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Quadratic forms

Some notation:

I Q: binary quadratic form, Q(x , y) = ax2 + bxy + cy2.

I DQ : discriminant of Q,

DQ := b2 − 4ac

≡ 0, 1 mod 4

I Say that two forms Q,Q ′ are equivalent if related by linear
change of variables, i.e.,

Q ′(x , y) = Q(αx + βy , γx + δy), αδ − βγ 6= 0

Examples (linear algebra):

I {ax2 + bxy + cy2 : a, b, c ∈ R,DQ 6= 0}/GL2(R) =
{±x2 +±y2}

I {ax2 + bxy + cy2 : a, b, c ∈ R,DQ 6= 0}/O2(R) =
{λ1x2 + λ2y

2, λ1, λ2 ∈ R}
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Number theory version

What if we only allow integer coefficients, i.e.,

{ax2 + bxy + cy2 : a, b, c ∈ Z,DQ 6= 0}/GL2(Z) =???

Turns out: DQ = DQ′ if Q ′ is GL2(Z)-equivalent to Q.
Thus natural to fix d < 0 and consider:

H(d) := {ax2 + bxy + cy2 : a, b, c ∈ Z,DQ = d}/GL2(Z)

Fact 1: the class number h(d) := |H(d)| is finite.
Fact 2: we can make H(d) into an abelian group.
Fact 1: not so difficult. (Any Q is equivalent to “reduced form”,
only finite number of reduced ones.)
Fact 2: Gauss was a genious!
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Gauss and class numbers/groups

Modern way to get fact 2 (group structure): roughly have

H(d) ' {ideals in ZK}/{principal ideals in ZK}

where ZK is the ring of integers in K = Q(
√
d).

In particular: h(d) = 1 iff ZK is a PID.
Some conjectures on h(d):

I Gauss conjectured: h(d)→∞ as d → −∞.

I (Gauss) class number one problem: h(d) = 1 iff
d ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163} ∪
{−12,−16,−27,−28}.

Remark: Gauss only treated Q(x , y) = ax2 + 2bxy + cy2, and
allowed “non-fundamental discriminants”.
In what follows, will restrict to fundamental discriminants:
d ≡ 0, 1 mod 4 and d = d0 or d = 4d0 where d0 is square free.
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More on Gauss’ conjectures

I Hecke (unpublished): if GRH is true, then h(d)→∞ as
d → −∞.

I Heilbronn: if GRH is false(!!), then h(d)→∞ as d → −∞.

I Siegel: h(d)�ε |d |1/2−ε for all ε > 0. PROBLEM: “horribly
ineffective”.
Issue: by Dirichlet’s class number formula,

h(d)� L(1, χd)|d |1/2

so ok if L(1, χd) not small. Problem: “Siegel zeros”, i.e.,
L(σ, χd) = 0 for σ very near 1.

I Even though we know h(d)→∞, ineffectivity means we can’t
solve the class number one problem.
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Class number one and beyond

I (Heegner)/Baker/Stark: class number one problem is solved
by different methods. (Baker/Stark can also treat h(d) = 2.)

I Breakthrough by Goldfeld: if there is elliptic curve E such
that LE (s) has high order of vanishing at s = 1, then have
effective lower bound on h(d).

I Gross-Zagier: Such a curve exists!
I Oesterlé proved the explicit bound

h(d) >
log(|d |)

7000

∏
p|d ,p 6=d

(
1−

[2
√
p]

p + 1

)
,

and used this to find all d with h(d) = 3.
I Arno, Robinson-Wheeler, Wagner: h(d) = N for N ≤ 7, and

odd N ≤ 23.
I Watkins: h(d) = N for N ≤ 100. (Using low height zeros of

L(s, χ) to “repel” Siegel zeros.) In particular, h(d) > 100 if
−d > 2.4 · 106.
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Which class numbers/groups actually occur?

I Do all h ∈ Z+ occur as class numbers?
I If occurring: how many times?

