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Unramified covers of a graph

All graphs are connected and undirected.
e An unramified cover of a graph X is a surjective graph homo.
a : Y — X which is a local isom. All covers are unramified.
e The group of automorphisms of « is
Aut(a) = {7 : Y — Y automorphism|a = a0 7}.

An auto. is determined by its action on the fiber a~1(z) above
any vertex x of X.

e Call @ a normal cover if Aut(«) acts transitively on one and
hence all fibers. Its Galois group G = Aut(a).

o If a fiber o~ !(x) is a finite set, its cardinality is called the

degree of . A finite degree cover « is normal if and only if
| Aut(a)| = deg a.



e The universal cover X of X is a tree. The natural projection
pry - X — X is a normal cover with Aut(prx) = m(X, x),
the fundamental group of X.

(So X & F, X < F, and m(X,z) < Gp.)

e Acover B:Y — Ziscalled a subcoverofthecovera : Y — X
if o factors through [, that is, there is a cover v : Z — X such
that & = v o 8. Denote v by a/f5.

e Two subcovers B:Y = Zand B Y = Z'ofa: Y - X
are equivalent if there exists a graph isomorphism v : Z — Z’

such that yo 8 = 3" and a/83 = (a/f) o 7.

(cover o > field extension K O F', and equivalence classes of
subcovers <> intermediate fields)



Galois theory for graph covers

Let a1 Y — X be a normal cover with Galois group G4,.
Denote by 5] the subcovers of a equivalent to 8. Then

(1) The map [B|o = Gg is a bijection from the set of equiv.
classes of subcovers of o to the set of subgroups of G,.

(2) Let 8 be a subcover of a. Then a/( is a normal cover if and
only if G g is a normal subgroup of G¢. In this case

Call such 8 a normal subcover of «.
(3) m1(Y,y) can be imbedded as a subgroup of 71(X, z) so that

Go = m(X,z)/m(Y,y).
Here y € o~ (x).



The fundamental group of X

Suppose X is a finite graph with n vertices and m edges. Each
element in the fundamental group (X, x) is represented by a
backtrackless walk in X starting and ending at x.

m (X, z) is a free group of rank r(X) =m —n + 1.

To find a set of generators, choose a spanning tree 1" in X, which
uses n — 1 edges of X. Adding an unused edge e; to 1" yields a
loop L;, which in turn yields a backtrackless walk C; in 71(X, ).
These C}’s generate m1(X, x), each of length < 2n — 1.

r(X) = 0 implies X is a tree, hence no covers;
r(X) = 1 implies X is homotopic to a circle. For each d, there
is one cover of degree d.

Assume r(X) > 2 and each vertex has degree at least 2.
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Prime ideals in a number field
Let F' be a number field.

e The set of elements in F' integral over Z form aring Z . Usually
it is not a UKD, but each nonzero ideal in Z g is a finite product
of max’'l ideals, called the “primes” of F'. unique up to order.

e (Given a finite extension K of F' and a prime pof F,

pZg =P B
where 131, ..., B, are distinct primes of K and e; > 1. The
primes 1, ..., B, are called the primes of K over p.

Say p unramified in K if all e; = 1. An unram. p splits
completely in K if all primes J3; over p have same norm as p.

e Finite Galois extensions K of F' are determined by the set of
primes of F' splitting completely in /.
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Primes in a finite graph
Let X be a finite connected undirected graph.

e A geodesic cycle of X is a closed walk which is backtrackless
when traveled along it twice. It has a starting vertex and ori-
entation.

e A geodesic cycle is primative if it is not obtained by traveling
along a shorter geodesic cycle more than once. So a geodesic
cycle is either primitive or a power of a primitive cycle.

e A “prime” of X is a primitive geodesic cycle in X up to equiv-
alence, i.e. ignoring the starting point (but keeping the orien-
tation).

e (X ) > 2 implies that X has infinitely many primes.



Decomposition of primes of a graph
Let o : Y — X be a finite unramified cover.

o Let P8 be a prime of Y. Then a(B) = p* for a prime p of X
and an integer k > 1. Say B lies above p. Then ((B) = kl(p).

e Given a prime p of X, there are finitely many primes B3 of
Y lying above p (arising from lifting p in Y). Say p splits
completely in Y if all primes 3 of Y above p have the same
length as p. In other words, all liftings of p in Y are closed.



Characterizing finite normal covers

Suppose | X| =n. Let a: Y — X be a finite normal cover. For
a subcover 0 Y — Z of «, let

Py() = {primes of X with length < ¢ which split completely
in 5(Y)=2}.

