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Hilbert’s Irreducibility Theorem

» X algebraic curve over Q;
» t € Q(X) non-constant rational function of degree v > 2;
» nstands for a positive integer.

Hilbert’s Irreducibility Theorem For infinitely many n the fiber t=1(n) ¢ X(Q) is
Q-irreducible;

that is, the Galois group Gy ¢ acts on t~1(n) transitively.



Hilbert’s Irreducibility Theorem

» X algebraic curve over Q;
» t € Q(X) non-constant rational function of degree v > 2;
» nstands for a positive integer.

Hilbert’s Irreducibility Theorem For infinitely many n the fiber t=1(n) ¢ X(Q) is
Q-irreducible;

that is, the Galois group Gy ¢ acts on t~1(n) transitively.

Equivalently: For every n pick
Py e t="(n);

then for infinitely many n we have

[Q(Pn) : Q] = v.



Hilbert’s Irreducibility Theorem

» X algebraic curve over Q;
» t € Q(X) non-constant rational function of degree v > 2;
» nstands for a positive integer.

Hilbert’s Irreducibility Theorem For infinitely many n the fiber t=1(n) ¢ X(Q) is
Q-irreducible;

that is, the Galois group Gy ¢ acts on t~1(n) transitively.

Equivalently: For every n pick
Py e t="(n);

then for infinitely many n we have
[Q(Pn) : Q] = .
Quantitative version:

[{n < N, [Q(Pn) : Q] < v}| < N'/2
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Work of Dvornicich & Zannier

Hilbert’s Irreducibility Theorem does not answer the following question:
Among the fields Q(Pp), are there “many” distinct?

Zannier (1998): let K be number field; then, under a suitable assumption, for any £ > 0
[{n< N:KCQ(Pn)} < N
Dvornicich & Zannier (1994): For large N
[Q(Py,...,PyN): Q] > eN/1aN ¢ — ¢(v,g) > 0.
Corollary For large N
{Q(P1), ..., Q(Pn)}| > cN/logN, ¢ =c(v,g) > 0.



Some Remarks

» Theorem of Dvornicich-Zannier is best possible:
take X as the curve t = u?; then
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Some Remarks

» Theorem of Dvornicich-Zannier is best possible:
take X as the curve t = u?; then
Q(P1""7PN):Q(\/?7\/§7""\/N):Q(\/ﬁ:pg N)7
[Q(Py,.... Py) : Q] = 270V,
» The corollary does not look best possible:

in the same example, if n runs the square-free numbers among 1, ..., N then the
fields

Q(Pn) = Q(Vn)

are pairwise distinct and there are ~ ¢(2)~'N square-free numbers n < N.
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Diversity Conjectures

Weak Diversity Conjecture

[{Q(P;), ..., Q(Pn)}| > cN.

> P c X(Q) is a ramification point of t if vp(t — t(P)) > 1;
» a € QU {0} is a critical value of t if o = t(P), where P is a ramification point.
Strong Diversity Conjecture (Schinzel) Assume that

» either t has a finite critical value not belonging to Q,
» or the field extension @(X)/Q(t) is not abelian.

Then
[Q(Py,...,Py): Q] > eN.

Some Remarks

» The hypothesis in the Strong Conjecture is necessary.
If Q(X)/Q(¢) is abelian and the finite critical values are in Q then

QX) C L((t—aq)er, ..., (t — as)!/®),

where L is a number field, a4, ..., as € Q.
» Strong Conjecture = Weak Conjecture
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Our Result

Dvornicich & Zannier: For large N

HQ(P1), ..., Q(Pn)} 20%, c=c(v,g) > 0.
Weak Diversity Conjecture

{Q(Py), -, Q(PN)}| > cN.
Theorem (YuB, FL) (February 18, 2016) For large N

N

(log )T’ n=mn(v,g) > 0.

|{Q(P1)17Q(PN)}| >
1

= would do.
108(v + g) log(v + g)

n



The Argument of Dvornicich & Zannier

Traced back to Davenport, Lewis, Schinzel (1964)
Set-up
» F(T) € Z[T] the primitive separable polynomial whose roots are the finite critical
values of t;
1 < D=degF < 2g — 2 + 2v (Riemann-Hurwitz)
AFr the discriminant of F;
‘Pr the set of pt Ar for which F(T) has a root modp;
Pr is of density 6 > 0 (Tchebotarev).
In fact, 6 > 1/D where D = deg F.
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The Argument of Dvornicich & Zannier

Traced back to Davenport, Lewis, Schinzel (1964)
Set-up
» F(T) € Z[T] the primitive separable polynomial whose roots are the finite critical
values of t;
1 < D=degF < 2g — 2 + 2v (Riemann-Hurwitz)
AFr the discriminant of F;
‘Pr the set of pt Ar for which F(T) has a root modp;
Pr is of density 6 > 0 (Tchebotarev).
In fact, 6 > 1/D where D = deg F.
Main Principles
(A) If p ramifies in Q(P) for some P € t~'(n), then p | F(n).
(B) For large p, if p|| F(n) then p ramifies in Q(P) for some P € t~1(n).
(C) Forpt Af

v
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v

v

v

p* | F(n) = pl| F(n+p).
(D) For p € Pr thereis n < 2p such that p|| F(n).
(E) When nis large, F(n) has at most D prime divisors p > n/4.



Primitives

Notation

> Kn= @(t_1(n))

» pis primitive for nif p ramifies in Ky, but notin Ky, ..., K,_1.
Consequences of (A-D):

(F) Every large p € Pg is primitive for some n < 2p.
(G) Every large n has at most D primitive p > n/4.
In addition to this:
(H) If n admits a primitive pthen K, ¢ Ky --- Kp_1.
(I) If nadmits a primitive p and t='(n) is irreducible then Q(Pn) ¢ Q(Py, ..., Py_1).