I Do all abelian groups occur as class groups?
I If occuring: how many times?

I Extreme case: fixed exponent and high rank.
I Chowla: for r � 1, (Z/2Z)r does not occur. (Ineffective!)
I Boyd-Kisilevski, Weinberger, Heath-Brown: for r � 1 and

2 ≤ n ≤ 6, (Z/nZ)r does not occur. (Ineffective!)
I Boyd-Kisilevski: on GRH, the exponent of H(d) tends to

infinity.
I Bounding H(d)[l ], the l-torsion part H(d):

I Pierce, Helfgott-Venkatesh, Ellenberg-Venkatesh:

|H(d)[3]| � |d |1/3+ε

I Ellenberg-Venkatesh: on GRH, for ` > 3

|H(d)[`]| � |d |1/2−1/2`+ε
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Explicit groups that do not occur

What about some explicit examples of “missing” class groups?

I Watkins + pari computation: these groups do not occur:

(Z/3Z)3, Z/9Z× (Z/3Z)2, (Z/3Z)4.

I Note: rank r not that big, yet missing!

I For h ∈ Z+ and G a finite abelian group, define

F (h) := |{d < 0 : h(d) = h}|, F (G ) := |{d < 0 : H(d) = G}|

(recall: d always denotes fundamental discriminant.)

I Can we (conjecturally) determine growth of F (h) or F (G )?
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I Watkins + pari computation: these groups do not occur:

(Z/3Z)3, Z/9Z× (Z/3Z)2, (Z/3Z)4.

I Note: rank r not that big, yet missing!

I For h ∈ Z+ and G a finite abelian group, define

F (h) := |{d < 0 : h(d) = h}|, F (G ) := |{d < 0 : H(d) = G}|

(recall: d always denotes fundamental discriminant.)

I Can we (conjecturally) determine growth of F (h) or F (G )?
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For simplicity, restrict to

I h odd, hence d prime. (2-rank of H(d) given by ω(d)− 1.)

I G a p-group.

Average of F (h): prime discriminant analog of Soundararajan.

Theorem (Holmin-Jones-K.-McLeman-Petersen)

Assume GRH. For any ε > 0,∑
h≤H
h odd

F (h) =
15

4
· H2

logH

(
1 + O

(
1

(logH)1/2−ε

))
,

as H −→∞.

Thus expect (in fact, conjectured by Soundararajan):

F (h) � h

log h
(h odd)
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Puzzling...

Initial numerics: find all d such that h(d) odd and / 104 — look
at d up to ∼ 1012. (On GRH, using Lamzouri-Li-Soundararajan.)

Some data:

h 10001 10003 10005 10007 10009 10011 10013 10015

F (h) 10641 12154 20661 10536 10329 15966 12221 12975

I Massive swings — almost factor of two!
I Troubling: using Theorem, i.e.,∑

h≤H
h odd

F (h) ' 15

4
· H2

logH

to predict local averages, say∑
9500≤h≤9600,h odd

F (h)

there is large bias compared to numerics (i.e., observed
F (h)-values.) Prediction about 30% too high. WTF!?
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“Unpuzzling”

I Better numerics: find all d such that h(d) odd and < 106.
Big computation — look at d up to 1015. (Lucky: top 50
supercomputer at KTH!)

I Higher order expansion for
∑

h≤H
h odd

F (h) in terms of powers of

1/ log h. (Even though relative error is O(1/
√

log h)...)
Obtain “Archimedean” density c∞(h) for F (h).

I Capture small scale swings with local p-adic densities
(Cohen-Lenstra!)

Get “mass formula” (adelic/global density):

F (h) ∼ C ·

(∏
p

cp(h)

)
· c∞(h)

∼ C ·c(h)· h
15
· E
(

1

L(1,Y)2 log(πh/L(1,Y))

)
∼ C ·c(h)· h

log(πh)
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Two loose ends

Cohen-Lenstra prediction:
I Natural “measure” on how often a group should occur:

Pr(H(d) = G ) ∼ 1

Aut(G )

I P(H(d) = Z/p2) ∼ 1
φ(p2) '

1
p2

I P(H(d) = Z/p × Z/p) ∼ 1
|GL2(Z/pZ)| '

1
p4 — much rarer!

