Unramified graph covers of finite degree

Dynamics and Graphs over Finite Fields: Algebraic, Number Theoretic and Algorithmic Aspects in honor of Igor Shparlinski's 60th birthdayCIRM, Luminy, March 30, 2016

> Winnie Li Pennsylvania State University

Unramified covers of a graph

All graphs are connected and undirected.

- An unramified cover of a graph X is a surjective graph homo. $\alpha: Y \to X$ which is a local isom. All covers are unramified.
- The group of automorphisms of α is

 $Aut(\alpha) = \{\gamma: Y \to Y \text{ automorphism} | \alpha = \alpha \circ \gamma \}.$

An auto. is determined by its action on the fiber $\alpha^{-1}(x)$ above any vertex x of X.

- Call α a normal cover if $Aut(\alpha)$ acts transitively on one and hence all fibers. Its Galois group $G_{\alpha} = Aut(\alpha)$.
- If a fiber $\alpha^{-1}(x)$ is a finite set, its cardinality is called the *degree* of α . A finite degree cover α is normal if and only if $|Aut(\alpha)| = \deg \alpha$.

• The universal cover \tilde{X} of X is a tree. The natural projection $pr_X : \tilde{X} \to X$ is a normal cover with $Aut(pr_X) = \pi_1(X, x)$, the fundamental group of X.

(So $X \leftrightarrow F$, $\tilde{X} \leftrightarrow \bar{F}$, and $\pi_1(X, x) \leftrightarrow G_F$.)

- A cover $\beta: Y \to Z$ is called a *subcover* of the cover $\alpha: Y \to X$ if α factors through β , that is, there is a cover $\gamma: Z \to X$ such that $\alpha = \gamma \circ \beta$. Denote γ by α/β .
- Two subcovers $\beta : Y \to Z$ and $\beta' : Y \to Z'$ of $\alpha : Y \to X$ are *equivalent* if there exists a graph isomorphism $\gamma : Z \to Z'$ such that $\gamma \circ \beta = \beta'$ and $\alpha/\beta = (\alpha/\beta') \circ \gamma$.

(cover $\alpha \leftrightarrow$ field extension $K \supseteq F$, and equivalence classes of subcovers \leftrightarrow intermediate fields)

Galois theory for graph covers

Let $\alpha: Y \to X$ be a normal cover with Galois group G_{α} . Denote by $[\beta]_{\alpha}$ the subcovers of α equivalent to β . Then

(1) The map $[\beta]_{\alpha} \mapsto G_{\beta}$ is a bijection from the set of equiv. classes of subcovers of α to the set of subgroups of G_{α} .

(2) Let β be a subcover of α . Then α/β is a normal cover if and only if G_{β} is a normal subgroup of G_{α} . In this case

$$G_{\alpha/\beta} \cong G_{\alpha}/G_{\beta}.$$

Call such β a *normal subcover* of α .

(3) $\pi_1(Y, y)$ can be imbedded as a subgroup of $\pi_1(X, x)$ so that

$$G_{\alpha} \cong \pi_1(X, x) / \pi_1(Y, y).$$

Here $y \in \alpha^{-1}(x)$.

The fundamental group of X

Suppose X is a finite graph with n vertices and m edges. Each element in the fundamental group $\pi_1(X, x)$ is represented by a backtrackless walk in X starting and ending at x.

 $\pi_1(X, x)$ is a free group of rank r(X) = m - n + 1.

To find a set of generators, choose a spanning tree T in X, which uses n-1 edges of X. Adding an unused edge e_i to T yields a loop L_i , which in turn yields a backtrackless walk C_i in $\pi_1(X, x)$. These C_i 's generate $\pi_1(X, x)$, each of length $\leq 2n-1$.

r(X) = 0 implies X is a tree, hence no covers;

r(X) = 1 implies X is homotopic to a circle. For each d, there is one cover of degree d.

Assume $r(X) \ge 2$ and each vertex has degree at least 2.

Prime ideals in a number field

Let F be a number field.

