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Beatty primes

For fixed α, β ∈ R the non-homogeneous Beatty sequence is
defined by

Bα,β = {bαn + βc : n > 1}
Bα,β is often called a generalized arithmetic progression

Many results for primes in progressions have analogues in the
set of Beatty primes

Pα,β = {primes} ∩ Bα,β

For example, when α > 1 is irrational, the prime counting
function

πα,β(x) = #
{

p 6 x : p ∈ Pα,β
}

satisfies the expected asymptotic formula

πα,β(x) ∼ α−1π(x) (x →∞)
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Beatty primes

Exponential sums with Beatty primes...

Theorem (B.–Shparlinski)

Let γ be irrational of type τ <∞. For any ε ∈ (0, 1
8τ ) there is a

number η > 0 such that∣∣∣∣ ∑
n6x

n≡a mod q

Λ(n) e(γkn)

∣∣∣∣ 6 x1−η

holds for all k 6 xε and 0 6 a < q 6 xε/4 with gcd(a,q) = 1
provided that x is large
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Beatty primes

Distribution of Beatty primes in arithmetic progressions...

Theorem (B.–Shparlinski)
Let α, β ∈ R with α positive, irrational, and of finite type. There
is a constant κ > 0 such that for all integers 0 6 a < q 6 xκ

with gcd(a,q) = 1, the bound∑
n6x

bαn+βc≡a mod q

Λ(bαn + βc) = α−1
∑

m6bαx+βc
m≡a mod q

Λ(m) + O
(
x1−κ)

holds, where the implied constant depends only on α and β
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Beatty primes

Towards the k -tuple conjecture on average...

Theorem (Hao–Pan)
Fix β ∈ R. For almost all irrational α > 0 (in the sense of
Lebesgue measure) one has

lim sup
x→∞

π2
α,β(x)

(x/ log2 x)
> 1

where

π2
α,β(x) = #

{
p 6 x : both p and bαp + βc are prime

}
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Beatty primes

Analogue of the Vinogradov three-prime theorem...

Theorem (B.–Güloğlu–Nevans)
Let α, β ∈ R with α > 1, and suppose that α is irrational and of
finite type. Then,

(i) Almost all even numbers can be expressed as the sum of
two primes from Pα,β if and only if α < 2.

(ii) For every integer k > 3, any sufficiently large number with
the same parity as k can be expressed as a sum of k
primes from Pα,β if and only if α < k.
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Beatty primes

Zeta function attached to a Beatty sequence...

Theorem (B.)
Let α, β ∈ R with α > 1. For each n > 1 let pn denote the n-th
smallest prime. Let P?α,β = {prime pn : n ∈ Bα,β}. The function

ζα,β(s) =
∏

p∈P?α,β

(1− p−s)−α (σ > 1)

extends to a meromorphic function in the region {σ > 0}. There
is a function fα,β(s), analytic in {σ > 0}, such that

ζα,β(s) = ζ(s) exp(fα,β(s)) (σ > 0).

In particular, the Riemann hypothesis is true if and only if
ζα,β(s) 6= 0 in {σ > 1

2}
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Piatetski-Shapiro sequences

Piatetski-Shapiro sequences are sequences of the form(⌊
nc⌋)

n∈N (c > 1, c 6∈ N).

They are named in honor of Piatetski-Shapiro, who proved that
for any number c ∈ (1, 12

11) there are infinitely many primes of
the form bncc.

The admissible range for c in this result has been extended
many times over the years and is currently known for all
c ∈ (1, 243

205) thanks to the work of Rivat and Wu.
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Piatetski-Shapiro sequences

Despite being a rather thin subset of the natural numbers,
Piatetski-Shapiro sequences are amenable to study via
exponential sum techniques, e.g., van der Corput’s method

Squarefree numbers in the P-S sequence...

Theorem (Baker–B.–Brüdern–Shparlinski–Weingartner)

For any c ∈ (1, 149
87 ) we have

#
{

n 6 x :
⌊
nc⌋ is squarefree

}
=

6
π2 x + O(x1−ε)
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Piatetski-Shapiro sequences

On the largest prime factor of bncc...

