Diversity in Parametric Families of Number Fields

Yuri Bilu, Florian Luca

Dynamics and Graphs over Finite Fields March 30, 2016 Luminy

My co-author and some guy

Hilbert's Irreducibility Theorem

- ► X algebraic curve over Q;
- $t \in \mathbb{Q}(X)$ non-constant rational function of degree $\nu \geq 2$;
- n stands for a positive integer.

Hilbert's Irreducibility Theorem For infinitely many *n* the fiber $t^{-1}(n) \subset X(\overline{\mathbb{Q}})$ is \mathbb{Q} -irreducible;

that is, the Galois group $G_{\bar{\mathbb{Q}}/\mathbb{Q}}$ acts on $t^{-1}(n)$ transitively.

Hilbert's Irreducibility Theorem

- ► X algebraic curve over Q;
- $t \in \mathbb{Q}(X)$ non-constant rational function of degree $\nu \geq 2$;
- n stands for a positive integer.

Hilbert's Irreducibility Theorem For infinitely many *n* the fiber $t^{-1}(n) \subset X(\overline{\mathbb{Q}})$ is \mathbb{Q} -irreducible;

that is, the Galois group $G_{\overline{\mathbb{Q}}/\mathbb{Q}}$ acts on $t^{-1}(n)$ transitively.

Equivalently: For every n pick

$$P_n \in t^{-1}(n);$$

then for infinitely many n we have

 $[\mathbb{Q}(P_n):\mathbb{Q}]=\nu.$

Hilbert's Irreducibility Theorem

- ► X algebraic curve over Q;
- $t \in \mathbb{Q}(X)$ non-constant rational function of degree $\nu \geq 2$;
- n stands for a positive integer.

Hilbert's Irreducibility Theorem For infinitely many *n* the fiber $t^{-1}(n) \subset X(\overline{\mathbb{Q}})$ is \mathbb{Q} -irreducible;

that is, the Galois group $G_{\bar{\mathbb{Q}}/\mathbb{Q}}$ acts on $t^{-1}(n)$ transitively.

Equivalently: For every n pick

$$P_n \in t^{-1}(n);$$

then for infinitely many n we have

$$[\mathbb{Q}(P_n):\mathbb{Q}]=\nu.$$

Quantitative version:

$$|\{n \leq N, [\mathbb{Q}(P_n) : \mathbb{Q}] < \nu\}| \ll N^{1/2}$$

Hilbert's Irreducibility Theorem does not answer the following question:

(ロ)、

Among the fields $\mathbb{Q}(P_n)$, are there "many" distinct?

Hilbert's Irreducibility Theorem does not answer the following question:

Among the fields $\mathbb{Q}(P_n)$, are there "many" distinct?

Zannier (1998): let *K* be number field; then, under a suitable assumption, for any $\varepsilon > 0$

 $|\{n \leq N : K \subset \mathbb{Q}(P_n)\}| \ll_{\varepsilon} N^{\varepsilon}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Hilbert's Irreducibility Theorem does not answer the following question:

Among the fields $\mathbb{Q}(P_n)$, are there "many" distinct?

Zannier (1998): let *K* be number field; then, under a suitable assumption, for any $\varepsilon > 0$

$$|\{n \leq N : K \subset \mathbb{Q}(P_n)\}| \ll_{\varepsilon} N^{\varepsilon}.$$

Dvornicich & Zannier (1994): For large N

$$[\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}] \geq e^{cN/\log N}, \qquad c = c(\nu,\mathbf{g}) > 0.$$

Hilbert's Irreducibility Theorem does not answer the following question:

Among the fields $\mathbb{Q}(P_n)$, are there "many" distinct?