I P(3|h(d)) ' 0.43 6= 1/3

Recall Archimedean factor containing

E
(

1

L(1,Y)2 log(πh/L(1,Y))

)
Here L(1,Y) is “random Euler product”:

L(1,Y) =
∏
p

(1− Yp/p)−1

where Yp = ±1 (each with probability 1/2.)
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Our tweaked prediction:

pred(h) := C ·c(h)· h

log(πh)
·
(

1 +
c1

log(πh)
+

c2

log2(πh)
+

c3

log3(πh)

)
.

Relative error: (F (h)− pred(h))/ pred(h)

h 10001 10003 10005 10007 10009 10011 10013 10015

F (h) 10641 12154 20661 10536 10329 15966 12221 12975
pred(h) 10598 12116 21074 10383 10385 16144 12038 12993
Rel. err. +0.41% +0.31% −1.96% +1.48% −0.54% −1.10% +1.52% −0.14%

h 100001 100003 100005 100007 100009 100011 100013 100015

F (h) 94623 85792 164289 86770 111948 142512 87138 108993
pred(h) 94213 85641 164806 86620 111210 142989 86577 108820
Rel. err. +0.43% +0.18% −0.31% +0.17% +0.66% −0.33% +0.65% +0.16%

h 999985 999987 999989 999991 999993 999995 999997 999999

F (h) 1064529 1095135 771805 791007 1093645 914482 733397 1815672
pred(h) 1063376 1098842 769673 788871 1093732 911447 730673 1825811
Rel. err. +0.11% −0.34% +0.28% +0.27% −0.01% +0.33% +0.37% −0.56%
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For large h the prediction seems fairly good: relative error is < 1%.

In order to detect bias, look at normalized fluctuations

r(h) :=
F (h)− pred(h)√

pred(h)

for various subsets of the (odd) integers.
Audience guess: what kind of fluctuations? Gaussian!?
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Figure: Histogram for r(h), as h ranges over odd integers in
[500000, 1000000]. (µ, σ) = (0.291561, 2.685280).
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Figure: Histogram for r(h), as h 6≡ 0 mod 3 ranges over odd integers in
[500000, 1000000]. (µ, σ) = (1.987995, 1.006428).
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Figure: Histogram for r(h), as h ≡ 0 mod 3 ranges over odd integers in
[500000, 1000000]. (µ, σ) = (−3.101265, 1.529449).
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Figure: Histogram for r(h), for odd h in (500000,1000000), 3||h.
(µ, σ) = (−2.326289, 1.027387).
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Figure: Histogram for r(h), for odd h in (500000,1000000), 32||h.
(µ, σ) = (−4.372185, 1.062480).
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Figure: Histogram for r(h), for odd h in (500000,1000000), 33||h.
(µ, σ) = (−5.110585, 1.087463).

Seems to be systematic bias coming from 3-divisibility. Most likely
similar to Davenport-Heilbronn bias:

I Main term: pole at s = 1
I Secondary term: pole at s = 5/6. (Mysterious!)

Note: we don’t see similar bias for `-divisibility, ` > 3 small odd
primes
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Upshot of F (h) prediction. And what groups occur?

I Very good fit with numerics (< 1% relative error.)

I Puzzling “three divisibility bias”.

I Separating out h so that 3a||h, normalized fluctuations seem
Gaussian (with variance very close to one!)

Let’s switch gears — which groups occur?
I For simplicity, only consider p-groups.

I Too much data if we keep all groups.
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“Types” of p-groups of order p2:

I Partitions of 2:
I 2 = 2:
I 2 = 1 + 1:

I Corresponding groups:
I G = Z/p2
I G = Z/p × Z/p (rare, zero “cyclicity index”.)

