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=1, (jvn):1
Write ®5(X) = 322 an(k)X.
The height of ®,(X), A(n), is defined as max{|an(k)| : kK > 0}.
If A(n) =1, then ®,(X) is said to be flat
Example:
Gor(X) = X2 - XM 4 X® - X8+ X6 - X* + X% - X +1.
It seems that the coefficients are small, e.g., A(n) = 1 for
n < 105.
Connections
-simplicial complexes (G. Musiker and V. Reiner, 2012)

-Kloosterman sums
-numerical semigroups

-cryptography
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oX)= [ x-¢h

=1, (:m=1

-deg(®n) = ¢(n)
-integer coefficients

-irreducible over Q

-X?Md,(1/X) = dn(X) if n > 1 (self-reciprocal)
X" =1 =[]gp Pa(X)

~®n(X) = [1g)n(X? — 1)7/9 (by Mbius inversion)

'(Dn(X) = (D'y(n)(Xn/FY(n))a ’7(”) = Hp|np
-®op(X) = ®p(—X), n>10dd
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New approach. PROMISE?

&, with wegq(n) large

The exclusive realm of analytic number theory.
Bateman, Maier, Pomerance, Vaughan...

Will not be discussed here...
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This problem remained unsolved...
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Chun-Gang Ji and Wei-Ping Li (2008):

Ji, Li and M. then solved the Problem (2009):

Theorem. Let m > 1 be fixed. Then
Jessica Fintzen (2011) determined
{an(k) : n=a(mod d), k = b(mod f)}

This is still the state of the art in this direction.



Jessica Fintzen




Jessica Fintzen

Defended her PhD in 2015 in Harvard...
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Note that ®,(X) = (1 — XP)/(1 - X) =1 X+ X244 XPT,
We have

q—1
qppq lepzqu X~ pqzxzpzqu

where
1+pg=pp+0q, 0<p<q—-1,0<o<p-1
Thus the cyclotomic coefficient apq(m) equals

1 fm=ip+jgwith0<i<p-1,0<j<o-1,
-1 iftm=ijp+jg—pgwithp<i<qg-1,0c<j<p-1,
0 otherwise.
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Dpqr is flat if:
-g= -1 (mod p)’ r= 1(mod pq) BaChman, 2006
-r = +1(mod pq) Kaplan, 2007

-r = w(mod pq), p = 1(mod w), g = 1(mod pw) Elder, 2013

P pgrs is flat if:

g = —1(mod p), r = +1(mod pq), s = 1(mod pgr)
D pgrst-

Conjecture: Is never flat....

Sam Elder
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-Put C(n) = {an(k) : k > 0}.
-C(n) is coefficient convex if it consists of consecutive integers.

Gallot and M. (2009):
A((X — 1)®pgr(X)) =1, thatis |apgr(k) — @pgr(k — 1)] < 1
A ternary ¢, has the jump one property
C(p) =[0,1], C(pq) = [-1,1], C(pqr) = [—a, b], max(a, b) = A(pqr)

C(5-7-183-17)={-9}U[-7,5]

We have #C(pqr) = b+ a < p. If equality holds, then ®pq(X)
is said to have an optimally large set of coefficients.

Example: Lehmer/Mdller infinite family satisfies

C(pgr) = [-251, 211], (Bachman, 2004)
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Jumps

-Gallot-M.: consecutive coefficients of ternary cyclotomic
polynomials differ by at most one.

-Bzdega: different reproof of this result.
Initiated the study of the number of “jumps”.

Number of jumps up with a,(k) = an(k — 1) + 1 is the same as
the number of jumps down with an(k) = an(k — 1) — 1.

We denote this common number by J,,.

-Bzdega: J, > n'/3.

