array}{l} \Phi_p, \Phi_{pq} \text{ are flat} \\ (X-1)\Phi_{pqr}(X) \text{ is flat (Gallot and M., 2009)} \\ \Phi_{pqr} \text{ is flat if:} \\ -q \equiv -1(\text{mod } p), \ r \equiv 1(\text{mod } pq) \\ -r \equiv \pm 1(\text{mod } pq) \\ -r \equiv w(\text{mod } pq), p \equiv 1(\text{mod } w), q \equiv 1(\text{mod } pw) \end{array} \begin{array}{l} \text{Bachman, 2006} \\ \text{Kaplan, 2007} \\ \text{Elder, 2013} \\ \end{array}$ $\begin{array}{l} \Phi_{pqrs} \text{ is flat if:} \\ q \equiv -1(\text{mod } p), \ r \equiv \pm 1(\text{mod } pq), \ s \equiv 1(\text{mod } pqr) \end{array}$

 Φ_{parst}

 Φ_p, Φ_{pq} are flat $(X-1)\Phi_{par}(X)$ is flat (Gallot and M., 2009) Φ_{par} is flat if: Bachman, 2006 $-q \equiv -1 \pmod{p}, r \equiv 1 \pmod{pq}$ Kaplan, 2007 $-r \equiv \pm 1 \pmod{pq}$ $-r \equiv w \pmod{pq}, p \equiv 1 \pmod{w}, q \equiv 1 \pmod{pw}$ Elder, 2013 Φ_{pars} is flat if: $q \equiv -1 \pmod{p}, r \equiv \pm 1 \pmod{pq}, s \equiv 1 \pmod{pq}$ Φ_{parst} Conjecture: Is never flat...

 Φ_{pqrs} is flat if: $q \equiv -1 \pmod{p}, r \equiv \pm 1 \pmod{pq}, s \equiv 1 \pmod{pqr}$ Φ_{pqrst} : Conjecture: Is never flat...

Sam

Elder

-Put $C(n) = \{a_n(k) : k \ge 0\}.$

-Put $C(n) = \{a_n(k) : k \ge 0\}.$

-C(n) is coefficient convex if it consists of consecutive integers.

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

$$A((X-1)\Phi_{pqr}(X)) = 1$$
, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

$$A((X-1)\Phi_{pqr}(X)) = 1$$
, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

A ternary Φ_n has the jump one property

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

 $A((X-1)\Phi_{pqr}(X)) = 1$, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

A ternary Φ_n has the jump one property

$$C(p) = [0, 1], C(pq) = [-1, 1], C(pqr) = [-a, b], \max(a, b) = A(pqr)$$

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

$$A((X-1)\Phi_{pqr}(X)) = 1$$
, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

A ternary Φ_n has the jump one property

$$C(p) = [0, 1], C(pq) = [-1, 1], C(pqr) = [-a, b], \max(a, b) = A(pqr)$$

 $C(5 \cdot 7 \cdot 13 \cdot 17) = \{-9\} \cup [-7, 5]$

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

$$A((X-1)\Phi_{pqr}(X)) = 1$$
, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

A ternary Φ_n has the jump one property

$$C(p) = [0, 1], C(pq) = [-1, 1], C(pqr) = [-a, b], \max(a, b) = A(pqr)$$

 $C(5 \cdot 7 \cdot 13 \cdot 17) = \{-9\} \cup [-7, 5]$

We have $\#C(pqr) = b + a \le p$.

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

 $A((X-1)\Phi_{pqr}(X)) = 1$, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

A ternary Φ_n has the jump one property

 $C(p) = [0, 1], C(pq) = [-1, 1], C(pqr) = [-a, b], \max(a, b) = A(pqr)$

 $C(5 \cdot 7 \cdot 13 \cdot 17) = \{-9\} \cup [-7, 5]$ We have $\#C(pqr) = b + a \le p$. If equality holds, then $\Phi_{pqr}(X)$ is said to have an optimally large set of coefficients.

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

 $A((X-1)\Phi_{pqr}(X)) = 1$, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

A ternary Φ_n has the jump one property

 $C(p) = [0, 1], C(pq) = [-1, 1], C(pqr) = [-a, b], \max(a, b) = A(pqr)$

 $C(5 \cdot 7 \cdot 13 \cdot 17) = \{-9\} \cup [-7, 5]$ We have $\#C(pqr) = b + a \le p$. If equality holds, then $\Phi_{pqr}(X)$ is said to have an optimally large set of coefficients.

Coefficient convexity

-Put $C(n) = \{a_n(k) : k \ge 0\}$. -C(n) is coefficient convex if it consists of consecutive integers. Gallot and M. (2009):

 $A((X-1)\Phi_{pqr}(X)) = 1$, that is $|a_{pqr}(k) - a_{pqr}(k-1)| \le 1$

A ternary Φ_n has the jump one property

$$C(p) = [0, 1], C(pq) = [-1, 1], C(pqr) = [-a, b], \max(a, b) = A(pqr)$$

 $C(5 \cdot 7 \cdot 13 \cdot 17) = \{-9\} \cup [-7, 5]$ We have $\#C(pqr) = b + a \le p$. If equality holds, then $\Phi_{pqr}(X)$ is said to have an optimally large set of coefficients. Example: Lehmer/Möller infinite family satisfies

 $C(pqr) = [-\frac{p-1}{2}, \frac{p+1}{2}],$ (Bachman, 2004)

-Gallot-M.: consecutive coefficients of ternary cyclotomic polynomials differ by at most one.

-Gallot-M.: consecutive coefficients of ternary cyclotomic polynomials differ by at most one.

-Bzdęga: different reproof of this result. Initiated the study of the number of "jumps".

-Gallot-M.: consecutive coefficients of ternary cyclotomic polynomials differ by at most one.

-Bzdęga: different reproof of this result. Initiated the study of the number of "jumps".

Number of jumps up with $a_n(k) = a_n(k-1) + 1$ is the same as the number of jumps down with $a_n(k) = a_n(k-1) - 1$.

-Gallot-M.: consecutive coefficients of ternary cyclotomic polynomials differ by at most one.

-Bzdęga: different reproof of this result. Initiated the study of the number of "jumps".

Number of jumps up with $a_n(k) = a_n(k-1) + 1$ is the same as the number of jumps down with $a_n(k) = a_n(k-1) - 1$.

We denote this common number by J_n .

-Gallot-M.: consecutive coefficients of ternary cyclotomic polynomials differ by at most one.

-Bzdęga: different reproof of this result. Initiated the study of the number of "jumps".

Number of jumps up with $a_n(k) = a_n(k-1) + 1$ is the same as the number of jumps down with $a_n(k) = a_n(k-1) - 1$.

We denote this common number by J_n .

-Bzdęga: $J_n > n^{1/3}$.

-Gallot-M.: consecutive coefficients of ternary cyclotomic polynomials differ by at most one.

-Bzdęga: different reproof of this result. Initiated the study of the number of "jumps".