Zannier (1998): let K be number field; then, under a suitable assumption, for any $\varepsilon > 0$

 $|\{n \leq N : K \subset \mathbb{Q}(P_n)\}| \ll_{\varepsilon} N^{\varepsilon}.$

Dvornicich & Zannier (1994): For large N

 $[\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}] \geq e^{cN/\log N}, \qquad c = c(\nu,\mathbf{g}) > 0.$

Corollary For large N

 $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \ge cN/\log N, \qquad c = c(\nu,\mathbf{g}) > 0.$

Some Remarks

• Theorem of Dvornicich-Zannier is best possible: take X as the curve $t = u^2$; then

$$\begin{aligned} \mathbb{Q}(P_1,\ldots,P_N) &= \mathbb{Q}(\sqrt{1},\sqrt{2},\ldots,\sqrt{N}) = \mathbb{Q}(\sqrt{p}:p\leq N), \\ [\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}] &= 2^{\pi(N)}. \end{aligned}$$

Some Remarks

• Theorem of Dvornicich-Zannier is best possible: take X as the curve $t = u^2$; then

$$\begin{aligned} \mathbb{Q}(P_1,\ldots,P_N) &= \mathbb{Q}(\sqrt{1},\sqrt{2},\ldots,\sqrt{N}) = \mathbb{Q}(\sqrt{p}:p\leq N),\\ [\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}] &= 2^{\pi(N)}. \end{aligned}$$

The corollary does not look best possible:

in the same example, if n runs the **square-free** numbers among $1, \ldots, N$ then the fields

 $\mathbb{Q}(P_n) = \mathbb{Q}(\sqrt{n})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

are pairwise distinct and there are $\approx \zeta(2)^{-1}N$ square-free numbers $n \leq N$.

Weak Diversity Conjecture

 $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \ge cN.$

Weak Diversity Conjecture

 $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq cN.$

- $P \in X(\overline{\mathbb{Q}})$ is a ramification point of t if $v_P(t t(P)) > 1$;
- $\alpha \in \overline{\mathbb{Q}} \cup \{\infty\}$ is a **critical value** of *t* if $\alpha = t(P)$, where *P* is a ramification point.

Weak Diversity Conjecture

 $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq cN.$

- $P \in X(\overline{\mathbb{Q}})$ is a ramification point of t if $v_P(t t(P)) > 1$;
- $\alpha \in \overline{\mathbb{Q}} \cup \{\infty\}$ is a **critical value** of *t* if $\alpha = t(P)$, where *P* is a ramification point.

Strong Diversity Conjecture (Schinzel) Assume that

- either t has a finite critical value not belonging to Q,
- or the field extension $\overline{\mathbb{Q}}(X)/\overline{\mathbb{Q}}(t)$ is not abelian.

Then

 $[\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}]\geq e^{cN}.$

A D F A 同 F A E F A E F A Q A

Weak Diversity Conjecture

 $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq cN.$

- $P \in X(\overline{\mathbb{Q}})$ is a ramification point of t if $v_P(t t(P)) > 1$;
- $\alpha \in \overline{\mathbb{Q}} \cup \{\infty\}$ is a **critical value** of *t* if $\alpha = t(P)$, where *P* is a ramification point.

Strong Diversity Conjecture (Schinzel) Assume that

- either t has a finite critical value not belonging to Q,
- or the field extension $\overline{\mathbb{Q}}(X)/\overline{\mathbb{Q}}(t)$ is not abelian.

Then

$$[\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}]\geq e^{cN}.$$

Some Remarks

• The hypothesis in the Strong Conjecture is necessary. If $\overline{\mathbb{Q}}(X)/\overline{\mathbb{Q}}(t)$ is abelian and the finite critical values are in \mathbb{Q} then

$$\mathbb{Q}(X) \subset L((t-\alpha_1)^{1/e_1},\ldots,(t-\alpha_s)^{1/e_s}),$$

where *L* is a number field, $\alpha_1, \ldots, \alpha_s \in \mathbb{Q}$.

Weak Diversity Conjecture

 $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq cN.$

- $P \in X(\overline{\mathbb{Q}})$ is a ramification point of t if $v_P(t t(P)) > 1$;
- $\alpha \in \overline{\mathbb{Q}} \cup \{\infty\}$ is a **critical value** of *t* if $\alpha = t(P)$, where *P* is a ramification point.