- The set of elements in F integral over \mathbb{Z} form a ring \mathbb{Z}_F . Usually it is not a UFD, but each nonzero ideal in \mathbb{Z}_F is a finite product of max'l ideals, called the "primes" of F, unique up to order.
- Given a finite extension K of F and a prime \mathfrak{p} of F,

$$\mathfrak{p}\mathbb{Z}_K=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_r^{e_r},$$

where $\mathfrak{P}_1, ..., \mathfrak{P}_r$ are distinct primes of K and $e_j \geq 1$. The primes $\mathfrak{P}_1, ..., \mathfrak{P}_r$ are called the primes of K over \mathfrak{p} . Say \mathfrak{p} unramified in K if all $e_j = 1$. An unram. \mathfrak{p} splits completely in K if all primes \mathfrak{P}_j over \mathfrak{p} have same norm as \mathfrak{p} .

• Finite Galois extensions K of F are determined by the set of primes of F splitting completely in K.

Primes in a finite graph

Let X be a finite connected undirected graph.

- A geodesic cycle of X is a closed walk which is backtrackless when traveled along it twice. It has a starting vertex and orientation.
- A geodesic cycle is *primitive* if it is not obtained by traveling along a shorter geodesic cycle more than once. So a geodesic cycle is either primitive or a power of a primitive cycle.
- A "prime" of X is a primitive geodesic cycle in X up to equivalence, i.e. ignoring the starting point (but keeping the orientation).
- $r(X) \ge 2$ implies that X has infinitely many primes.

Decomposition of primes of a graph

Let $\alpha: Y \to X$ be a finite unramified cover.

- Let \mathfrak{P} be a prime of Y. Then $\alpha(\mathfrak{P}) = \mathfrak{p}^k$ for a prime \mathfrak{p} of X and an integer $k \geq 1$. Say \mathfrak{P} lies above \mathfrak{p} . Then $\ell(\mathfrak{P}) = k\ell(\mathfrak{p})$.
- Given a prime p of X, there are finitely many primes P of Y lying above p (arising from lifting p in Y). Say p splits completely in Y if all primes P of Y above p have the same length as p. In other words, all liftings of p in Y are closed.

Characterizing finite normal covers

Suppose |X| = n. Let $\alpha : Y \to X$ be a finite normal cover. For a subcover $\beta : Y \to Z$ of α , let

 $P_{\ell}(\beta) = \{ \text{primes of } X \text{ with length } \leq \ell \text{ which split completely}$ in $\beta(Y) = Z \}.$

Theorem [Huang-L] Assume $r(X) \ge 2$. Two normal subcovers β and β' of α are equiv. iff

$$P_{4nd-d-1}(\beta) = P_{4nd-d-1}(\beta'),$$

where $d = lcm(\deg(\alpha/\beta), \deg(\alpha/\beta')).$

In particular, equiv classes of degree d normal covers of X are characterized by the primes of X of length $\leq 4nd - d - 1$ that split completely.

Characterizing equivalent subcovers

Suppose |X| = n. Let $\alpha : Y \to X$ be a finite normal cover. Fix a vertex x of X. Choose a vertex $y \in \alpha^{-1}(x)$.

For a subcover $\beta: Y \to Z$ of α and integer $\ell > 0$, let

 $C_{\ell}(\beta) = \{ \text{cycles in } X \text{ starting at } x \text{ with length } \leq \ell \text{ which lift}$ (via α/β) to cycles in $\beta(Y) = Z \text{ starting at } \beta(y) \}.$

Theorem [Huang-L] Two subcovers β and β' of α are equiv. *iff*

$$C_{2nd-1}(\beta) = C_{2nd-1}(\beta'),$$

where $d = \max(\deg(\alpha/\beta), \deg(\alpha/\beta'))$.

Cebotarev density theorem for number fields

Given a modulus m, the arithmetic progressions $r+m\mathbb{Z}$ partition the integers into m sets. The primes, except finitely many of them, are contained in the progressions with remainder r coprime to m. There are $\phi(m)$ such progressions.