Number of jumps up with $a_n(k) = a_n(k-1) + 1$ is the same as the number of jumps down with $a_n(k) = a_n(k-1) - 1$.

We denote this common number by J_n .

-Bzdęga: $J_n > n^{1/3}$.

-Camburu-Ciolan-Luca-M.-Shparlinski (2016): For infinitely many n = pqr with pairwise distinct odd primes p, q and r, we have

 $J_n \ll n^{7/8 + o(1)}$.

Is $\Phi_n(X)$ a special divisor of $X^n - 1$?

If $\Phi_n(X)|X^{p^2q}-1$, then

$$\Phi_n = \Phi_1^{k_1} \Phi_p^{k_2} \Phi_q^{k_3} \Phi_{pq}^{k_4} \Phi_{p^2}^{k_4} \Phi_{p^2q}^{k_5}, \ k_i \in \{0, 1\}$$

Is $\Phi_n(X)$ a special divisor of $X^n - 1$?

If $\Phi_n(X)|X^{p^2q}-1$, then

$$\Phi_n = \Phi_1^{k_1} \Phi_p^{k_2} \Phi_q^{k_3} \Phi_{pq}^{k_4} \Phi_{p^2}^{k_4} \Phi_{p^2q}^{k_5}, \ k_i \in \{0, 1\}$$

If *q* is odd, then all 64 divisors are coefficient convex (Andreas Decker and M., Sarajevo Math. J., 2012)

Is $\Phi_n(X)$ a special divisor of $X^n - 1$?

If $\Phi_n(X)|X^{p^2q}-1$, then

$$\Phi_n = \Phi_1^{k_1} \Phi_p^{k_2} \Phi_q^{k_3} \Phi_{pq}^{k_4} \Phi_{p^2}^{k_4} \Phi_{p^2q}^{k_5}, \ k_i \in \{0,1\}$$

If *q* is odd, then all 64 divisors are coefficient convex (Andreas Decker and M., Sarajevo Math. J., 2012) Extends work of C. Pomerance, N.C. Ryan and N. Kaplan

Andreas Decker

PhD student comp. analytic number th. Bonn University

Φ ₁	Φρ	Φ_q	Φ_{pq}	Φ_{p^2}	Φ_{p^2q}	coefficients
1	0	0	0	1	0	[-1,1]
0	1	0	0	1	0	{1}
1	1	0	0	1	0	[-1,1]
0	0	1	0	1	0	$[\min([\frac{q}{p}], 1), \min([\frac{q-1}{p}] + 1, p)]$
1	0	1	0	1	0	[-1,1]
0	1	1	0	1	0	$[1, \min(p^2, q)]$
1	1	1	0	1	0	[-1,1]
0	0	0	1	1	0	$[-\min(p,q-p^*),\min(p,p^*)]$
1	0	0	1	1	0	$[-\gamma(m{ ho},m{q}),\gamma(m{ ho},m{q})]$
0	1	0	1	1	0	[0, 1]
1	1	0	1	1	0	[-1,1]
0	0	1	1	1	0	$[0, \min(p, q)]$
1	0	1	1	1	0	$[-\min(p,q),\min(p,q)]$
0	1	1	1	1	0	[1, min(<i>p</i> , <i>q</i>)]

 $\gamma(\boldsymbol{\rho}.\boldsymbol{q}) = \min(\boldsymbol{\rho},\boldsymbol{\rho}^*) + \min(\boldsymbol{\rho},\boldsymbol{q}-\boldsymbol{\rho}^*).$

(Introduced by M. in 2009) Consider

$$\Psi_n(X) = \frac{X^n - 1}{\Phi_n(X)} = \prod_{d|n, d < n} \Phi_d(X) = \sum_{k=0}^{\infty} c_n(k) X^k.$$

(Introduced by M. in 2009) Consider

$$\Psi_n(X) = \frac{X^n - 1}{\Phi_n(X)} = \prod_{d|n, d < n} \Phi_d(X) = \sum_{k=0}^{\infty} c_n(k) X^k.$$

Put $B(n) = \max\{|c_n(k)| : k \ge 0\}$

(Introduced by M. in 2009) Consider

$$\Psi_n(X) = \frac{X^n - 1}{\Phi_n(X)} = \prod_{d|n, d < n} \Phi_d(X) = \sum_{k=0}^{\infty} c_n(k) X^k.$$

Put $B(n) = \max\{|c_n(k)| : k \ge 0\}$ We have B(n) = 1 for n < 561

(Introduced by M. in 2009) Consider

$$\Psi_n(X) = \frac{X^n - 1}{\Phi_n(X)} = \prod_{d|n, d < n} \Phi_d(X) = \sum_{k=0}^{\infty} c_n(k) X^k.$$

Put $B(n) = \max\{|c_n(k)| : k \ge 0\}$

We have B(n) = 1 for n < 561We have $B(pqr) \le p - 1$.

(Introduced by M. in 2009) Consider

$$\Psi_n(X) = \frac{X^n - 1}{\Phi_n(X)} = \prod_{d|n, d < n} \Phi_d(X) = \sum_{k=0}^{\infty} c_n(k) X^k.$$

Put $B(n) = \max\{|c_n(k)| : k \ge 0\}$

We have B(n) = 1 for n < 561We have $B(pqr) \le p - 1$.

$$B(pqr) = p-1 \iff q \equiv r \equiv \pm 1 \pmod{p}$$
 and $r < \frac{p-1}{p-2}(q-1)$

- Maximum gap: Given $f(X) = c_1 X^{e_1} + \cdots + c_t X^{e_t} \in \mathbb{Z}[X]$, with $c_i \neq 0$ and $e_1 < \cdots < e_t$, we define the *maximum gap* of *f* as

$$g(f) = \max_{1 \leq i < t} (e_{i+1} - e_i).$$

- Maximum gap: Given $f(X) = c_1 X^{e_1} + \cdots + c_t X^{e_t} \in \mathbb{Z}[X]$, with $c_i \neq 0$ and $e_1 < \cdots < e_t$, we define the *maximum gap* of *f* as

$$g(f) = \max_{1 \leq i < t} (e_{i+1} - e_i).$$

- Study of $g(\Phi_n)$ and $g(\Psi_n)$ has been initiated by Hong, Lee, Lee and Park (2012) who reduced the study of these gaps to the case where *n* is square-free and odd.

- Maximum gap: Given $f(X) = c_1 X^{e_1} + \cdots + c_t X^{e_t} \in \mathbb{Z}[X]$, with $c_i \neq 0$ and $e_1 < \cdots < e_t$, we define the *maximum gap* of *f* as

$$g(f) = \max_{1 \leq i < t} (e_{i+1} - e_i).$$

- Study of $g(\Phi_n)$ and $g(\Psi_n)$ has been initiated by Hong, Lee, Lee and Park (2012) who reduced the study of these gaps to the case where *n* is square-free and odd.