Proof of the Theorem of Dvornicich & Zannier

Notation
Sy = {n having a primitive p € [N/4, N/2]},
Sy ={ne€ Sy: t~'(n)is irreducible}

> (F)= Sy C[1,N]

() = [Q(Py,..., Py) : Q] > 25/
(D) and Tchebotarev = for large N

v

v

1 N
Syl > = N[N/4,N/2 —_—
|N\,D|7’F [N/4, /]|>>IogN

v

Hilbert's Irreducibility Theorem = |Sy \ Sj| < N'/2;
for large N

v

N
/ —_
ISnl > logN’



How to Generalize it?

Dvornicich & Zannier: [Q(P;, ..., Py) : Q] > e°N/logN

Corollary |[{Q(Py),...,Q(Pn)}| > cN/log N
» Theorem of Dvornicich-Zannier is best possible:
take X as the curve t = u?; then
QP ..., Pn) = Q(V1,V2,...,VN) = Q(vp: p < N),
[Q(Py,...,Py): Q] =27
» The corollary does not look best possible:

in the same example, if n runs the square-free numbers among 1, ..., N then the

fields Q(Pn) = Q(+/n) are pairwise distinct and there are ~ ¢(2)~' N square-free
numbers n < N.



To improve on the corollary,
replace primes by square-free
numbers!




Working with Square-Free Numbers

For a separable polynomial F(T) € Z[T] we denote:

v

AFr the discriminant of F;

Pr the set of pt Afg for which F(T) has a root modp;

M the set of square-free integers composed of primes from Pg;
assume m square-free; we say m|| nif m | nand gcd(m, n/m) = 1.
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Working with Square-Free Numbers

For a separable polynomial F(T) € Z[T] we denote:

v

AFr the discriminant of F;

» Pr the set of p{ Ag for which F(T) has a root modp;

» M the set of square-free integers composed of primes from Pr;
assume m square-free; we say m|| nif m | nand gcd(m, n/m) = 1.
Counting:

\4

X
|MFﬁ [O,X]l N’YW»

Need “square-free analogues” of the following of primes:
(D) For p € Pr thereis n < 2p such that p || F(n).
(E) When nis large, F(n) has at most D prime divisors p > n/4.

:5;:, ’Y>0.



Analogue of (D)

(D’) Assume that every prime divisor of m € Mg satisfies p > w(m). Then there is
n < (w(m) + 1)m such that m|| F(n).

Proof

» Thereis ng < msuch that m| F(np).
» Thenm | F(ny + km), k=0,1,2....
> Assume m}f F(np + km) for k =0,1,...,w(m).



Analogue of (D)

(D’) Assume that every prime divisor of m € Mg satisfies p > w(m). Then there is
n < (w(m) + 1)m such that m|| F(n).

Proof

» Thereis ng < msuch that m| F(np).
» Thenm | F(ny + km), k=0,1,2....
» Assume m}f F(nyg + km) for k = 0,1, ..., w(m).
» Box principle: there is p | m such that

p? | F(no + km), p?| F(no + ¢m)

and 0 < k < £ < w(m).
» Then p | (¢ — k)AF, contradiction because p { Ar and £ — k < w(m)
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> every p | mramifies in Q(t~'(n));

» for every p | mthere is n’ < n such that p does not ramify in Q(t~'(n"));
Property (D’) from the previous slide implies:

(F') every m € Mg with pyin(m) > w(m) serves as primitive for some
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Primitives

Call m € Mg primitive for n if

> every p | mramifies in Q(t~'(n));

» for every p | mthere is n’ < n such that p does not ramify in Q(t~'(n"));
Property (D’) from the previous slide implies:

(F') every m € Mg with pyin(m) > w(m) serves as primitive for some
n=nm< m(w(m)+1).

What we do not have:

(G") abound |{nm}| for a given m.

And this is because we do not have

(E") abound for |[{m € Mg : m| F(n)}| for a given n.

And this is because distinct m are not coprime!



A Special Set of Square-Free Numbers

Fix e > 0 and define for large x (x will replace N in the sequel):
r = loglog x, k = |edloglog x| + 1,
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Fix e > 0 and define for large x (x will replace N in the sequel):
r = loglog x, k = |edloglog x| + 1,

w(m=k+1, X x
ME(X) = me Mr: pn(m)> el®0' ™ b n [?”]'
Prmax(m)> x°/1° wr

Counting:
X

[Me(x)| = {log x)i =25+

(x = o)

Distinct m € Mg(x) are “almost” co-prime: gcd(m, m") “much smaller” than
min{m, m'}.

Using this, one proves:

(E’) for “most” n < x
[{m € Mg(x) : m| F(n)}| < 6D;

(G") A consequence: with suitably defined ¢, for “most” m € Mg(x) we have

[{nm}| < 6D.



Using the Primitives

For large x set

NE(x) = {m : m e Mg(x)},
NE(x) = {n € Np(x) : t~1(n) is irreducble}.
Then

1 X
INVE()| > EVVIF(X)‘ > W

Like before:

[{Q(Pn) : n < x}| > |NE(x)|

> [NF(x)| — O(N'/2)
> X
~ (log X)1—56+o(1)

as wanted.



Proving (E’) and (G’)

How one proves (E’) and (G")?
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Proving (E’) and (G’)

How one proves (E’) and (G")?

(E’) for “most” n < x
[{m € Mg(x) : m| F(n)}| < 6D;

(G") with suitably defined &, for “most” m € Mg(x) we have

|{’7m}| <6D.

This guy will tell you!