Groups of order p3:
I Partitions of 3:

I 3 = 3:
I 3 = 2 + 1:
I 3 = 1 + 1 + 1:

I Corresponding groups:
I G = Z/p3
I G = Z/p2 × Z/p
I G = Z/p × Z/p × Z/p (very rare, negative “cyclicity index”.)
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Figure: Partitions of 2 and 3 with cyclicity index > 0. Corresponding
groups: Z/p2, Z/p3, and Z/p2 × Z/p.
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Figure: Partitions of 4 and 5. Corresponding groups: Z/p4, Z/p3 × Z/p,
Z/p5, Z/p4 × Z/p Z/p2 × Z/p, and Z/p3 × Z/p2.
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“Sporadic” groups

Each of the groups

Z
53Z
×
(

Z
5Z

)2

,
Z

34Z
× Z

32Z
× Z

3Z
,

(
Z

33Z

)2

× Z
3Z
,

Z
34Z
× Z

33Z
× Z

3Z
,

Z
35Z
× Z

33Z
× Z

3Z
,

Z
37Z
×
(

Z
32Z

)2

,

Z
36Z
× Z

34Z
× Z

3Z
,

Z
38Z
× Z

32Z
×
(

Z
3Z

)2

occurs exactly once as an imaginary quadratic class group, though
partition has negative cyclicity index.
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“Completely missing” families of groups

We haven’t seen any groups of the form

(Z/pZ)r

for p > 2 and r ≥ 3. (Cyclicity index < 0.)

In particular, (Z/pZ)3 does not seem to occur.

Conjecture

No such group occurs as an imaginary quadratic class group.

Remark: probabilistic model suggests that “expected” number for
h > 106 is < 10−4.

Theorem
For a positive integer n, we have

#{partitions of n with cyclicity index > 0}
#{partitions of n}

� n3/4e
(2−

√
2
3
π)
√
n
.

In particular, ratio → 0: most p-groups likely to be “missing”!
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Zero cyclicity index

Intermediate case: infinitely many groups in the family should
occur, and infinitely many should not.

Data quite limited, restrict to the family G = (Z/pZ)2.

n All primes p < 1000 such that F((Z/pZ)2) = n

0 11, 19, 37, 79, 89, 97, 103, 139, 151, 167, 181, 191, 193, 227, 229, 233, 241, 251, 271, 281, 283, 311, 313, 317, 349, 353, 359, 383, 401,
409, 433, 443, 463, 467, 479, 491, 499, 523, 563, 571, 587, 601, 619, 631, 643, 673, 701, 709, 733, 757, 769, 787, 809, 829, 877, 887,
907, 919, 929, 947, 953, 977, 983

1 3, 17, 23, 41, 43, 47, 61, 67, 73, 107, 109, 113, 127, 131, 137, 157, 163, 173, 179, 199, 239, 257, 263, 269, 277, 293, 307, 331, 337, 347,
367, 373, 379, 397, 419, 439, 457, 487, 503, 509, 521, 547, 557, 577, 599, 613, 617, 641, 653, 659, 677, 683, 691, 719, 727, 739, 743,
761, 797, 811, 821, 823, 839, 853, 857, 859, 863, 881, 937, 941, 971, 991, 997

2 5, 7, 29, 31, 53, 59, 71, 83, 101, 197, 211, 223, 389, 431, 449, 461, 569, 593, 607, 647, 661, 827, 883, 911
3 149, 421, 541, 751, 967
4 773
5 13

Seems to support intermediate behaviour.
Remark: predicted “probability” that Z/p × Z/p occurs is about

1/ log p,

so most of these groups are “missing”.
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Zero cyclicity, comparing cumulants
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Figure: Cumulative observed values
∑

p<x F (G(1,1)(p)) (black dots)

compared to cumulative predicted values
∑

p<x P(G(1,1)(p)) pred(p2)
(red dashed line), for each prime x < 1000.
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Happy Birthday Igor!
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