- Simple and exact formula for the minimum Miller loop length in the Ate_i pairing arising in elliptic curve cryptography (2015):

- Maximum gap: Given $f(X) = c_1 X^{e_1} + \cdots + c_t X^{e_t} \in \mathbb{Z}[X]$, with $c_i \neq 0$ and $e_1 < \cdots < e_t$, we define the *maximum gap* of *f* as

$$g(f) = \max_{1 \leq i < t} (e_{i+1} - e_i).$$

- Study of $g(\Phi_n)$ and $g(\Psi_n)$ has been initiated by Hong, Lee, Lee and Park (2012) who reduced the study of these gaps to the case where *n* is square-free and odd.

- Simple and exact formula for the minimum Miller loop length in the Ate_i pairing arising in elliptic curve cryptography (2015):

- More managable when turned into a problem involving the maximum gaps of inverse cyclotomic polynomials.

 $g(\Phi_p) = 1, \quad g(\Psi_p) = 1, \quad g(\Phi_{pq}) = p - 1, \quad g(\Psi_{pq}) = q - p + 1.$

 $g(\Phi_p) = 1$, $g(\Psi_p) = 1$, $g(\Phi_{pq}) = p - 1$, $g(\Psi_{pq}) = q - p + 1$. Hong-Lee-Lee-Park: Put $Q_3 = \{n = pqr : 2$

 $g(\Phi_{p})=1, \quad g(\Psi_{p})=1, \quad g(\Phi_{pq})=p-1, \quad g(\Psi_{pq})=q-p+1.$

Hong-Lee-Park: Put $Q_3 = \{n = pqr : 2$

Put $\mathcal{R}_3 = \{n \in \mathcal{Q}_3 : 4(p-1) > q, \ p^2 > r\}.$

$$g(\Phi_p) = 1, \quad g(\Psi_p) = 1, \quad g(\Phi_{pq}) = p - 1, \quad g(\Psi_{pq}) = q - p + 1.$$

Hong-Lee-Lee-Park:
Put $Q_3 = \{n = pqr : 2 Put $\mathcal{R}_3 = \{n \in Q_3 : 4(p - 1) > q, p^2 > r\}.$
Then$

$$g(\Psi_n) = rac{2n}{p} - \deg \Psi_n$$
 if $n
ot\in \mathcal{R}_3$.

$$g(\Phi_p) = 1, \quad g(\Psi_p) = 1, \quad g(\Phi_{pq}) = p-1, \quad g(\Psi_{pq}) = q-p+1.$$

Hong-Lee-Lee-Park:
Put $Q_3 = \{n = pqr : 2 Put $\mathcal{R}_3 = \{n \in Q_3 : 4(p-1) > q, p^2 > r\}.$$

Then

$$g(\Psi_n) = rac{2n}{p} - \deg \Psi_n ext{ if } n
ot\in \mathcal{R}_3.$$

Claim: $\mathcal{R}_3(x) = o(\mathcal{Q}_3(x)).$

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): "Cyclotomic coefficients: gaps and jumps":

Camburu-Ciolan-Luca-M.-Shparlinksi (2016):

"Cyclotomic coefficients: gaps and jumps":

Working title: "Cyclotomic coefficients: an extramarginal affair."

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): "Cyclotomic coefficients: gaps and jumps": Working title: "Cyclotomic coefficients: an extramarginal affair."

Showed that

$$\#\mathcal{R}_3(x) = \frac{cx}{(\log x)^2} + O\left(\frac{x\log\log x}{(\log x)^3}\right),$$

with $c = (1 + \log 4)\log 4 = 3.30811....$

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): "Cyclotomic coefficients: gaps and jumps": Working title: "Cyclotomic coefficients: an extramarginal affair."

Showed that

$$\#\mathcal{R}_3(x) = \frac{cx}{(\log x)^2} + O\left(\frac{x\log\log x}{(\log x)^3}\right),$$

with $c = (1 + \log 4) \log 4 = 3.30811 \dots$

Classical estimate (Gauss, Landau):

$$\#\mathcal{Q}_3(x) = (1 + o(1)) \frac{x(\log \log x)^2}{2\log x}$$

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): "Cyclotomic coefficients: gaps and jumps": Working title: "Cyclotomic coefficients: an extramarginal affair."

Showed that

$$#\mathcal{R}_3(x) = \frac{cx}{(\log x)^2} + O\left(\frac{x\log\log x}{(\log x)^3}\right),$$

with $c = (1 + \log 4) \log 4 = 3.30811 \dots$

Classical estimate (Gauss, Landau):

$$\#\mathcal{Q}_3(x) = (1 + o(1))\frac{x(\log\log x)^2}{2\log x}$$

Thus the claim is true and in particular

$$\#\mathcal{R}_3(x)\sim \frac{c\#\mathcal{Q}_3(x)}{2(\log x)(\log\log x)^2}.$$

$\omega(n) = 3$: THE TERNARY CASE

$\omega(n) = 3$: THE TERNARY CASE

...where Kloosterman and Sister Beiter meet...

Recall that $A(n) = \max\{|a_n(k)| : k \ge 0\}$.

Recall that $A(n) = \max\{|a_n(k)| : k \ge 0\}$. Φ_n is *ternary*, if n = pqr with 2 .

Recall that $A(n) = \max\{|a_n(k)| : k \ge 0\}$. Φ_n is *ternary*, if n = pqr with 2 .For ternary <math>n we can have A(n) > 1, e.g. $a_{105}(7) = -2$ and A(105) = 2.

Recall that $A(n) = \max\{|a_n(k)| : k \ge 0\}$. Φ_n is *ternary*, if n = pqr with 2 .

For ternary *n* we can have A(n) > 1, e.g. $a_{105}(7) = -2$ and A(105) = 2. If $2 < p_1 < \ldots < p_s$ then $A(p_1p_2 \cdots p_s) \le f(p_1, p_2, \ldots, p_{s-2})$. (J. Justin, 1969)

M(p): main problem

Recall that $A(n) = \max\{|a_n(k)| : k \ge 0\}$. Φ_n is *ternary*, if n = pqr with 2 .

For ternary *n* we can have A(n) > 1, e.g. $a_{105}(7) = -2$ and A(105) = 2. If $2 < p_1 < ... < p_s$ then $A(p_1p_2 \cdots p_s) \le f(p_1, p_2, \dots, p_{s-2})$. (J. Justin, 1969) For fixed *p*, $M(p) = \max\{A(pqr) : p < q < r\}$ is well-defined.

M(p): main problem

Recall that $A(n) = \max\{|a_n(k)| : k \ge 0\}$. Φ_n is *ternary*, if n = pqr with 2 .

For ternary *n* we can have A(n) > 1, e.g. $a_{105}(7) = -2$ and A(105) = 2. If $2 < p_1 < \ldots < p_s$ then $A(p_1p_2 \cdots p_s) \le f(p_1, p_2, \ldots, p_{s-2})$. (J. Justin, 1969) For fixed *p*, $M(p) = \max\{A(pqr) : p < q < r\}$ is well-defined. Main Question: Determine M(p).