Strong Diversity Conjecture (Schinzel) Assume that

- either t has a finite critical value not belonging to Q,
- or the field extension $\overline{\mathbb{Q}}(X)/\overline{\mathbb{Q}}(t)$ is not abelian.

Then

$$[\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}]\geq e^{cN}.$$

Some Remarks

• The hypothesis in the Strong Conjecture is necessary. If $\overline{\mathbb{Q}}(X)/\overline{\mathbb{Q}}(t)$ is abelian and the finite critical values are in \mathbb{Q} then

$$\mathbb{Q}(X) \subset L((t-\alpha_1)^{1/e_1},\ldots,(t-\alpha_s)^{1/e_s}),$$

A D F A 同 F A E F A E F A Q A

where *L* is a number field, $\alpha_1, \ldots, \alpha_s \in \mathbb{Q}$.

► Strong Conjecture ⇒ Weak Conjecture

Our Result

Dvornicich & Zannier: For large N

$$|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq c \frac{N}{\log N}, \qquad c = c(\nu,\mathbf{g}) > 0.$$

Weak Diversity Conjecture

 $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq cN.$

Our Result

Dvornicich & Zannier: For large N

$$\left|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}\right| \geq c \frac{N}{\log N}, \qquad c = c(\nu,\mathbf{g}) > 0.$$

Weak Diversity Conjecture

$$|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}|\geq cN.$$

Theorem (YuB, FL) (February 18, 2016) For large N

$$|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq \frac{N}{(\log N)^{1-\eta}}, \qquad \eta = \eta(\nu,\mathbf{g}) > 0.$$

Our Result

Dvornicich & Zannier: For large N

$$|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq c \frac{N}{\log N}, \qquad c = c(\nu,\mathbf{g}) > 0.$$

Weak Diversity Conjecture

$$|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \geq cN.$$

Theorem (YuB, FL) (February 18, 2016) For large N

$$\left| \{ \mathbb{Q}(P_1), \ldots, \mathbb{Q}(P_N) \} \right| \geq \frac{N}{(\log N)^{1-\eta}}, \qquad \eta = \eta(\nu, \mathbf{g}) > 0.$$

 $\eta = \frac{1}{10^6(\nu + \mathbf{g})\log(\nu + \mathbf{g})} \text{ would do.}$

The Argument of Dvornicich & Zannier

Traced back to Davenport, Lewis, Schinzel (1964)

Set-up

F(*T*) ∈ ℤ[*T*] the primitive separable polynomial whose roots are the finite critical values of *t*;

(ロ) (同) (三) (三) (三) (○) (○)

- $1 \le D = \deg F \le 2\mathbf{g} 2 + 2\nu$ (Riemann-Hurwitz)
- Δ_F the discriminant of *F*;
- \mathcal{P}_F the set of $p \nmid \Delta_F$ for which F(T) has a root mod p;
- \mathcal{P}_F is of density $\delta_F > 0$ (Tchebotarev).
- In fact, $\delta_F \geq 1/D$ where $D = \deg F$.

The Argument of Dvornicich & Zannier

Traced back to Davenport, Lewis, Schinzel (1964)

Set-up

- F(T) ∈ ℤ[T] the primitive separable polynomial whose roots are the finite critical values of t;
- $1 \le D = \deg F \le 2\mathbf{g} 2 + 2\nu$ (Riemann-Hurwitz)
- Δ_F the discriminant of *F*;
- P_F the set of p ∤ Δ_F for which F(T) has a root modp;
- \mathcal{P}_F is of density $\delta_F > 0$ (Tchebotarev).
- In fact, $\delta_F \geq 1/D$ where $D = \deg F$.

Main Principles

- (A) If *p* ramifies in $\mathbb{Q}(P)$ for some $P \in t^{-1}(n)$, then $p \mid F(n)$.
- (B) For large p, if $p \parallel F(n)$ then p ramifies in $\mathbb{Q}(P)$ for some $P \in t^{-1}(n)$.

