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Unramified covers of a graph

All graphs are connected and undirected.

• An unramified cover of a graph X is a surjective graph homo.

α : Y → X which is a local isom. All covers are unramified.

• The group of automorphisms of α is

Aut(α) = {γ : Y → Y automorphism|α = α ◦ γ}.
An auto. is determined by its action on the fiber α−1(x) above
any vertex x of X .

• Call α a normal cover if Aut(α) acts transitively on one and
hence all fibers. Its Galois group Gα = Aut(α).

• If a fiber α−1(x) is a finite set, its cardinality is called the
degree of α. A finite degree cover α is normal if and only if
|Aut(α)| = degα.
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• The universal cover X̃ of X is a tree. The natural projection
prX : X̃ → X is a normal cover with Aut(prX) = π1(X, x),
the fundamental group of X .

(So X ↔ F , X̃ ↔ F̄ , and π1(X, x)↔ GF .)

• A cover β : Y → Z is called a subcover of the cover α : Y → X
if α factors through β, that is, there is a cover γ : Z → X such
that α = γ ◦ β. Denote γ by α/β.

• Two subcovers β : Y → Z and β′ : Y → Z ′ of α : Y → X
are equivalent if there exists a graph isomorphism γ : Z → Z ′

such that γ ◦ β = β′ and α/β = (α/β′) ◦ γ.

(cover α ↔ field extension K ⊇ F , and equivalence classes of
subcovers ↔ intermediate fields)
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Galois theory for graph covers

Let α : Y → X be a normal cover with Galois group Gα.
Denote by [β]α the subcovers of α equivalent to β. Then

(1) The map [β]α 7→ Gβ is a bijection from the set of equiv.
classes of subcovers of α to the set of subgroups of Gα.

(2) Let β be a subcover of α. Then α/β is a normal cover if and
only if Gβ is a normal subgroup of Gα. In this case

Gα/β
∼= Gα/Gβ.

Call such β a normal subcover of α.
(3) π1(Y, y) can be imbedded as a subgroup of π1(X, x) so that

Gα ∼= π1(X, x)/π1(Y, y).

Here y ∈ α−1(x).
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The fundamental group of X

Suppose X is a finite graph with n vertices and m edges. Each
element in the fundamental group π1(X, x) is represented by a
backtrackless walk in X starting and ending at x.

π1(X, x) is a free group of rank r(X) = m− n + 1.

To find a set of generators, choose a spanning tree T in X , which
uses n − 1 edges of X . Adding an unused edge ei to T yields a
loop Li, which in turn yields a backtrackless walk Ci in π1(X, x).
These Ci’s generate π1(X, x), each of length ≤ 2n− 1.

r(X) = 0 implies X is a tree, hence no covers;
r(X) = 1 implies X is homotopic to a circle. For each d, there

is one cover of degree d.

Assume r(X) ≥ 2 and each vertex has degree at least 2.
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Prime ideals in a number field

Let F be a number field.

• The set of elements in F integral over Z form a ring ZF . Usually
it is not a UFD, but each nonzero ideal in ZF is a finite product
of max’l ideals, called the “primes” of F , unique up to order.

• Given a finite extension K of F and a prime p of F ,

pZK = P
e1
1 · · ·P

er
r ,

where P1, ...,Pr are distinct primes of K and ej ≥ 1. The
primes P1, ...,Pr are called the primes of K over p.

Say p unramified in K if all ej = 1. An unram. p splits
completely in K if all primes Pj over p have same norm as p.

• Finite Galois extensions K of F are determined by the set of
primes of F splitting completely in K.
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Primes in a finite graph

Let X be a finite connected undirected graph.

• A geodesic cycle of X is a closed walk which is backtrackless
when traveled along it twice. It has a starting vertex and ori-
entation.

• A geodesic cycle is primitive if it is not obtained by traveling
along a shorter geodesic cycle more than once. So a geodesic
cycle is either primitive or a power of a primitive cycle.

• A “prime” of X is a primitive geodesic cycle in X up to equiv-
alence, i.e. ignoring the starting point (but keeping the orien-
tation).

• r(X) ≥ 2 implies that X has infinitely many primes.
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Decomposition of primes of a graph

Let α : Y → X be a finite unramified cover.

• Let P be a prime of Y . Then α(P) = pk for a prime p of X
and an integer k ≥ 1. Say P lies above p. Then `(P) = k`(p).

• Given a prime p of X , there are finitely many primes P of
Y lying above p (arising from lifting p in Y ). Say p splits
completely in Y if all primes P of Y above p have the same
length as p. In other words, all liftings of p in Y are closed.

8



Characterizing finite normal covers

Suppose |X| = n. Let α : Y → X be a finite normal cover. For
a subcover β : Y → Z of α, let

P`(β) = {primes of X with length ≤ ` which split completely
in β(Y ) = Z}.