M(p): main problem

Recall that $A(n) = \max\{|a_n(k)| : k \ge 0\}$. Φ_n is *ternary*, if n = pqr with 2 .

For ternary *n* we can have A(n) > 1, e.g. $a_{105}(7) = -2$ and A(105) = 2. If $2 < p_1 < \ldots < p_s$ then $A(p_1p_2 \cdots p_s) \le f(p_1, p_2, \ldots, p_{s-2})$. (J. Justin, 1969) For fixed *p*, $M(p) = \max\{A(pqr) : p < q < r\}$ is well-defined. Main Question: Determine M(p). Question: Is there a finite procedure to compute M(p)?

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$.

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$.

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$. Emma Lehmer (1936): $M(p) \ge (p-1)/2$ for $p \ge 5$.

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$. Emma Lehmer (1936): $M(p) \ge (p-1)/2$ for $p \ge 5$. Herbert Möller (1971): $M(p) \ge (p+1)/2$ for $p \ge 5$.

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$. Emma Lehmer (1936): $M(p) \ge (p-1)/2$ for $p \ge 5$. Herbert Möller (1971): $M(p) \ge (p+1)/2$ for $p \ge 5$. Gallot and M. (2008):

-M(p) > (p+1)/2 for $p \ge 11$

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$. Emma Lehmer (1936): $M(p) \ge (p-1)/2$ for $p \ge 5$. Herbert Möller (1971): $M(p) \ge (p+1)/2$ for $p \ge 5$. Gallot and M. (2008):

$$-M(p) > (p+1)/2$$
 for $p \ge 11$
 $-M(p) \ge (2/3 - \epsilon)p$, p sufficiently large.

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$. Emma Lehmer (1936): $M(p) \ge (p-1)/2$ for $p \ge 5$. Herbert Möller (1971): $M(p) \ge (p+1)/2$ for $p \ge 5$. Gallot and M. (2008):

-M(p) > (p+1)/2 for $p \ge 11$ $-M(p) \ge (2/3 - \epsilon)p$, *p* sufficiently large. Zhao and Zhang (2010): M(7) = 4.

Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$. Emma Lehmer (1936): $M(p) \ge (p-1)/2$ for $p \ge 5$. Herbert Möller (1971): $M(p) \ge (p+1)/2$ for $p \ge 5$. Gallot and M. (2008):

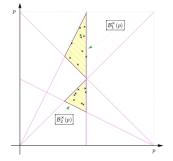
-M(p) > (p+1)/2 for $p \ge 11$ $-M(p) \ge (2/3 - \epsilon)p$, *p* sufficiently large. Zhao and Zhang (2010): M(7) = 4.

Corrected Sister Beiter Conjecture (2008): $M(p) \le 2p/3$.

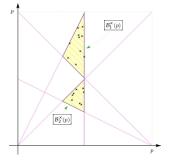
Sister Beiter Conjecture (1968): $M(p) \le (p+1)/2$. Sister Beiter (1971): M(2) = 1, M(3) = 2, M(5) = 3 $M(p) \le \lceil 3p/4 \rceil$. Emma Lehmer (1936): $M(p) \ge (p-1)/2$ for $p \ge 5$. Herbert Möller (1971): $M(p) \ge (p+1)/2$ for $p \ge 5$. Gallot and M. (2008):

-M(p) > (p+1)/2 for $p \ge 11$ $-M(p) \ge (2/3 - \epsilon)p$, *p* sufficiently large. Zhao and Zhang (2010): M(7) = 4.

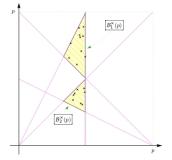
Corrected Sister Beiter Conjecture (2008): $M(p) \le 2p/3$.



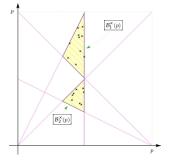
Crosses are at (x, y) with $xy \equiv 1 \pmod{p}$ (p = 241 in figure).



Crosses are at (x, y) with $xy \equiv 1 \pmod{p}$ (p = 241 in figure). Each point (x, y) in a triangle leads to triples (p, q, r) with $q \equiv x \pmod{p}$ such that $A(pqr) \ge p - x$.

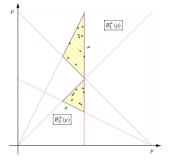


Crosses are at (x, y) with $xy \equiv 1 \pmod{p}$ (p = 241 in figure). Each point (x, y) in a triangle leads to triples (p, q, r) with $q \equiv x \pmod{p}$ such that $A(pqr) \ge p - x$. As $x \ge p/3$, $p - x \le 2p/3$.



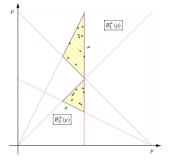
Crosses are at (x, y) with $xy \equiv 1 \pmod{p}$ (p = 241 in figure). Each point (x, y) in a triangle leads to triples (p, q, r) with $q \equiv x \pmod{p}$ such that $A(pqr) \ge p - x$. As $x \ge p/3$, $p - x \le 2p/3$.

It follows that $M(p) \ge p - \min\{x : (x, y) \in T_1(p) \cup T_2(p)\}.$



Crosses are at (x, y) with $xy \equiv 1 \pmod{p}$ (p = 241 in figure). Each point (x, y) in a triangle leads to triples (p, q, r) with $q \equiv x \pmod{p}$ such that $A(pqr) \ge p - x$. As $x \ge p/3$, $p - x \le 2p/3$.

It follows that $M(p) \ge p - \min\{x : (x, y) \in T_1(p) \cup T_2(p)\}$. For $p \ge 11$, at least one of the two triangles is non-empty.



Crosses are at (x, y) with $xy \equiv 1 \pmod{p}$ (p = 241 in figure). Each point (x, y) in a triangle leads to triples (p, q, r) with $q \equiv x \pmod{p}$ such that $A(pqr) \ge p - x$. As $x \ge p/3$, $p - x \le 2p/3$.

It follows that $M(p) \ge p - \min\{x : (x, y) \in T_1(p) \cup T_2(p)\}.$

For $p \ge 11$, at least one of the two triangles is non-empty. For *p* large enough, $M(p) \ge (2/3 - \epsilon)p$.

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \le x \le m-1 \ gcd(x,m)=1}} e^{rac{2\pi i}{m}(ax+bx^*)}$$

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \le x \le m-1 \\ gcd(x,m)=1}} e^{\frac{2\pi i}{m}(ax+bx^*)}$$

 $|K(a, b; p)| \le 2\sqrt{p}$ (Weil, 1948)

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \leq x \leq m-1 \ gcd(x,m)=1}} e^{rac{2\pi i}{m}(ax+bx^*)}$$

 $|K(a, b; p)| \le 2\sqrt{p}$ (Weil, 1948)

Modular hyperbola

 $\{(x, y) : 1 \le x \le p - 1, \ 1 \le y \le p - 1, \ xy \equiv 1 \pmod{p}\}$

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \leq x \leq m-1 \ gcd(x,m)=1}} e^{rac{2\pi i}{m}(ax+bx^*)}$$

 $|K(a, b; p)| \le 2\sqrt{p}$ (Weil, 1948)

Modular hyperbola:

 $\{(x, y) : 1 \le x \le p - 1, 1 \le y \le p - 1, xy \equiv 1 \pmod{p}\}$ Let *R* be a rectangle with area *A*.