(C) For $p \nmid \Delta_F$

$$p^2 \mid F(n) \Rightarrow p \parallel F(n+p).$$

- (D) For $p \in \mathcal{P}_F$ there is $n \leq 2p$ such that $p \parallel F(n)$.
- (E) When *n* is large, F(n) has at most *D* prime divisors $p \ge n/4$.

Primitives

Notation

- $K_n = \mathbb{Q}(t^{-1}(n))$
- ▶ *p* is primitive for *n* if *p* ramifies in K_n , but not in K_1, \ldots, K_{n-1} .

Consequences of (A–D):

- (F) Every large $p \in \mathcal{P}_F$ is primitive for some $n \leq 2p$.
- (G) Every large n has at most D primitive $p \ge n/4$. In addition to this:
- (H) If *n* admits a primitive *p* then $K_n \not\subset K_1 \cdots K_{n-1}$.
- (I) If *n* admits a primitive *p* and $t^{-1}(n)$ is irreducible then $\mathbb{Q}(P_n) \not\subset \mathbb{Q}(P_1, \ldots, P_{n-1})$.

Proof of the Theorem of Dvornicich & Zannier

Notation

 $S_N = \{n \text{ having a primitive } p \in [N/4, N/2]\}, S'_N = \{n \in S_N : t^{-1}(n) \text{ is irreducible}\}$

- ► (F) \Rightarrow $S_N \subset [1, N]$
- (I) $\Rightarrow [\mathbb{Q}(P_1, \ldots, P_N) : \mathbb{Q}] \ge 2^{|S'_N|}$
- (D) and Tchebotarev \Rightarrow for large N

$$|S_N| \geq \frac{1}{D} |\mathcal{P}_F \cap [N/4, N/2]| \gg \frac{N}{\log N}$$

- Hilbert's Irreducibility Theorem $\Rightarrow |S_N \setminus S'_N| \ll N^{1/2};$
- ▶ for large N

$$|S'_N| \gg \frac{N}{\log N}.$$

How to Generalize it?

Dvornicich & Zannier: $[\mathbb{Q}(P_1, \ldots, P_N) : \mathbb{Q}] \ge e^{cN/\log N}$

Corollary $|\{\mathbb{Q}(P_1),\ldots,\mathbb{Q}(P_N)\}| \ge cN/\log N$

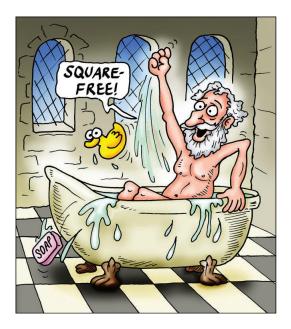
► Theorem of Dvornicich-Zannier is best possible: take X as the curve $t = u^2$; then

 $\begin{aligned} \mathbb{Q}(P_1,\ldots,P_N) &= \mathbb{Q}(\sqrt{1},\sqrt{2},\ldots,\sqrt{N}) = \mathbb{Q}(\sqrt{p}:p\leq N),\\ [\mathbb{Q}(P_1,\ldots,P_N):\mathbb{Q}] &= 2^{\pi(N)}. \end{aligned}$

The corollary does not look best possible:

in the same example, if *n* runs the square-free numbers among $1, \ldots, N$ then the fields $\mathbb{Q}(P_n) = \mathbb{Q}(\sqrt{n})$ are pairwise distinct and there are $\approx \zeta(2)^{-1}N$ square-free numbers $n \leq N$.

(日) (日) (日) (日) (日) (日) (日)



To improve on the corollary, replace primes by square-free numbers!

Working with Square-Free Numbers

For a separable polynomial $F(T) \in \mathbb{Z}[T]$ we denote:

- Δ_F the discriminant of F;
- \mathcal{P}_F the set of $p \nmid \Delta_F$ for which F(T) has a root mod p;
- \mathcal{M}_F the set of square-free integers composed of primes from \mathcal{P}_F ;
- ▶ assume *m* square-free; we say $m \parallel n$ if $m \mid n$ and gcd(m, n/m) = 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Working with Square-Free Numbers

For a separable polynomial $F(T) \in \mathbb{Z}[T]$ we denote:

- Δ_F the discriminant of *F*;
- \mathcal{P}_F the set of $p \nmid \Delta_F$ for which F(T) has a root mod p;
- \mathcal{M}_F the set of square-free integers composed of primes from \mathcal{P}_F ;
- ▶ assume *m* square-free; we say $m \parallel n$ if $m \mid n$ and gcd(m, n/m) = 1.