Theorem (Baker–B.–Brüdern–Shparlinski–Weingartner)

For any number c ∈ (1, 24979
20803) we have

#
{

n 6 x : P(
⌊
nc⌋) 6 nε

}
� x1−ε

Theorem (Baker–B.–Brüdern–Shparlinski–Weingartner)

There is a positive function Θ(c) with the property that, for any
non-integer c > 1 and any real ε > 0, the inequality

P(
⌊
nc⌋) > nΘ(c)−ε

holds for infinitely many n
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Piatetski-Shapiro sequences

For prime N, Fermat’s little theorem asserts that

aN ≡ a (mod N) for all a ∈ Z.

Around 1910, Carmichael began the study of composite
numbers N with this property, which are now known as
Carmichael numbers

In 1994 the existence of infinitely many Carmichael numbers
was established by Alford, Granville and Pomerance
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Piatetski-Shapiro sequences

Carmichael numbers composed of P-S primes...

Theorem (Baker–B.–Brüdern–Shparlinski–Weingartner)

For every c ∈
(
1, 147

145

)
there are infinitely many Carmichael

numbers composed solely of primes in the Piatetski-Shapiro
sequence (bncc)n∈N
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Piatetski-Shapiro sequences

For any integer R > 1, let PR be the set of R-almost primes,
i.e., the set of natural numbers having at most R prime factors,
counted with multiplicity

Generating primes from almost primes...

Theorem (Baker–B.–Guo–Yeager)

For any fixed c ∈ (1, 77
76) we have

#
{

n 6 x : n ∈ P8 and
⌊
nc⌋ is prime

}
� x

(log x)2 ,

where the implied constant in the symbol� depends only on c
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Piatetski-Shapiro sequences

R cR R cR R cR

8 1.0521 12 1.1649 16 1.2073
9 1.1056 13 1.1780 17 1.2148

10 1.1308 14 1.1891 18 1.2214
11 1.1494 15 1.1988 19 1.2273

Generating almost primes from primes...

Theorem (B.–Guo–Shparlinski)

Let (R, cR), R = 8, . . . ,19, be a pair from the table above. For
any fixed c ∈ (1, cR] we have

#
{

prime p 6 x :
⌊
pc⌋ ∈ PR

}
� x

log2 x

where the implied constant in the symbol� depends only on c
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Piatetski-Shapiro sequences

Generating almost primes from primes (cont’d)...

Theorem (B.–Guo–Shparlinski)

For fixed c > 11
5 there is a positive integer

R 6

{
16c3 + 179c2 if c ∈ [11

5 ,3),

16c3 + 88c2 if c > 3,

we have

#
{

prime p 6 x :
⌊
pc⌋ ∈ PR

}
� x

log2 x

where the implied constant in the symbol� depends only on c
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Beatty meets Piatetski-Shapiro

Primes that are simultaneously Beatty and P-S...

Theorem (Guo)
Let α, β ∈ R with α > 1, and suppose that α is irrational and of
finite type. Let c ∈ (1, 14

13). There are infinitely many primes that
lie in both the Beatty sequence Bα,β and the Piatetski-Shapiro
sequence N (c) = (bncc

)
n∈N. Moreover, the counting function

π
(c)
α,β(x) = #

{
prime p 6 x : p ∈ Bα,β ∩N (c)

}
satisfies

π
(c)
α,β(x) =

x1/c

α log x
+ O

(
x1/c

log2 x

)
,

where the implied constant depends only on α and c
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Every hundredth prime

Let P denote the set of primes

Given δ ∈ (0,1], σ0 ∈ [0,1) and a real function ε(x) such that
lim

x→∞
ε(x) 6 0, let A(δ, σ0, ε) denote the class consisting of sets

of primes P ⊆ P for which one has an estimate of the form

πP(x) = δ π(x) + O
(
xσ0+ε(x)