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \leq x \leq m-1 \ gcd(x,m)=1}} e^{rac{2\pi i}{m}(ax+bx^*)}$$

 $|K(a, b; p)| \le 2\sqrt{p}$ (Weil, 1948)

Modular hyperbola:

 $\{(x, y) : 1 \le x \le p - 1, 1 \le y \le p - 1, xy \equiv 1 \pmod{p}\}$ Let *R* be a rectangle with area *A*.

Put $N_R(p) := \#\{(x, y) \in R : xy \equiv 1 \pmod{p}\}.$

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \leq x \leq m-1 \ gcd(x,m)=1}} e^{rac{2\pi i}{m}(ax+bx^*)}$$

 $|\mathcal{K}(a,b;p)| \leq 2\sqrt{p}$ (Weil, 1948)

Modular hyperbola:

 $\{(x, y) : 1 \le x \le p - 1, 1 \le y \le p - 1, xy \equiv 1 \pmod{p}\}$ Let *R* be a rectangle with area *A*.

Put $N_R(p) := \#\{(x, y) \in R : xy \equiv 1 \pmod{p}\}.$

We have $|N_R(p) - A/p| \le \sqrt{p}(2 + \log p)^2$.

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \leq x \leq m-1 \ gcd(x,m)=1}} e^{rac{2\pi i}{m}(ax+bx^*)}$$

 $|K(a,b;p)| \le 2\sqrt{p}$ (Weil, 1948)

Modular hyperbola:

 $\{(x, y) : 1 \le x \le p - 1, 1 \le y \le p - 1, xy \equiv 1 \pmod{p}\}$ Let *R* be a rectangle with area *A*.

Put $N_R(p) := \#\{(x, y) \in R : xy \equiv 1 \pmod{p}\}.$

We have $|N_R(p) - A/p| \le \sqrt{p}(2 + \log p)^2$.

Problem: Estimate the number of modular hyperbolic points in the triangles $T_1(p)$ and $T_2(p)$.

$$\mathcal{K}(a,b;m) = \sum_{\substack{0 \leq x \leq m-1 \ gcd(x,m)=1}} e^{rac{2\pi i}{m}(ax+bx^*)}$$

 $|K(a,b;p)| \le 2\sqrt{p}$ (Weil, 1948)

Modular hyperbola:

 $\{(x, y) : 1 \le x \le p - 1, 1 \le y \le p - 1, xy \equiv 1 \pmod{p}\}$ Let *R* be a rectangle with area *A*.

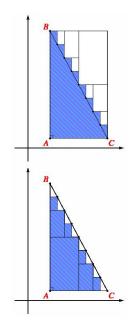
Put
$$N_R(p) := \#\{(x, y) \in R : xy \equiv 1 \pmod{p}\}.$$

We have $|N_R(p) - A/p| \le \sqrt{p}(2 + \log p)^2$.

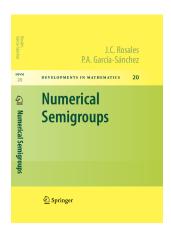
Problem: Estimate the number of modular hyperbolic points in

the triangles $T_1(p)$ and $T_2(p)$. Cobeli, Gallot, M. and Zaharescu (Indag. Math., 2013):

$$\left| \# T_1(p) \cup T_2(p) - \frac{p}{16} \right| \le 24p^{3/4} \log p.$$



NUMERICAL SEMIGROUP APPROACH



 $S(p,q) = \{ \alpha p + \beta q : \alpha \ge 0, \beta \ge 0 \}$ Numerical semigroup generated by *p* and *q*

 $S(p,q) = \{ \alpha p + \beta q : \alpha \ge 0, \beta \ge 0 \}$ Numerical semigroup generated by *p* and *q* Example: S(3,5)

0	1	2	3	4	5	6	7	8	9	10	
1	0	0	1	0	1	1	0	1	1	1	 1

 $S(p,q) = \{ \alpha p + \beta q : \alpha \ge 0, \beta \ge 0 \}$ Numerical semigroup generated by *p* and *q* Example: S(3,5)

0	1	2	3	4	5	6	7	8	9	10	
1	0	0	1	0	1	1	0	1	1	1	 1
1	-1	0	1	-1	1	0	-1	1	0	0	 0

Largest number not in S(p, q) is the Frobenius number

 $S(p,q) = \{ \alpha p + \beta q : \alpha \ge 0, \beta \ge 0 \}$ Numerical semigroup generated by *p* and *q* Example: S(3,5)

0	1	2	3	4	5	6	7	8	9	10	
1	0	0	1	0	1	1	0	1	1	1	 1
1	-1	0	1	-1	1	0	-1	1	0	0	 0

Largest number not in S(p, q) is the Frobenius number F(S(3,5)) = 7

 $S(p,q) = \{ \alpha p + \beta q : \alpha \ge 0, \beta \ge 0 \}$ Numerical semigroup generated by *p* and *q* Example: S(3,5)

0	1	2	3	4	5	6	7	8	9	10	
1	0	0	1	0	1	1	0	1	1	1	 1
1	-1	0	1	-1	1	0	-1	1	0	0	 0

Largest number not in S(p, q) is the Frobenius number F(S(3,5)) = 7Claim: $\Phi_{pq}(X) = (1 - X) \sum_{i \in S(p,q)} X^i$

 $S(p,q) = \{ \alpha p + \beta q : \alpha \ge 0, \beta \ge 0 \}$ Numerical semigroup generated by *p* and *q* Example: S(3,5)

0	1	2	3	4	5	6	7	8	9	10	
1	0	0	1	0	1	1	0	1	1	1	 1
1	-1	0	1	-1	1	0	-1	1	0	0	 0

Largest number not in S(p,q) is the Frobenius number F(S(3,5)) = 7Claim: $\Phi_{pq}(X) = (1-X) \sum_{j \in S(p,q)} X^j$ $F(S(p,q)) = \deg(\Phi_{pq}(X)) - 1 = (p-1)(q-1) - 1 = pq - p - q$ (Sylvester, 1884)

 $S(p,q) = \{ \alpha p + \beta q : \alpha \ge 0, \beta \ge 0 \}$ Numerical semigroup generated by *p* and *q* Example: S(3,5)