Counting:

$$|\mathcal{M}_F \cap [0, x]| \sim \gamma \frac{x}{(\log x)^{1-\delta}}, \quad \delta = \delta_F, \quad \gamma > 0.$$

Working with Square-Free Numbers

For a separable polynomial $F(T) \in \mathbb{Z}[T]$ we denote:

- Δ_F the discriminant of *F*;
- \mathcal{P}_F the set of $p \nmid \Delta_F$ for which F(T) has a root mod p;
- \mathcal{M}_F the set of square-free integers composed of primes from \mathcal{P}_F ;
- ▶ assume *m* square-free; we say $m \parallel n$ if $m \mid n$ and gcd(m, n/m) = 1.

Counting:

$$|\mathcal{M}_F \cap [0, x]| \sim \gamma \frac{x}{(\log x)^{1-\delta}}, \quad \delta = \delta_F, \quad \gamma > 0.$$

Need "square-free analogues" of the following of primes:

- (D) For $p \in \mathcal{P}_F$ there is $n \leq 2p$ such that $p \parallel F(n)$.
- (E) When *n* is large, F(n) has at most *D* prime divisors $p \ge n/4$.

Analogue of (D)

(D') Assume that every prime divisor of $m \in M_F$ satisfies $p > \omega(m)$. Then there is $n \le (\omega(m) + 1)m$ such that $m \parallel F(n)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof

- There is $n_0 \leq m$ such that $m \mid F(n_0)$.
- Then $m \mid F(n_0 + km), k = 0, 1, 2...$
- Assume $m \not\parallel F(n_0 + km)$ for $k = 0, 1, \dots, \omega(m)$.

Analogue of (D)

(D') Assume that every prime divisor of $m \in M_F$ satisfies $p > \omega(m)$. Then there is $n \le (\omega(m) + 1)m$ such that $m \parallel F(n)$.

Proof

- There is $n_0 \leq m$ such that $m \mid F(n_0)$.
- Then $m \mid F(n_0 + km), k = 0, 1, 2...$
- Assume $m \not\parallel F(n_0 + km)$ for $k = 0, 1, \dots, \omega(m)$.
- Box principle: there is p | m such that

$$p^2 | F(n_0 + km), p^2 | F(n_0 + \ell m)$$

A D F A 同 F A E F A E F A Q A

and $0 \leq k < \ell \leq \omega(m)$.

▶ Then $p \mid (\ell - k)\Delta_F$, contradiction because $p \nmid \Delta_F$ and $\ell - k \leq \omega(m)$

Primitives

Call $m \in \mathcal{M}_F$ primitive for *n* if

- every $p \mid m$ ramifies in $\mathbb{Q}(t^{-1}(n))$;
- ▶ for every $p \mid m$ there is n' < n such that p does not ramify in $\mathbb{Q}(t^{-1}(n'))$;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Property (D') from the previous slide implies:

(F) every $m \in \mathcal{M}_F$ with $p_{\min}(m) > \omega(m)$ serves as primitive for some $n = n_m \le m(\omega(m) + 1)$.

Primitives

Call $m \in \mathcal{M}_F$ primitive for *n* if

- every $p \mid m$ ramifies in $\mathbb{Q}(t^{-1}(n))$;
- ▶ for every $p \mid m$ there is n' < n such that p does not ramify in $\mathbb{Q}(t^{-1}(n'))$;

(ロ) (同) (三) (三) (三) (○) (○)

Property (D') from the previous slide implies:

(F') every $m \in M_F$ with $p_{\min}(m) > \omega(m)$ serves as primitive for some $n = n_m \le m(\omega(m) + 1)$.

What we do not have:

(G') a bound $|\{n_m\}|$ for a given *m*.