)
,

where the implied constant may depend on P

Let B(δ, ε) denote the class consisting of sets of primes P ⊆ P
for which the stronger estimate

πP(x) = δ π(x) + O
(
(log log x)ε(x)

)
,

holds, where again the implied constant may depend on P

William Banks Primes, exponential sums, and L-functions



Every hundredth prime

Let P denote the set of primes

Given δ ∈ (0,1], σ0 ∈ [0,1) and a real function ε(x) such that
lim

x→∞
ε(x) 6 0, let A(δ, σ0, ε) denote the class consisting of sets

of primes P ⊆ P for which one has an estimate of the form

πP(x) = δ π(x) + O
(
xσ0+ε(x)

)
,

where the implied constant may depend on P

Let B(δ, ε) denote the class consisting of sets of primes P ⊆ P
for which the stronger estimate

πP(x) = δ π(x) + O
(
(log log x)ε(x)

)
,

holds, where again the implied constant may depend on P

William Banks Primes, exponential sums, and L-functions



Every hundredth prime

Let P denote the set of primes

Given δ ∈ (0,1], σ0 ∈ [0,1) and a real function ε(x) such that
lim

x→∞
ε(x) 6 0, let A(δ, σ0, ε) denote the class consisting of sets

of primes P ⊆ P for which one has an estimate of the form

πP(x) = δ π(x) + O
(
xσ0+ε(x)

)
,

where the implied constant may depend on P

Let B(δ, ε) denote the class consisting of sets of primes P ⊆ P
for which the stronger estimate

πP(x) = δ π(x) + O
(
(log log x)ε(x)

)
,

holds, where again the implied constant may depend on P
William Banks Primes, exponential sums, and L-functions



Every hundredth prime

More analogues of the zeta function...

Theorem (B.)

For any set P ∈ A(δ, σ0, ε), the function ζP(s) defined by

ζP(s) =
∏
p∈P

(1− p−s)−1/δ (σ > 1)

extends to a meromorphic function in the region {σ > σ0}, and
there is a function fP(s) which is analytic in {σ > σ0} and has
the property that

ζP(s) = ζ(s) exp(fP(s)) (σ > σ0)
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Every hundredth prime

Exact asymptotic bases...

Theorem (B.)

Every set P ∈ B(δ, ε) containing the prime 2 is an exact
asymptotic additive basis for N. In other words, there is an
integer h = h(P) > 0 such that the h-fold sumset

hP = P + · · ·+ P

contains all but finitely many natural numbers

From work of Sárközy it is known that any P ∈ B(δ, ε) is an
asymptotic additive basis for N, and stronger quantitative
versions are known. To prove that P is exact, we use Shiu’s
theorem on strings of primes in an arithmetic progression.
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Every hundredth prime

For example, an exact asymptotic additive basis for N is
provided by the set

{2,547,1229,1993,2749,3581,4421,5281 . . .},

which consists of 2 and every hundredth prime thereafter
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Least quadratic nonresidue

Legendre symbol

(n|p) :=


+1 if n ≡ m 2 mod p for some m 6≡ 0 mod p
−1 if n 6≡ m 2 mod p for all m ∈ Z
0 if p | n

Least quadratic nonresidue

n1(p) := min
{

n ∈ N : (n|p) = −1
}
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Least quadratic nonresidue

Least quadratic nonresidue

n1(p) := min
{

n ∈ N : (n|p) = −1
}

Unconditional bounds on n1(p)

Gauss (1801): n1(p) < 2
√

p + 1 if p ≡ 1 mod 8
Vinogradov (1918): n1(p)� pκ for any κ > 1/(2

√
e)

Burgess (1957): n1(p)� pκ for any κ > 1/(4
√

e)

Vinogradov’s Conjecture n1(p)� pε for any ε > 0.

Conditional bounds on n1(p)

Linnik (1944): On ERH, the Vinogradov conjecture is true
Ankeny (1952): On ERH, one has n1(p)� (log p)2
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Burgess bound and zeros of L-functions

Tightness of the Burgess bound leads to zeros of L-functions
close to one...