0	1	2	3	4	5	6	7	8	9	10	
1	0	0	1	0	1	1	0	1	1	1	 1
1	-1	0	1	-1	1	0	-1	1	0	0	 0

Largest number not in S(p, q) is the Frobenius number F(S(3,5)) = 7Claim: $\Phi_{pq}(X) = (1 - X) \sum_{j \in S(p,q)} X^j$ $F(S(p,q)) = \deg(\Phi_{pq}(X)) - 1 = (p-1)(q-1) - 1 = pq - p - q$ (Sylvester, 1884) In example: $\Phi_{15}(X) = 1 - X + X^3 - X^4 + X^5 - X^7 + X^8$

with Pedro Garcia-Sanchez and Alexandru Ciolan

to appear in SIAM Journal on Discrete Mathematics (SIDMA)

with Pedro Garcia-Sanchez and Alexandru Ciolan

to appear in SIAM Journal on Discrete Mathematics (SIDMA)

Note that $P_{\mathcal{S}}(x) = (1 - X) \sum_{s \in S} X^s$ is a polynomial.

with Pedro Garcia-Sanchez and Alexandru Ciolan

to appear in SIAM Journal on Discrete Mathematics (SIDMA)

Note that $P_{\mathcal{S}}(x) = (1 - X) \sum_{s \in \mathcal{S}} X^s$ is a polynomial.

It is called semigroup polynomial and can be rewritten as:

with Pedro Garcia-Sanchez and Alexandru Ciolan

to appear in SIAM Journal on Discrete Mathematics (SIDMA)

Note that $P_{\mathcal{S}}(x) = (1 - X) \sum_{s \in \mathcal{S}} X^s$ is a polynomial.

It is called semigroup polynomial and can be rewritten as:

$$\mathcal{P}_{\mathcal{S}}(X) = 1 + (X-1)\sum_{s
ot \in \mathcal{S}} X^s, \ \mathsf{deg}(\mathcal{P}_{\mathcal{S}}) = \mathcal{F}(\mathcal{S}) + 1.$$

with Pedro Garcia-Sanchez and Alexandru Ciolan

to appear in SIAM Journal on Discrete Mathematics (SIDMA)

Note that $P_S(x) = (1 - X) \sum_{s \in S} X^s$ is a polynomial.

It is called semigroup polynomial and can be rewritten as:

$$P_{\mathcal{S}}(X) = 1 + (X-1)\sum_{s
ot \in \mathcal{S}} X^s, \ \deg(P_{\mathcal{S}}) = F(\mathcal{S}) + 1.$$

Question: To what extent are the properties of S reflected in P_S and vice versa?

with Pedro Garcia-Sanchez and Alexandru Ciolan

to appear in SIAM Journal on Discrete Mathematics (SIDMA)

Note that $P_S(x) = (1 - X) \sum_{s \in S} X^s$ is a polynomial.

It is called semigroup polynomial and can be rewritten as:

$$P_{\mathcal{S}}(X) = 1 + (X-1)\sum_{s
ot \in \mathcal{S}} X^s, \ \deg(P_{\mathcal{S}}) = F(\mathcal{S}) + 1.$$

Question: To what extent are the properties of *S* reflected in P_S and vice versa? Example: *S* is symmetric iff P_S is self-reciprocal

with Pedro Garcia-Sanchez and Alexandru Ciolan

to appear in SIAM Journal on Discrete Mathematics (SIDMA)

Note that $P_{\mathcal{S}}(x) = (1 - X) \sum_{s \in S} X^s$ is a polynomial.

It is called semigroup polynomial and can be rewritten as:

$$P_S(X) = 1 + (X - 1) \sum_{s
ot \in S} X^s$$
, $\deg(P_S) = F(S) + 1$.

Question: To what extent are the properties of *S* reflected in P_S and vice versa?

Example: S is symmetric iff P_S is self-reciprocal

S is symmetric if $S \cup (F(S) - S) = \mathbb{Z}$.

 $S = \langle 3, 7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, \dots$

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, \dots$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, \dots$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$ $S = \langle 3,7 \rangle$ is symmetric since $\Phi_{21}(X)$ is self-reciprocal Definition: We say *S* is cyclotomic if the roots of P_S are on the unit circle.

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$ $S = \langle 3,7 \rangle$ is symmetric since $\Phi_{21}(X)$ is self-reciprocal Definition: We say *S* is cyclotomic if the roots of P_S are on the unit circle.

$$\Rightarrow \mathcal{P}_{\mathcal{S}}(X) = \prod_{d \in D} \Phi_d(X)^{e_d}$$

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$ $S = \langle 3,7 \rangle$ is symmetric since $\Phi_{21}(X)$ is self-reciprocal Definition: We say *S* is cyclotomic if the roots of P_S are on the unit circle.

$$\Rightarrow \mathcal{P}_{\mathcal{S}}(X) = \prod_{d \in D} \Phi_d(X)^{e_d}.$$

Q: Is S cyclotomic iff S is symmetric?

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$ $S = \langle 3,7 \rangle$ is symmetric since $\Phi_{21}(X)$ is self-reciprocal Definition: We say *S* is cyclotomic if the roots of *P*_S are on the unit circle.

$$\Rightarrow \mathcal{P}_{\mathcal{S}}(X) = \prod_{d \in D} \Phi_d(X)^{e_d}.$$

Q: Is *S* cyclotomic iff *S* is symmetric? A: NO. E.g., $S = \langle 5, 6, 7, 8 \rangle$ (cyclotomic but not symmetric).

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$ $S = \langle 3,7 \rangle$ is symmetric since $\Phi_{21}(X)$ is self-reciprocal Definition: We say *S* is cyclotomic if the roots of P_S are on the unit circle.

$$\Rightarrow \mathcal{P}_{\mathcal{S}}(X) = \prod_{d \in D} \Phi_d(X)^{e_d}.$$

Q: Is *S* cyclotomic iff *S* is symmetric? A: NO. E.g., $S = \langle 5, 6, 7, 8 \rangle$ (cyclotomic but not symmetric). True: If $e(S) \leq 3$ the answer is YES, however.

 $S = \langle 3,7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$ $S = \langle 3,7 \rangle$ is symmetric since $\Phi_{21}(X)$ is self-reciprocal Definition: We say *S* is cyclotomic if the roots of P_S are on the unit circle.

$$\Rightarrow \mathcal{P}_{\mathcal{S}}(X) = \prod_{d \in D} \Phi_d(X)^{e_d}.$$

Q: Is *S* cyclotomic iff *S* is symmetric? A: NO. E.g., $S = \langle 5, 6, 7, 8 \rangle$ (cyclotomic but not symmetric). True: If $e(S) \leq 3$ the answer is YES, however. Conjecture: *S* is cyclotomic iff *S* is a complete intersection numerical semigroup.

 $S = \langle 3, 7 \rangle : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...$ F(S) - S : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11Either $s \in S$ or $s \in F(S) - S$ $S = \langle 3, 7 \rangle$ is symmetric since $\Phi_{21}(X)$ is self-reciprocal Definition: We say *S* is cyclotomic if the roots of *P*_S are on the unit circle.

$$\Rightarrow \mathcal{P}_{\mathcal{S}}(X) = \prod_{d \in D} \Phi_d(X)^{e_d}.$$

Q: Is *S* cyclotomic iff *S* is symmetric?