Dirichlet's theorem: The primes are uniformly distributed among these arithmetic progressions in the sense that the primes contained in any $r+m\mathbb{Z}$ with (r,m) = 1 has natural density $1/\phi(m)$.

The Cebotarev density theorem extends Dirichlet's theorem.

Let K/F be a finite Galois extension with Galois group G.
To each prime p of F unramified in K we associate a Frobenius conjugacy class of G, denoted Frob(p).

• Given a conjugacy class \mathcal{C} of G, let

$$P(\mathcal{C}) = \{ \mathfrak{p} \text{ prime of } F : \operatorname{Frob}(\mathfrak{p}) = \mathcal{C} \}.$$

• Cebotarev density theorem (CDT): The Frobenius conjugacy classes are uniformly distributed. More precisely, for each conjugacy class \mathcal{C} of G, the set $P(\mathcal{C})$ has natural density $\frac{|\mathcal{C}|}{|G|}$, i.e.,

$$\lim_{r \to \infty} \frac{\#\{\mathfrak{p} \in P(\mathcal{C}) : N(\mathfrak{p}) \le r\}}{\#\{\mathfrak{p} : N(\mathfrak{p}) \le r\}} = \frac{|\mathcal{C}|}{|G|}.$$

When $K = \mathbb{Q}(\zeta_m)$ and $F = \mathbb{Q}$, the Galois group G is isomorphic to $(\mathbb{Z}/m\mathbb{Z})^{\times}$, hence $|G| = \phi(m)$. Each conjugacy class \mathcal{C} is a singleton. For each $p \nmid m$, $\operatorname{Frob}(p) = p$ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$. Then CDT reduces to Dirichlet's theorem.

Frobenius conjugacy classes for graph covers

Let $\alpha: Y \to X$ be a finite normal cover with Galois group G_{α} , which acts transitively on any fiber.

- Let \mathfrak{p} be a prime of X through the vertex x. Let $y \in \alpha^{-1}(x)$. Then \mathfrak{p} has a unique lifting to a backtrackless path P in Y starting at y. The end point z of P also lies in $\alpha^{-1}(x)$.
- There is a unique element σ_y in G_α sending y to z.
- If we choose a different starting point y' in $\alpha^{-1}(x)$, then $\sigma_{y'}$ is conjugate to σ_y .
- The conjugacy class of σ_y depends on \mathfrak{p} and not the choice of y, called the Frobenius conjugacy class of \mathfrak{p} in G_{α} and denoted by Frob(\mathfrak{p}).

Cebotarev density theorem for graph covers

Let $\alpha : Y \to X$ be a finite normal cover with Galois group G_{α} . For each conjugacy class \mathcal{C} of G_{α} , let

$$P(\alpha; \mathcal{C}) = \{ \text{primes } \mathfrak{p} \text{ of } X : \operatorname{Frob}(\mathfrak{p}) = \mathcal{C} \}.$$

Terras: The Frobenius conjugacy classes are uniformly distributed w.r.t. the Dirichlet density, i.e., for each conjugacy class \mathcal{C} of G_{α} ,

$$\lim_{u \to (1/\lambda_X)^-} \frac{\sum_{\mathfrak{p} \in P(\alpha, \mathcal{C})} u^{\ell(\mathfrak{p})}}{\sum_{\mathfrak{p} \text{ prime of } X} u^{\ell(\mathfrak{p})}} = \frac{|\mathcal{C}|}{|G_\alpha|}.$$

Here $1/\lambda_X$ is the radius of convergence of the zeta function of X:

$$Z(X, u) = \prod_{\mathfrak{p} \text{ prime of } X} \frac{1}{1 - u^{\ell(\mathfrak{p})}}.$$