Theorem [Huang-L] Assume r(X) ≥ 2. Two normal sub-
covers β and β′ of α are equiv. iff

P4nd−d−1(β) = P4nd−d−1(β′),

where d = lcm(deg(α/β), deg(α/β′)).

In particular, equiv classes of degree d normal covers of X are
characterized by the primes of X of length ≤ 4nd − d − 1 that
split completely.
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Characterizing equivalent subcovers

Suppose |X| = n. Let α : Y → X be a finite normal cover. Fix
a vertex x of X . Choose a vertex y ∈ α−1(x).

For a subcover β : Y → Z of α and integer ` > 0, let

C`(β) = {cycles in X starting at x with length ≤ ` which lift
(via α/β) to cycles in β(Y ) = Z starting at β(y) }.

Theorem [Huang-L] Two subcovers β and β′ of α are equiv.
iff

C2nd−1(β) = C2nd−1(β′),

where d = max(deg(α/β), deg(α/β′)).
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Cebotarev density theorem for number fields

Given a modulusm, the arithmetic progressions r+mZ partition
the integers into m sets. The primes, except finitely many of them,
are contained in the progressions with remainder r coprime to m.
There are φ(m) such progressions.

Dirichlet’s theorem: The primes are uniformly distributed among
these arithmetic progressions in the sense that the primes con-
tained in any r+mZ with (r,m) = 1 has natural density 1/φ(m).

The Cebotarev density theorem extends Dirichlet’s theorem.

• Let K/F be a finite Galois extension with Galois group G.

To each prime p of F unramified in K we associate a Frobenius
conjugacy class of G, denoted Frob(p).
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• Given a conjugacy class C of G, let

P (C) = {p prime of F : Frob(p) = C}.

• Cebotarev density theorem (CDT): The Frobenius conjugacy
classes are uniformly distributed. More precisely, for each con-

jugacy class C of G, the set P (C) has natural density
|C|
|G|, i.e.,

lim
r→∞

#{p ∈ P (C) : N(p) ≤ r}
#{p : N(p) ≤ r}

=
|C|
|G|

.

When K = Q(ζm) and F = Q, the Galois group G is isomor-
phic to (Z/mZ)×, hence |G| = φ(m). Each conjugacy class C
is a singleton. For each p - m, Frob(p) = p in (Z/mZ)×. Then
CDT reduces to Dirichlet’s theorem.
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Frobenius conjugacy classes for graph covers

Let α : Y → X be a finite normal cover with Galois group Gα,
which acts transitively on any fiber.

• Let p be a prime of X through the vertex x. Let y ∈ α−1(x).
Then p has a unique lifting to a backtrackless path P in Y
starting at y. The end point z of P also lies in α−1(x).

• There is a unique element σy in Gα sending y to z.

• If we choose a different starting point y′ in α−1(x), then σy′ is
conjugate to σy.

• The conjugacy class of σy depends on p and not the choice of
y, called the Frobenius conjugacy class of p in Gα and denoted
by Frob(p).
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Cebotarev density theorem for graph covers

Let α : Y → X be a finite normal cover with Galois group Gα.
For each conjugacy class C of Gα, let

P (α; C) = {primes p of X : Frob(p) = C}.
Terras: The Frobenius conjugacy classes are uniformly distributed
w.r.t. the Dirichlet density, i.e., for each conjugacy class C of Gα,

lim
u→(1/λX)−

∑
p∈P (α,C) u

`(p)∑
p prime of X u`(p)

=
|C|
|Gα|

.

Here 1/λX is the radius of convergence of the zeta function of X :

Z(X, u) =
∏

p prime of X

1

1− u`(p)
.
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Cebotarev density theorem in natural density for graphs

For a graph X , let

∆X = gcdprimes p of X(`(p)).

A subset P of primes of X has natural density δ if

lim
r→∞

|{p ∈ P |`(p) < r}|
|{primes p of X|`(p) < r}|

= δ.

Theorem [Huang-L] Assume r(X) ≥ 2. Let α : Y → X be a
finite normal cover with Galois group Gα. Then the natural
density of P (α; C) exists (= |C|/|Gα|) for one conjugacy class
C of Gα iff it exists for all C iff ∆X = ∆Y .

Remark. Stark-Terras proved that either ∆Y = ∆X or ∆Y =
2∆X , and both cases occur. Our proof did not use this fact.
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Illustration of the proof by an example

Consider the degree 2 normal cover α : Y → X as follows:

• r(X) = 2, ∆X = 1 and ∆Y = 2.

• Gα = {±id} has two conjugacy classes

C+ = {id} and C− = {−id}.

• P (α; C+) (resp. P (α; C−)) consists of primes of X with even
(resp. odd) length, and each set has Dirichlet density 1/2.