A: NO. E.g., $S = \langle 5, 6, 7, 8 \rangle$ (cyclotomic but not symmetric).

True: If $e(S) \leq 3$ the answer is YES, however.

Conjecture: *S* is cyclotomic iff *S* is a complete intersection numerical semigroup.

Easy: *S* complete intersection \Rightarrow *S* is cyclotomic.

Let
$$P_S(X) = a_0 + a_1X + \cdots + a_kX^k$$
. Then

$$a_s = egin{cases} 1 & ext{if } s \in S ext{ and } s-1
ot\in S, \ -1 & ext{if } s
ot\in S ext{ and } s-1 \in S, \ 0 & ext{otherwise.} \end{cases}$$

Let
$$P_S(X) = a_0 + a_1X + \cdots + a_kX^k$$
. Then

$$a_s = egin{cases} 1 & ext{if } s \in S ext{ and } s-1
ot\in S, \ -1 & ext{if } s
ot\in S ext{ and } s-1 \in S, \ 0 & ext{otherwise}. \end{cases}$$

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): For p < q primes

Let
$$P_S(X) = a_0 + a_1X + \cdots + a_kX^k$$
. Then

$$a_s = egin{cases} 1 & ext{if } s \in S ext{ and } s-1
ot\in S, \ -1 & ext{if } s
ot\in S ext{ and } s-1 \in S, \ 0 & ext{otherwise}. \end{cases}$$

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): For p < q primes $-g(\Phi_{pq}) = p - 1$ and # maximum gaps $= 2 \lfloor q/p \rfloor$;

Let
$$P_S(X) = a_0 + a_1X + \cdots + a_kX^k$$
. Then

$$a_s = egin{cases} 1 & ext{if } s \in S ext{ and } s-1
ot\in S, \ -1 & ext{if } s
ot\in S ext{ and } s-1 \in S, \ 0 & ext{otherwise}. \end{cases}$$

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): For p < q primes $-g(\Phi_{pq}) = p - 1$ and # maximum gaps $= 2\lfloor q/p \rfloor$; $-\Phi_{pq}(X)$ contains the sequence of consecutive coefficients of the form $\pm 1, \{0\}_m, \pm 1$ for all m = 0, 1, ..., p - 2 if and only if $q \equiv \pm 1 \pmod{p}$.

Let
$$P_S(X) = a_0 + a_1X + \cdots + a_kX^k$$
. Then

$$a_s = egin{cases} 1 & ext{if } s \in S ext{ and } s-1
ot\in S, \ -1 & ext{if } s
ot\in S ext{ and } s-1 \in S, \ 0 & ext{otherwise}. \end{cases}$$

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): For p < q primes $-g(\Phi_{pq}) = p - 1$ and # maximum gaps $= 2\lfloor q/p \rfloor$; $-\Phi_{pq}(X)$ contains the sequence of consecutive coefficients of the form $\pm 1, \{0\}_m, \pm 1$ for all $m = 0, 1, \dots, p - 2$ if and only if $q \equiv \pm 1 \pmod{p}$. -Let $S = \langle p, q \rangle$. Coefficients gaps are related to gapblocks and elementblocks of *S*.

Thank you for listening!

Let $\theta(pq)$ denote number of non-zero coefficients of $\Phi_{pq}(x)$.

Let $\theta(pq)$ denote number of non-zero coefficients of $\Phi_{pq}(x)$. We have $\theta(m) = \rho\sigma + (q - \rho)(p - \sigma) = 2\rho\sigma - 1$. Recall that

$$ho \mathbf{p} + \sigma \mathbf{q} = \mathbf{1} + \mathbf{p} \mathbf{q}.$$

Let $\theta(pq)$ denote number of non-zero coefficients of $\Phi_{pq}(x)$. We have $\theta(m) = \rho\sigma + (q - \rho)(p - \sigma) = 2\rho\sigma - 1$. Recall that

$$\rho \boldsymbol{p} + \sigma \boldsymbol{q} = \mathbf{1} + \boldsymbol{p} \boldsymbol{q}.$$

This result is due to Carlitz (1966).

Let $\theta(pq)$ denote number of non-zero coefficients of $\Phi_{pq}(x)$. We have $\theta(m) = \rho\sigma + (q - \rho)(p - \sigma) = 2\rho\sigma - 1$. Recall that

$$\rho \boldsymbol{p} + \sigma \boldsymbol{q} = \mathbf{1} + \boldsymbol{p} \boldsymbol{q}.$$

This result is due to Carlitz (1966). Example. Take p = 5, q = 7.

Let $\theta(pq)$ denote number of non-zero coefficients of $\Phi_{pq}(x)$. We have $\theta(m) = \rho\sigma + (q - \rho)(p - \sigma) = 2\rho\sigma - 1$. Recall that

$$\rho \boldsymbol{p} + \sigma \boldsymbol{q} = \mathbf{1} + \boldsymbol{p} \boldsymbol{q}.$$

This result is due to Carlitz (1966). Example. Take p = 5, q = 7.

$$\rho = 5^{-1} \pmod{7} = 3,$$

Let $\theta(pq)$ denote number of non-zero coefficients of $\Phi_{pq}(x)$. We have $\theta(m) = \rho\sigma + (q - \rho)(p - \sigma) = 2\rho\sigma - 1$. Recall that

$$\rho \boldsymbol{p} + \sigma \boldsymbol{q} = \mathbf{1} + \boldsymbol{p} \boldsymbol{q}.$$

This result is due to Carlitz (1966). Example. Take p = 5, q = 7.

$$\rho = 5^{-1} \pmod{7} = 3,$$

$$\sigma = 7^{-1} \pmod{5} = 3.$$

Let $\theta(pq)$ denote number of non-zero coefficients of $\Phi_{pq}(x)$. We have $\theta(m) = \rho\sigma + (q - \rho)(p - \sigma) = 2\rho\sigma - 1$. Recall that

$$\rho \boldsymbol{p} + \sigma \boldsymbol{q} = \mathbf{1} + \boldsymbol{p} \boldsymbol{q}.$$

This result is due to Carlitz (1966). Example. Take p = 5, q = 7.

$$\rho = 5^{-1} (\text{mod } 7) = 3,$$

$$\sigma = 7^{-1} \pmod{5} = 3.$$

Hence

$$\theta(35) = 2 \cdot 3 \cdot 3 - 1 = 17.$$

Put $H_{\gamma}(x) := \{m = pq \leq x : \theta(m) \leq m^{1/2+\gamma}\}.$

Put $H_{\gamma}(x) := \{m = pq \le x : \theta(m) \le m^{1/2+\gamma}\}$. Bzdęga (2012) showed:

$$c(\epsilon,\gamma)x^{1/2+\gamma-\epsilon} \leq H_{\gamma}(x) \leq C(\gamma)x^{1/2+\gamma}.$$

Put $H_{\gamma}(x) := \{m = pq \le x : \theta(m) \le m^{1/2+\gamma}\}$. Bzdęga (2012) showed:

$$c(\epsilon,\gamma)x^{1/2+\gamma-\epsilon} \leq H_{\gamma}(x) \leq C(\gamma)x^{1/2+\gamma}.$$

Fouvry (2013): For $\gamma \in (\frac{12}{25}, \frac{1}{2})$ we have

$$H_{\gamma}(x) \sim D(\gamma) rac{x^{1/2+\gamma}}{\log x},$$

with $D(\gamma)$ an explicit constant.