-Camburu-Ciolan-Luca-M.-Shparlinski (2016): For infinitely
many n = pqr with pairwise distinct odd primes p, g and r, we

have
Jp < n7/8+0(1).
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Is ®,(X) a special divisor of X" — 17

If ®,(X)|XP*9 — 1, then
ki a4 ko K3 1 Ka 4 K
bp = O OROFDLLOLOE |

If g is odd, then all 64 divisors are coefficient convex
(Andreas Decker and M., Sarajevo Math. J., 2012)
Extends work of C. Pomerance, N.C. Ryan and N. Kaplan

ki€{0,1}

Andreas Decker

PhD student

comp. analytic number th.
Bonn University
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(Introduced by M. in 2009)
Consider

Wn(X) = :():(;(; = JI ¢« :kz_oc,,(k)Xk.

d|n, d<n

Put B(n) = max{|cn(k)| : kK >0}

We have B(n) = 1 for n < 561
We have B(pgr) < p—1.

-1
B(pgr)=p—-1 < qzrzi1(modp)andr<z_2(q—1)
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- Maximum gap: Given f(X) = ¢t X¢ + - - 4+ ¢ X® € Z[X], with
ci#0and ey < --- < e, we define the maximum gap of f as

f)= i1 — €).
9(f) = max(eiss — &)
- Study of g(¢,) and g(V,) has been initiated by Hong, Lee,
Lee and Park (2012) who reduced the study of these gaps to
the case where nis square-free and odd.

- Simple and exact formula for the minimum Miller loop length in
the Ate; pairing arising in elliptic curve cryptography (2015):

- More managable when turned into a problem involving the
maximum gaps of inverse cyclotomic polynomials.
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g(®p) =1, g(Vp) =1, g(®pg) =p—1, g(Vpg) =q—p+1.

Hong-Lee-Lee-Park:
Put Q3 ={n=pqgr:2 < p < q < rprimes}.

PutRs={nec Qs : 4(p—1)>q, p*>>r}.

Then 5
gV, = : —degV,if n ¢ Rs.

Claim: R3(x) = 0(Qs(x)).
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Camburu-Ciolan-Luca-M.-Shparlinksi (2016):
"Cyclotomic coefficients: gaps and jumps":
Working title: “Cyclotomic coefficients: an extramarginal affair.

”

Showed that
X xloglog x
#7509 = osz + O (“ogap )
with ¢ = (1 4 log4)log4 = 3.30811 ... ..

Classical estimate (Gauss, Landau):

x(log log x)2

#03(x) = (1 +0(1) 515

Thus the claim is true and in particular

C#Q3(X)
#Ra(X) ™ 3ii5g x)(loglog X2
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M(p): main problem

Recall that A(n) = max{|an(k)| : k > 0}.
o, is ternary,if n=pgrwith2 <p<g<r.

For ternary nwe can have A(n) > 1, e.g. a1p5(7) = —2 and
A(105) = 2.

If2 <pr <...<psthen A(p1p2---ps) < f(p1, P2, ..., Ps—2).
(J. Justin, 1969)

For fixed p, M(p) = max{A(pqr) : p < q < r} is well-defined.

Main Question: Determine M(p).
Question: Is there a finite procedure to compute M(p)?
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Crosses are at (x, y) with xy = 1(mod p) (p = 241 in figure).
Each point (x, y) in a triangle leads to triples (p, g, r) with

g = x(mod p) such that A(pgr) > p — x.

As x> p/3, p—x <2p/3.

It follows that M(p) > p — min{x : (x,y) € T1(p) U T2(p)}.
For p > 11, at least one of the two triangles is non-empty.
For p large enough, M(p) > (2/3 — €)p.
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}((a7 b: m) — Z e%(ax-&-bx*)

0<x<m—1
ged(x,m)=1

|K(a, b; p)| <2y/p (Weil, 1948)
Modular hyperbola:

{(x,y):1<x<p-1,1<y<p-1, xy=1(mod p)}

Let R be a rectangle with area A.

Put Ng(p) := #{(x,y) € R: xy = 1(mod p)}.

We have [Ng(p) — A/p| < v/P(2 + log p)>.