And this is because we do not have

(E') a bound for $|\{m \in M_F : m \mid F(n)\}|$ for a given *n*.

And this is because distinct *m* are not coprime!

A Special Set of Square-Free Numbers

Fix $\varepsilon > 0$ and define for large *x* (*x* will replace *N* in the sequel):

$$\begin{split} \kappa &= \log \log x, \qquad k = \lfloor \varepsilon \delta \log \log x \rfloor + 1, \\ \mathcal{M}_{F}(x) &= \begin{cases} \omega(m) = k + 1, \\ m \in \mathcal{M}_{F} : & p_{\min}(m) \ge e^{(\log x)^{1-\varepsilon}}, \\ p_{\max}(m) \ge x^{9/10} \end{cases} \right\} \cap \left[\frac{x}{2\kappa}, \frac{x}{\kappa} \right]. \end{split}$$

Counting:

$$\mathcal{M}_F(x) = \frac{x}{(\log x)^{1-\varepsilon\delta+o(1)}} \quad (x \to \infty)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A Special Set of Square-Free Numbers

Fix $\varepsilon > 0$ and define for large *x* (*x* will replace *N* in the sequel):

$$\begin{split} \kappa &= \log \log x, \qquad k = \lfloor \varepsilon \delta \log \log x \rfloor + 1, \\ \omega(m) &= k + 1, \\ \mathcal{M}_F(x) &= \begin{cases} m \in \mathcal{M}_F : & p_{\min}(m) \ge e^{(\log x)^{1-\varepsilon}}, \\ p_{\max}(m) \ge x^{9/10} \end{cases} \right\} \cap \left[\frac{x}{2\kappa}, \frac{x}{\kappa} \right]. \end{split}$$

Counting:

$$\mathcal{M}_F(x) = \frac{x}{(\log x)^{1-\varepsilon\delta+o(1)}} \quad (x \to \infty)$$

Distinct $m \in \mathcal{M}_F(x)$ are "almost" co-prime: gcd(m, m') "much smaller" than $\min\{m, m'\}$.

Using this, one proves:

(E') for "most" $n \le x$

$$|\{m \in \mathcal{M}_F(x) : m \mid F(n)\}| \leq 6D;$$

(G') A consequence: with suitably defined ε , for "most" $m \in \mathcal{M}_F(x)$ we have

 $|\{n_m\}|\leq 6D.$

Using the Primitives

For large x set

$$\mathcal{N}_{F}(x) = \{n_{m} : m \in \mathcal{M}_{F}(x)\},\$$

$$\mathcal{N}_{F}'(x) = \{n \in \mathcal{N}_{F}(x) : t^{-1}(n) \text{ is irreducble}\}.$$

Then

$$\left|\mathcal{N}_{F}(x)\right| \geq \frac{1}{12D} \left|\mathcal{M}_{F}(x)\right| \geq \frac{x}{(\log x)^{1-\varepsilon\delta+o(1)}}$$

Like before:

$$\begin{aligned} \left\{ \mathbb{Q}(P_n) : n \leq x \right\} &|\geq \left| \mathcal{N}'_F(x) \right| \\ &\geq \left| \mathcal{N}_F(x) \right| - O(N^{1/2}) \\ &\geq \frac{x}{(\log x)^{1-\varepsilon\delta + o(1)}} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

as wanted.

Proving (E') and (G')

How one proves (E') and (G')?

(E') for "most" $n \le x$

 $|\{m \in \mathcal{M}_F(x) : m \mid F(n)\}| \leq 6D;$

(G') with suitably defined ε , for "most" $m \in \mathcal{M}_F(x)$ we have

 $|\{n_m\}|\leq 6D.$

Proving (E') and (G')

How one proves (E') and (G')?

(E') for "most" $n \le x$

 $|\{m \in \mathcal{M}_F(x) : m \mid F(n)\}| \leq 6D;$

(G') with suitably defined ε , for "most" $m \in \mathcal{M}_F(x)$ we have

 $|\{n_m\}| \leq 6D.$

This guy will tell you!