Put $H_{\gamma}(x) := \{m = pq \le x : \theta(m) \le m^{1/2+\gamma}\}$. Bzdęga (2012) showed:

$$c(\epsilon,\gamma)x^{1/2+\gamma-\epsilon} \leq H_{\gamma}(x) \leq C(\gamma)x^{1/2+\gamma}$$

Fouvry (2013): For $\gamma \in (\frac{12}{25}, \frac{1}{2})$ we have

$$H_{\gamma}(x) \sim D(\gamma) rac{x^{1/2+\gamma}}{\log x},$$

with $D(\gamma)$ an explicit constant. -Bounds for Kloosterman-Ramanujan sums over primes

Put $H_{\gamma}(x) := \{m = pq \le x : \theta(m) \le m^{1/2+\gamma}\}$. Bzdęga (2012) showed:

$$c(\epsilon,\gamma)x^{1/2+\gamma-\epsilon} \leq H_{\gamma}(x) \leq C(\gamma)x^{1/2+\gamma}$$

Fouvry (2013): For $\gamma \in (\frac{12}{25}, \frac{1}{2})$ we have

$$H_{\gamma}(x) \sim D(\gamma) rac{x^{1/2+\gamma}}{\log x},$$

with $D(\gamma)$ an explicit constant.

-Bounds for Kloosterman-Ramanujan sums over primes -Bombieri-Vinogradov theorem

Sparse binary cyclotomic polynomials

Put $H_{\gamma}(x) := \{m = pq \le x : \theta(m) \le m^{1/2+\gamma}\}$. Bzdęga (2012) showed:

$$c(\epsilon,\gamma)x^{1/2+\gamma-\epsilon} \leq H_{\gamma}(x) \leq C(\gamma)x^{1/2+\gamma}$$

Fouvry (2013): For $\gamma \in (\frac{12}{25}, \frac{1}{2})$ we have

$$H_{\gamma}(x) \sim D(\gamma) rac{x^{1/2+\gamma}}{\log x},$$

with $D(\gamma)$ an explicit constant.

- -Bounds for Kloosterman-Ramanujan sums over primes
- -Bombieri-Vinogradov theorem
- -Two-dimensional sieve

Sparse binary cyclotomic polynomials

Put $H_{\gamma}(x) := \{m = pq \le x : \theta(m) \le m^{1/2+\gamma}\}$. Bzdęga (2012) showed:

$$c(\epsilon,\gamma)x^{1/2+\gamma-\epsilon} \leq H_{\gamma}(x) \leq C(\gamma)x^{1/2+\gamma}$$

Fouvry (2013): For $\gamma \in (\frac{12}{25}, \frac{1}{2})$ we have

$$H_{\gamma}(x) \sim D(\gamma) rac{x^{1/2+\gamma}}{\log x},$$

with $D(\gamma)$ an explicit constant.

-Bounds for Kloosterman-Ramanujan sums over primes

- -Bombieri-Vinogradov theorem
- -Two-dimensional sieve
- -Linnik's famous theorem concerning the least prime in AP

Question: Can one construct non-Beiter ternary Φ_n with an optimally large set of coefficients. That is given $l \ge 1$ can one construct Φ_{pqr} with C(pqr) = [-(p-1)/2 + l, (p+1)/2 + l]?

Question: Can one construct non-Beiter ternary Φ_n with an optimally large set of coefficients. That is given $l \ge 1$ can one construct Φ_{pqr} with C(pqr) = [-(p-1)/2 + l, (p+1)/2 + l]?

Eugenia Roşu PhD student, Berkeley

-For every $l \ge 1$ Eugenia answered the Question in the positive.

- -For every $l \ge 1$ Eugenia answered the Question in the positive.
- -Leads to a conjecture of Wilms (earlier intern) being resolved.

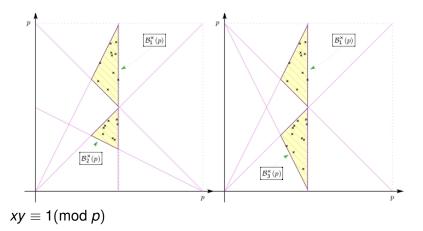
- -For every $l \ge 1$ Eugenia answered the Question in the positive.
- -Leads to a conjecture of Wilms (earlier intern) being resolved.
- -Leads to triangle $T_3(p)$ satisfying $T_2(p) \subset T_3(p)$

- -For every $l \ge 1$ Eugenia answered the Question in the positive.
- -Leads to a conjecture of Wilms (earlier intern) being resolved.
- -Leads to triangle $T_3(p)$ satisfying $T_2(p) \subset T_3(p)$
- -Leads to $M_R(p) \leq M(p)$.
- -Gallot/Moree construction gives $M_{GM}(p) \leq M(p)$.

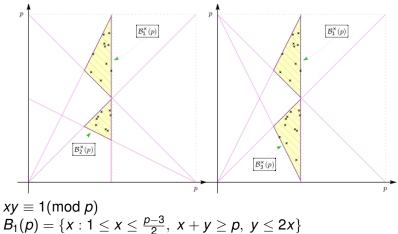
- -For every $l \ge 1$ Eugenia answered the Question in the positive.
- -Leads to a conjecture of Wilms (earlier intern) being resolved.
- -Leads to triangle $T_3(p)$ satisfying $T_2(p) \subset T_3(p)$
- -Leads to $M_R(p) \leq M(p)$.
- -Gallot/Moree construction gives $M_{GM}(p) \leq M(p)$.

There are likely infinitely many primes p with $M_R(p) > M_{GM}(p)$: 29, 37, 41, 83, 107, 109, 149, 179, 181, 223, 227, 233, 241, 269...

Gallot/Moree versus Roşu p = 241



Gallot/Moree versus Roşu p = 241



 $B_{1}(p) = \{x : 1 \le x \le \frac{p}{2}, x + y \ge p, y \le 2x\}$ $B_{2}(p) = \{x : 1 \le x \le \frac{p-3}{2}, x + 2y + 1 \ge p, x > y\}$ $B_{3}(p) = \{x : 1 \le x \le \frac{p-3}{2}, 2x + y \ge p, x \ge y\}$

Gallot/Moree versus Roşu p = 29