Claim: Neither P (α; C+) nor P (α; C−) has natural density.
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Assume the natural density of P (α; C+) exists (hence = 1/2),
and derive a contradiction. Ditto for P (α; C−).

Therefore

lim
r→∞

∣∣{p ∈ P (α; C+) | `(p) ≤ 2r}
∣∣∣∣{p is a prime of X | `(p) ≤ 2r}
∣∣

= lim
r→∞

∣∣{p ∈ P (α; C+) | `(p) ≤ 2r + 1}
∣∣∣∣{p is a prime of X | `(p) ≤ 2r + 1}
∣∣ =

1

2
,

which implies

lim
r→∞

∣∣{p is a prime of X | `(p) ≤ 2r}
∣∣∣∣{p is a prime of X | `(p) ≤ 2r + 1}
∣∣ = 1. (1)
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The Prime Number Theorem for graphs asserts that

∣∣{primes p of X : `(p) = r∆X}
∣∣ ∼ (λX)r∆X

r
as r →∞

and

∣∣{primes p of X : `(p) < r∆X}
∣∣ ∼ (λX)r∆X

r((λX)∆X − 1)
as r →∞,

in which λX is the largest eigenvalue in absolute value of the
adjacency matrix of directed edges in X .

Hence the left hand side of (1) is 1/λ
∆X
X .
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In our case the edge adjacency matrix is


e1 e1 e2 e2

e1 1 0 1 1
e1 0 1 1 1
e2 1 1 1 0
e2 1 1 0 1

,
where e1, e1 (resp. e2, e2) are the cyan (resp. green) edges of X
with opposite orientations. We find λX = 3, and the limit (1) is
equal to 1/3, a contradiction.
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To each finite-dimensional irreducible representation ρ of Gα,
define the Artin L-function by

L(X, ρ, u) =
∏

[γ] primitive

1

det(I − ρ(γ)u`(γ))
.

Here [γ] denotes the conjugacy class of γ ∈ Gα. When ρ is the
trivial representation, L(X, ρ, u) = Z(X, u). Recall that Z(X, u)
is holomorphic on |u| < 1/λX and it has a simple pole at 1/λX .

Hashimoto showed that when ∆X = ∆Y , for all nontrivial irre-
ducible ρ, L(X, ρ, u) is holomorphic on |u| ≤ 1/λX .
If h = ∆Y /∆X > 1, then there are h− 1 nontrivial irreducible ρ
such that L(X, ρ, u) is holomorphic on |u| < 1/λX and has a pole
on |u| = 1/λX . The analytic behavior of the Artin L-functions is
used to prove the theorem.
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Isospectral number fields

Two finite extensions K and K ′ of a number field F are isospec-
tral if for each prime p of F , there is a norm preserving bijection
from the primes of K above p to those of K ′.

Take a finite Galois extension L of F containing K and K ′

as subfields. Write G = Gal(L/F ) and let H and H ′ be the
subgroups of G with fixed fields K and K ′. Then

Theorem K and K ′ are isospectral iff
(a) H and H ′ are locally conjugate in G, i.e., for each conjugacy

class [g] of G, we have

#([g] ∩H) = #([g] ∩H ′).
Further K ∼= K ′ iff H and H ′ are conjugate in G.

This criterion was extended by Sunada to compact Riemannian
manifolds.
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Isospectral graphs

Let α : Y → X be a finite normal cover with Galois group Gα,
and β : Y → Z and β′ : Y → Z ′ two subcovers of α.

Theorem [Somodi 2015] TFAE:
(a) Gβ and Gβ′ are locally conjugate in Gα;
(b) For every prime p of X , there is a length preserving bijection

from the primes of Z = β(Y ) above p to those of Z ′ = β′(Y );
((b) implies that Z and Z ′ are isospectral, i.e., their adjacency

matrices have the same eigenvalues.)
(c) For every prime p of X , the number of primes of Z above p

with the same length as p agrees with that of Z ′.

Theorem [Huang-L] In (c) only need primes p of length≤ 2|X| degα.
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Reasons for graph isospectrality theorems

“(a) iff (b)” follows from Sunada’s argument for manifolds.
Sunada also showed that (a) is equivalent to
(d)

ρ := IndGα
Gβ

1Gβ
∼= IndGα

Gβ′
1Gβ′

=: ρ′.

Two representations are equivalent iff they have the same trace
on all conjugacy classes. Condition (c) says that the traces of
ρ and ρ′ agree on Frobenius conjugacy classes. The Cebotarev
density theorem in Dirichlet density implies that each conjugacy
class C of Gα is equal to Frob(p) for infinitely many p. Hence
(a), (b), (c), (d) are equivalent. The theorem of Huang-Li is to
show the shortest length of p with Frob(p) = C is ≤ 2|X| degα.
For this we use the bound on a set of generators of π1(X, x) and
Gα = π1(X, x)/π1(Y, y) mentioned before.
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