Cebotarev density theorem in natural density for graphs

For a graph X, let $\Delta_X = gcd_{\text{primes } \mathfrak{p} \text{ of } X}(\ell(\mathfrak{p})).$ A subset P of primes of X has natural density δ if $\lim_{r \to \infty} \frac{|\{\mathfrak{p} \in P | \ell(\mathfrak{p}) < r\}|}{|\{\text{primes } \mathfrak{p} \text{ of } X | \ell(\mathfrak{p}) < r\}|} = \delta.$

Theorem [Huang-L] Assume $r(X) \ge 2$. Let $\alpha : Y \to X$ be a finite normal cover with Galois group G_{α} . Then the natural density of $P(\alpha; C)$ exists (= $|C|/|G_{\alpha}|$) for one conjugacy class C of G_{α} iff it exists for all C iff $\Delta_X = \Delta_Y$.

Remark. Stark-Terras proved that either $\Delta_Y = \Delta_X$ or $\Delta_Y = 2\Delta_X$, and both cases occur. Our proof did not use this fact.

Illustration of the proof by an example

Consider the degree 2 normal cover $\alpha: Y \to X$ as follows:

- $r(X) = 2, \Delta_X = 1 \text{ and } \Delta_Y = 2.$
- $G_{\alpha} = \{\pm id\}$ has two conjugacy classes

$$\mathcal{C}_+ = \{id\} \text{ and } \mathcal{C}_- = \{-id\}.$$

• $P(\alpha; \mathcal{C}_+)$ (resp. $P(\alpha; \mathcal{C}_-)$) consists of primes of X with even (resp. odd) length, and each set has Dirichlet density 1/2.

Claim: Neither $P(\alpha; \mathcal{C}_+)$ nor $P(\alpha; \mathcal{C}_-)$ has natural density.

Assume the natural density of $P(\alpha; C_+)$ exists (hence = 1/2), and derive a contradiction. Ditto for $P(\alpha; C_-)$. Therefore

$$\lim_{r \to \infty} \frac{\left| \{ \mathfrak{p} \in P(\alpha; \mathcal{C}_+) \mid \ell(p) \leq 2r \} \right|}{\left| \{ \mathfrak{p} \text{ is a prime of } X \mid \ell(p) \leq 2r \} \right|}$$
$$= \lim_{r \to \infty} \frac{\left| \{ \mathfrak{p} \in P(\alpha; \mathcal{C}_+) \mid \ell(p) \leq 2r + 1 \} \right|}{\left| \{ \mathfrak{p} \text{ is a prime of } X \mid \ell(p) \leq 2r + 1 \} \right|} = \frac{1}{2},$$

which implies

$$\lim_{r \to \infty} \frac{\left| \{ \mathfrak{p} \text{ is a prime of } X \mid \ell(p) \leq 2r \} \right|}{\left| \{ \mathfrak{p} \text{ is a prime of } X \mid \ell(p) \leq 2r + 1 \} \right|} = 1.$$
(1)

The Prime Number Theorem for graphs asserts that

$$\left|\{\text{primes }\mathfrak{p}\text{ of }X:\ \ell(\mathfrak{p})=r\Delta_X\}\right|\sim \frac{(\lambda_X)^{r\Delta_X}}{r}\quad\text{as }r\rightarrow\infty$$
 and

$$\left| \{ \text{primes } \mathfrak{p} \text{ of } X : \ell(\mathfrak{p}) < r\Delta_X \} \right| \sim \frac{(\lambda_X)^{r\Delta_X}}{r((\lambda_X)^{\Delta_X} - 1)} \quad \text{as } r \to \infty,$$

in which λ_X is the largest eigenvalue in absolute value of the adjacency matrix of directed edges in X.

Hence the left hand side of (1) is $1/\lambda_X^{\Delta_X}$.

In our case the edge adjacency matrix is

where e_1, \overline{e}_1 (resp. e_2, \overline{e}_2) are the cyan (resp. green) edges of X with opposite orientations. We find $\lambda_X = 3$, and the limit (1) is equal to 1/3, a contradiction.