Problem: Estimate the number of modular hyperbolic points in

the triangles T;(p) and T»(p).
Cobeli, Gallot, M. and Zaharescu (Indag. Math., 2013):

#T1(p) U Ta(p) — % < 24p%410g p.
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NUMERICAL SEMIGROUP APPROACH

J.C. Rosales
PA. Garcia-Sanchez
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S(p,q) ={ap+pBq : >0, §>0}
Numerical semigroup generated by p and q
Example: S(3,5)

ij-1jo0{1-1{1/0{-141;0,0|...]0

Largest number not in S(p, q) is the Frobenius number
F(S(3,5)) =7 ‘

Claim: ®pg(X) = (1 = X) Xjes(p.q) X’

F(S(p,q)) = deg(®pg(X)) -1 =(p—1)(q-1)-1=pg—-p—q

(Sylvester, 1884)
In example: ®45(X) =1 - X + X3 — X* + X5 — X7 + X8
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Note that Ps(x) = (1 — X) >_sc5 X*® is a polynomial.

It is called semigroup polynomial and can be rewritten as:

Ps(X)=1+(X—1)>_X®, deg(Ps) = F(S) +1.
s¢S
Question: To what extent are the properties of S reflected in Pg
and vice versa?
Example: S is symmetric iff Pgs is self-reciprocal
S is symmetric if SU (F(S) — S) = Z.
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$=(3,7):0,1,2,3,4,5,6,7,8,9,10,11,12,13,. ..
F(S)—-S:0,1,2,3,4,5,6,7,8,9,10, 11

Eitherse Sorse F(S)- S

S = (8,7) is symmetric since ®,¢(X) is self-reciprocal
Definition: We say S is cyclotomic if the roots of Pg are on the
unit circle.

= Ps(X) = [ ®a(X)®.
deD

Q: Is S cyclotomic iff S is symmetric?
A:NO. E.g., S= (5,6,7,8) (cyclotomic but not symmetric).
True: If e(S) < 3 the answer is YES, however.
Conjecture: S is cyclotomic iff Sis a complete intersection
numerical semigroup.
Easy: S complete intersection = S is cyclotomic.
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Numerical semigroup view of gaps

Let Ps(X) = ag + a1 X + --- + axXX. Then

1 fseSands—1¢S,
as=<¢—1 ifsgSands—1¢€ S,
0 otherwise.

Camburu-Ciolan-Luca-M.-Shparlinksi (2016): For p < q primes
-g (®pg) = p— 1 and # maximum gaps = 2 |q/p];

-®pq(X) contains the sequence of consecutive coefficients of
the form £1, {0}, 1 forallm=10,1,...,p— 2 if and only if

g = +1(mod p).

-Let S = (p, q). Coefficients gaps are related to gapblocks and
elementblocks of S.



Thank you for listening!
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Non-zero binary coefficients

Let 6(pq) denote number of non-zero coefficients of ®pq(x).
We have 6(m) = po + (g — p)(p — o) = 2po — 1.
Recall that

pp+oq=1+pq.

This result is due to Carlitz (1966).
Example. Take p=5,q9=7.

p=5""(mod7) =3,

o =7"'(mod 5) = 3.

Hence
0(35)=2-3-3—-1=17.
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Sparse binary cyclotomic polynomials

Put H,(x) := {m = pq < x : 6(m) < m'/ZH7}.
Bzdega (2012) showed:

c(e,y)x"/#H7C < Hy(x) < C(7)x'/2H7.
Fouvry (2013): For v € (32, }) we have

X1 /24~
H.(x) ~ D(v)

logx ’

with D(~) an explicit constant.

-Bounds for Kloosterman-Ramanujan sums over primes
-Bombieri-Vinogradov theorem

-Two-dimensional sieve

-Linnik’s famous theorem concerning the least prime in AP
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-For every I > 1 Eugenia answered the Question in the positive.

-Leads to a conjecture of Wilms (earlier intern) being resolved.
-Leads to triangle T3(p) satisfying T>(p) C T3(p)

-Leads to Mg(p) < M(p).

-Gallot/Moree construction gives Mgy(p) < M(p).

There are likely infinitely many primes p with Mg(p) > Mgn(p):
29,37,41,83,107,109, 149,179, 181,223, 227, 233,241,269 . .
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Gallot/Moree versus Rosu p = 241

~
xy = 1(mod p)
B1(p)={X:1§xspT, +y>p, y<2x}
Bg(p):{x:1§x§p%, +2y+1>p, x>y}
By(p) = {x:1<x< P> 2x+y>p, x>y}



Gallot/Moree versus Rosu p = 29

3
" «
B3 (p)
.