Theorem |Huang-1.| Assume r(X) > 2. Two normal sub-
covers B and 8’ of a are equiv. iff

Pind—d-1(8) = Ping—a—1(8);
where d = lem(deg(a/3), deg(a/B")).

In particular, equiv classes of degree d normal covers of X are
characterized by the primes of X of length < 4nd — d — 1 that
split completely.



Characterizing equivalent subcovers

Suppose | X| =mn. Let a: Y — X be a finite normal cover. Fix
a vertex  of X. Choose a vertex y € o~ H(z).

For a subcover 5 : Y — Z of o and integer £ > 0, let

Cy(B) = {cycles in X starting at x with length < ¢ which lift
(via a/B) to cycles in B(Y) = Z starting at 5(y) }.

Theorem [Huang-L] Two subcovers 3 and 3 of o are equiv.
uff
Cond—1(8) = Copg—1(8"),
where d = max(deg(a/B), deg(a/S")).
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Cebotarev density theorem for number fields

Given a modulus m, the arithmetic progressions r+m# partition
the integers into m sets. The primes, except finitely many of them,
are contained in the progressions with remainder r coprime to m.
There are ¢(m) such progressions.

Dirichlet’s theorem: The primes are uniformly distributed among
these arithmetic progressions in the sense that the primes con-
tained in any r+mZ with (r, m) = 1 has natural density 1/¢(m).

The Cebotarev density theorem extends Dirichlet’s theorem.

e Let K/F be a finite Galois extension with Galois group G.

To each prime p of F' unramified in K we associate a Frobenius
conjugacy class of GG, denoted Frob(p).
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e (Given a conjugacy class C of G, let
P(C) = {p prime of F : Frob(p) = C}.

e Cebotarev density theorem (CDT): The Frobenius conjugacy
classes are uniformly distributed. More precisely, for each con-

jugacy class C of G, the set P(C) has natural density “ |

Gl,le
po #P e P(C) N(p) <} [C]
r—oo  #{p: N(p) <r} G|

When K = Q((,) and F = Q, the Galois group G is isomor-
phic to (Z/mZ)*, hence |G| = ¢(m). Each conjugacy class C
is a singleton. For each p t m, Frob(p) = pin (Z/mZ)*. Then
CDT reduces to Dirichlet’s theorem.
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Frobenius conjugacy classes for graph covers

Let o : Y — X be a finite normal cover with Galois group Gy,
which acts transitively on any fiber.

e Let p be a prime of X through the vertex . Let y € a~1(z).
Then p has a unique lifting to a backtrackless path P in Y
starting at y. The end point z of P also lies in o~ ().

e There is a unique element oy in G, sending y to z.

o If we choose a different starting point ¢’ in a1 (z), then Oy 18
conjugate to oy

e The conjugacy class of g, depends on p and not the choice of
y, called the Frobenius conjugacy class of p in G, and denoted

by Frob(p).
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Cebotarev density theorem for graph covers

Let a1 Y — X be a finite normal cover with Galois group G,.
For each conjugacy class C of G, let

P(a;C) = {primes p of X : Frob(p) =C}.
Terras: The Frobenius conjugacy classes are uniformly distributed
w.r.t. the Dirichlet density, i.e., for each conjugacy class C of G,

> pepiac) P C|

lim —
u=(1/Ax)" Yy prime of x u'®) [Gal

Here 1/Ax is the radius of convergence of the zeta function of X:

1
Z(Xu) = |] ol
| 1 — utP
p prime of X
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Cebotarev density theorem in natural density for graphs

For a graph X, let

Ax = ngprimeS p of x(£(p))-
A subset P of primes of X has natural density o if
. {pePlbp) <r}|
lim , = 0.
r—oo |{primes p of X |{(p) < r}|

Theorem |[Huang-L| Assume r(X) > 2. Let a: Y — X be a
finite normal cover with Galois group Go. Then the natural
density of P(«;C) exists (= |C|/|Gq|) for one conjugacy class
C of Gy iff it exists for all C iff Ax = Ay-.

Remark. Stark-Terras proved that either Ay = Ay or Ay =
2A x, and both cases occur. Our proot did not use this fact.
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Illustration of the proof by an example

Consider the degree 2 normal cover o : Y — X as follows:

}\/ > )
OT(X) 22, AX: 1 and AY:Z
e G, = {+£id} has two conjugacy classes

C+ = {id} and C_ = {—id}.

e P(a;C) (resp. P(a;C_)) consists of primes of X with even
(resp. odd) length, and each set has Dirichlet density 1/2.