To each finite-dimensional irreducible representation ρ of G_{α} , define the Artin L-function by

$$L(X, \rho, u) = \prod_{[\gamma] \text{ primitive}} \frac{1}{\det(I - \rho(\gamma)u^{\ell(\gamma)})}$$

Here $[\gamma]$ denotes the conjugacy class of $\gamma \in G_{\alpha}$. When ρ is the trivial representation, $L(X, \rho, u) = Z(X, u)$. Recall that Z(X, u) is holomorphic on $|u| < 1/\lambda_X$ and it has a simple pole at $1/\lambda_X$.

Hashimoto showed that when $\Delta_X = \Delta_Y$, for all nontrivial irreducible ρ , $L(X, \rho, u)$ is holomorphic on $|u| \leq 1/\lambda_X$. If $h = \Delta_Y/\Delta_X > 1$, then there are h - 1 nontrivial irreducible ρ such that $L(X, \rho, u)$ is holomorphic on $|u| < 1/\lambda_X$ and has a pole on $|u| = 1/\lambda_X$. The analytic behavior of the Artin L-functions is used to prove the theorem.

Isospectral number fields

Two finite extensions K and K' of a number field F are *isospec*tral if for each prime \mathfrak{p} of F, there is a norm preserving bijection from the primes of K above p to those of K'.

Take a finite Galois extension L of F containing K and K' as subfields. Write G = Gal(L/F) and let H and H' be the subgroups of G with fixed fields K and K'. Then

Theorem K and K' are isospectral iff

(a) H and H' are locally conjugate in G, i.e., for each conjugacy class [g] of G, we have

 $\#([g] \cap H) = \#([g] \cap H').$

Further $K \cong K'$ iff H and H' are conjugate in G.

This criterion was extended by Sunada to compact Riemannian manifolds.

Isospectral graphs

Let $\alpha: Y \to X$ be a finite normal cover with Galois group G_{α} , and $\beta: Y \to Z$ and $\beta': Y \to Z'$ two subcovers of α .

Theorem [Somodi 2015] TFAE:

(a) G_{β} and $G_{\beta'}$ are locally conjugate in G_{α} ;

(b) For every prime \mathfrak{p} of X, there is a length preserving bijection from the primes of $Z = \beta(Y)$ above \mathfrak{p} to those of $Z' = \beta'(Y)$;

((b) implies that Z and Z' are isospectral, i.e., their adjacency matrices have the same eigenvalues.)

(c) For every prime \mathfrak{p} of X, the number of primes of Z above \mathfrak{p} with the same length as \mathfrak{p} agrees with that of Z'.

Theorem [Huang-L] In (c) only need primes \mathfrak{p} of length $\leq 2|X| \deg \alpha$.

Reasons for graph isospectrality theorems

"(a) iff (b)" follows from Sunada's argument for manifolds. Sunada also showed that (a) is equivalent to (d)

$$\rho := \operatorname{Ind}_{\mathcal{G}_{\beta}}^{\mathcal{G}_{\alpha}} 1_{\mathcal{G}_{\beta}} \cong \operatorname{Ind}_{\mathcal{G}_{\beta'}}^{\mathcal{G}_{\alpha}} 1_{\mathcal{G}_{\beta'}} =: \rho'.$$

Two representations are equivalent iff they have the same trace on all conjugacy classes. Condition (c) says that the traces of ρ and ρ' agree on Frobenius conjugacy classes. The Cebotarev density theorem in Dirichlet density implies that each conjugacy class \mathcal{C} of G_{α} is equal to $\operatorname{Frob}(\mathfrak{p})$ for infinitely many \mathfrak{p} . Hence (a), (b), (c), (d) are equivalent. The theorem of Huang-Li is to show the shortest length of \mathfrak{p} with $\operatorname{Frob}(\mathfrak{p}) = \mathcal{C}$ is $\leq 2|X| \operatorname{deg} \alpha$. For this we use the bound on a set of generators of $\pi_1(X, x)$ and $G_{\alpha} = \pi_1(X, x)/\pi_1(Y, y)$ mentioned before.