Theorem (Heath-Brown)

Suppose that n1(p) > p1/(4
√

e) for infinitely many primes p.
Then, for every root z of the function

H(z) :=
2
z

∫ 1

1/
√

e

(
1− e−zu) du

u
,

there is an infinite set of primes P and a sequence
(
sp

)
p∈P

such that
L(sp, (·|p)) = 0 for all p ∈ P
(sp − 1) log p → −4z as p →∞
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Generalization of Heath-Brown’s theorem

Fix κ, λ with 0 < κ < λ 6 1/4

For any odd prime p, put Np(X ) :=
{

n 6 X : (n|p) = −1
}

Assume there are infinitely many primes p such that

• n1(p) > pκ

•
∣∣Np(pθ)

∣∣ = (δ(θ) + o(1))pθ as p →∞
where δ(θ) is a function of the form

δ(θ) := 1
2

∫ θ

0
d(u) du

and d(u) is a probability distribution, supported on [κ, λ],
twice-differentiable on (κ, λ), with d(κ) d(λ) 6= 0.
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Generalization of Heath-Brown’s theorem

Under the preceding hypotheses, we have:

Theorem (B.–Makarov)
For every solution k to the equation

d̂(k) = 1,

there is an infinite set of primes P and a sequence
(
sp

)
p∈P

such that
L(sp, (·|p)) = 0 for all p ∈ P
(sp − 1) log p → −ik as p →∞

d̂ is the Fourier transform of d
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Density of residues

Confirming a conjecture of Heath-Brown, in 1996 Hall proved

Theorem (Hall)
There exists an absolute constant c > 0 such that for all N > 1
and all primes p, the interval [1,N] contains at least cN
quadratic residues mod p.

Theorem (Granville–Soundararajan)
One can take c = 0.1715 in the statement of Hall’s theorem if N
is large enough.

For any N > 1 one can find a prime p for which [1,N] is free of
nonresidues mod p.
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Density of nonresidues

Positive density of nonresidues in the Burgess range...

Theorem (B.–Garaev–Heath-Brown–Shparlinski)

Given ε > 0, there exists c(ε) > 0 with the following property.
For every sufficiently large prime p and every integer
N > p1/(4

√
e )+ε, the interval [1,N] contains at least c(ε)N

quadratic nonresidues mod p.

Prime nonresidues in the Burgess range...

Theorem (Pollack)

For each ε > 0 there are numbers q0 = q0(ε) and κ = κ(ε) > 0
such that the following holds. For all q > q0 and any nontrivial
character χ mod q, there are more than qκ prime
χ-nonresidues not exceeding q1/(4

√
e)+ε.
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Below the Burgess bound

Theorem (B.–Guo)
The bound

nk (p)� p(4
√

e)−1
exp

(√
e−1 log p log log p

)
holds for all odd primes p and all k > 1 such that

k � p(8
√

e)−1
exp

(
1
2

√
e−1 log p log log p − 1

2 log log p
)
,

where the implied constants are absolute

Our work relies on results of Granville and Soundararajan from

“The spectrum of multiplicative functions”
“Large character sums: Burgess’s theorem and zeros of
L-functions”
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Character sums with prime-power moduli

Following Postnikov, Gallagher, Iwaniec, Chang and others,
Igor and I have been studying character sums χ mod q, where
the modulus q is a large power of a fixed prime p

Our results should extend to moduli q for which the kernel
q′ =

∏
p|q p is small

Among other things, we obtain slightly stronger estimates for
short character sums, a wider zero-free region for L(s, χ), and
stronger bounds for

∣∣L(s, χ)
∣∣ when s is close to one
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Character sums with prime-power moduli

Theorem (B.–Shparlinski)
Let p be an odd prime and χ a primitive character mod q = pγ .
Then

L(1, χ)� (log q)2/3(log log q)1/3,

where the implied constant depends only on p.
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