Claim: Neither P(a;C+) nor P(a;C—) has natural density.
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Assume the natural density of P(a;C4) exists (hence = 1/2),

and derive a contradiction. Ditto for P(a;C—).
Therefore

' ‘{p € P(a;Cy) | U(p)

im . .

r—00 |{p is a prime of X | £(p) < 2T}|
)
(

— tm {p € P(a;Cy) | Lp
r—oo |{p is a prime of X | /

which implies

{p is a prime of X | {(p)
lim
r—o0 [{p is a prime of X | {(p) <
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The Prime Number Theorem for graphs asserts that

- (Ax)2¥
[{primes p of X : £(p) =rAx}| ~ as r — 00
T

and

(Ax)"2x
r((Ax)2X = 1)
in which Ay is the largest eigenvalue in absolute value of the
adjacency matrix of directed edges in X.

Hence the left hand side of (1) is 1/ )\)A(X .

{primes p of X : {(p) < rAx}| ~

as r — 00,
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In our case the edge adjacency matrix is

€1 €1 €y €9

el 1 0 1 1)
e 0 1 1 1
el 1 1 1 0|
el 1 0 1)

where e, €1 (resp. eg,€9) are the cyan (resp. green) edges of X
with opposite orientations. We find Ay = 3, and the limit (1) is
equal to 1/3, a contradiction.
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To each finite-dimensional irreducible representation p of G,
define the Artin L-function by

1
L(X, p,u) = H .
Y Y o f
] primitive det( — p(7)u (7))
Here || denotes the conjugacy class of v € G,. When p is the
trivial representation, L(X, p,u) = Z(X,u). Recall that Z(X, u)

is holomorphic on |u| < 1/Ax and it has a simple pole at 1/ x.
Hashimoto showed that when Ay = Ay, for all nontrivial irre-

ducible p, L(X, p,u) is holomorphic on |u| < 1/Ax.

If h = Ay /Ax > 1, then there are h — 1 nontrivial irreducible p

such that L(X, p, u) is holomorphic on |u| < 1/Ax and has a pole

on |u| = 1/Ax. The analytic behavior of the Artin L-functions is

used to prove the theorem.
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Isospectral number fields

Two finite extensions K and K’ of a number field F are isospec-
tral if for each prime p of F', there is a norm preserving bijection
from the primes of K above p to those of K.

Take a finite Galois extension L of F' containing K and K’
as subfields. Write G = Gal(L/F) and let H and H' be the
subgroups of G with fixed fields K and K’. Then

Theorem K and K’ are isospectral iff
(a) H and H' are locally conjugate in G, i.e., for each conjugacy
class [g] of G, we have

#([g] N H) =#([g]n H).
Further K = K’ iff H and H' are conjugate in G.

This criterion was extended by Sunada to compact Riemannian
manifolds.
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Isospectral graphs

Let o : Y — X be a finite normal cover with Galois group Gy,
and B:Y — Z and B/ Y — Z' two subcovers of a.

Theorem [Somodi 2015] TFAE:

(a) Gg and G g are locally conjugate in Go;

(b) For every prime p of X, there is a length preserving bijection
from the primes of Z = B(Y) above p to those of Z/ = 3/(Y):;

((b) implies that Z and Z’ are isospectral, i.e., their adjacency
matrices have the same eigenvalues.)

(¢c) For every prime p of X, the number of primes of Z above p
with the same length as p agrees with that of Z’.

Theorem [Huang-1] In (¢) only need primes p of length < 2| X| deg a.
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Reasons for graph isospectrality theorems

“(a) iff (b)” follows from Sunada’s argument for manifolds.
Sunada also showed that (a) is equivalent to

(d)

p = Indgg 1(;5 = Indgg/ 1(}ﬂ/ = 0.

Two representations are equivalent iff they have the same trace
on all conjugacy classes. Condition (c) says that the traces of
p and p’ agree on Frobenius conjugacy classes. The Cebotarev
density theorem in Dirichlet density implies that each conjugacy
class C of G is equal to Frob(p) for infinitely many p. Hence
(a), (b), (¢), (d) are equivalent. The theorem of Huang-Li is to
show the shortest length of p with Frob(p) = C is < 2|X|deg a.
For this we use the bound on a set of generators of (X, x) and
Go = w1 (X, 2)/m (Y, y) mentioned before.
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