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Fractional Schrödinger equation

Fractional Schrödinger equation

Consider the fractional nonlinear Schrödinger equation:

i∂tψ(x, t) =
1

2
(−∆)α/2ψ + V (x)ψ + γ|ψ|2ψ, x ∈ Rd, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where

ψ(x, t): Complex-valued wave function

(−∆)α/2: Fractional Laplacian

V (x): Real-valued external trapping potential

γ ∈ R: Strength of particle interactions
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Fractional Schrödinger equation

Fractional Laplacian

From a probabilistic point of view, it represents an infinitesimal generator of a symmetric
α-stable Lévy process.

It can be defined in two different forms:

1 Pseudo-differential representation:

(−∆)α/2u(x) := F−1 [|ξ|αF(u)] , α > 0.

where F represents Fourier transform, and F−1 is its inverse.

Note:

This definition is usually used for problems defined on the entire domain Rd or a
bounded domain Ω with periodic boundary conditions.

If α = 2, −(−∆)α/2 reduces to the Laplace operator ∆ = ∂xx + ∂yy + ∂zz .
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Fractional Schrödinger equation

Fractional Laplacian

From a probabilistic point of view, it represents an infinitesimal generator of a symmetric
α-stable Lévy process.

It can be defined in two different forms:

1 Hypersingular integral representation:

(−∆)α/2u(x) = Cd,α P.V.

∫
Rd

u(x)− u(y)

|x− y|d+α dy, 0 < α < 2,

where P.V. stands for principal value, and Cd,α is a normalization constant:

Cd,α =
22ααΓ(α+ d/2)

πd/2Γ(1− α)
.
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Fractional Schrödinger equation

Fractional Laplacian

Remarks.

1 In the literature, the fractional Laplacian is sometimes referred to as

(−∆)α/2s u(x) =
∑
k∈Nd

ck λ
α/2
k ϕk(x), α > 0,

where (λk, ϕk) satisfies the eigenvalue problem:

−∆ϕk(x) = λk ϕk(x), x ∈ Ω,
ϕk(x) = 0, x ∈ ∂Ω.

with the normalization condition ‖ϕk(x)‖L2(Ω) = 1.

It ((−∆)
α/2
s ) is called the fractional power of the Laplacian operator, or the spectral

fractional Laplacian.

2 In this talk, we will consider the fractional Laplacian in the hypersingular integral form.
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Fractional Schrödinger equation

Fractional Schrödinger equation

Conservation properties:

L2 norm, or the total mass:

N(ψ) :=

∫
Rd
|ψ(x, t)|2dx =

∫
Rd
|ψ0(x, t)|2dx

= N(ψ0), t ≥ 0.

Hamiltonian, or the total energy:

E(ψ) :=

∫
Rd

[
1

2

∣∣∇α/2ψ∣∣2 + V (x)|ψ|2 +
γ

2
|ψ|4

]
dx

= E(ψ0), t ≥ 0,

where the fractional operator∇s = −(−∆)s/2.
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Fractional Schrödinger equation

Fractional Schrödinger equation

Fractional quantum mechanics:

The (fractional) Schrödinger equation was proposed as a fundamental model of
(fractional) quantum mechanics.

Fractional quantum mechanics and Lévy path integrals, N. Laskin, Phys. Lett. A,
268 (2000) 298–305.
Fractals and quantum mechanics, N. Laskin, Chaos, 10 (2000) 780–790.

Experiment attempts and applications:

Potential condensed-matter realization of space-fractional quantum mechanics: The
one-dimensional Lévy crystal, B. A. Stickler, Phys. Rev. E, 88 (2013) 012120.
Fractional Schrödinger equation in optics, S. Longhi, Optics Lett., 40 (2015)
1117–1120.
Fractional quantum mechanics in polariton condensates with velocity dependent
mass, F. Pinsker, W. Bao, Y. Zhang, H. Ohadi, A. Dreismann, J. Baumberg, Phys.
Rev. B, 92 (2015) 195310.
· · · · · ·
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Motivation and Challenges

Motivation and challenges

Motivation:

1 Understand how the fractional Laplacian affects the solutions of the Schrödinger equation.

Main challenges:

1 The fractional Laplacian is a nonlocal operator,

(−∆)α/2u(x) = Cd,α P.V.

∫
Rd

u(x)− u(y)

|x− y|d+α dy.

2 Accurate numerical scheme for discretizing the fractional Laplacian is still scant.
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Motivation and Challenges

Example: Schrödinger equation in a box potential

Let’s consider the 1D linear Schrödinger equation:

i∂tψ(x, t) = −∆ψ + V (x)ψ, x ∈ R, t > 0,

with a box potential (or infinite well potential), i.e.,

V (x) =

{
0, if |x| < L,
∞, otherwise,

x ∈ R.

This is one important model to understand the quantum effects.

Yanzhi ZHANG (Missouri S&T) 11 / 44



Motivation and Challenges

Example: Schrödinger equation in a box potential

Its stationary states can be found by solving

µφ(x) = −∆φ+ V (x)φ, x ∈ R

with the normalization

‖φ‖2 =

∫
R
|φ(x)|2dx = 1.

Due to the constraint of box potential, φ(x) ≡ 0 for x located outside of box.

The eigenvalue problem reduces to

µφ(x) = −∆φ, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,

‖φ(·)‖2 = 1.
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Motivation and Challenges

Example: Schrödinger equation in a box potential

That is, stationary states of Schrödinger equation in a box potential are equivalent to the
eigenfunctions of the Dirichlet Laplacian on Ω.

The s-th eigenfunction has the form:

φs(x) =

√
1

L
sin
[sπ

2

(
1 +

x

L

)]
, x ∈ Ω, s ∈ N,

and the corresponding eigenvalue is

µs =
( sπ

2L

)2

, s ∈ N.
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Motivation and Challenges

Example: Schrödinger equation in a box potential

Now, let’s focus on 1D fractional linear Schrödinger equation:

i∂tψ = (−∆)α/2ψ + V (x)ψ, x ∈ R, t > 0.

Current literature: No analytical results are reported, except the estimates on the eigenvalues.
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Research questions:

What are the eigenvalues and eigenfunctions of the fractional
Schrödinger equation in a box potential?

Are they the same as those of the standard Schrödingier equation?



Motivation and Challenges

Example: Schrödinger equation in a box potential

Recall: Eigenvalue problem

µφ(x) = (−∆)α/2φ+ V (x)φ, x ∈ R

with the normalization

‖φ‖2 =

∫
R
|φ(x)|2dx = 1.

Due to the constraint of box potential, φ(x) ≡ 0 for x located outside of box.

The eigenvalue problem reduces to

µφ(x) = (−∆)α/2φ, x ∈ Ω,

φ(x) = 0, x ∈ Ωc = R\Ω, x ∈ ∂Ω

‖φ(·)‖2 = 1.
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Spatial Discretization

Numerical methods

Goal: Discretize the fractional Laplacian

(−∆)α/2u(x) = C1,α

∫
R

u(x)− u(y)

|x− y|1+α
dy, x ∈ (−L,L)

with the condition

u(x) = 0, x ∈ R\(−L,L)

Numerical methods:

1 Finite element method (Duo & Zhang, 2016)

2 Finite difference method (Duo & Zhang, 2015; Duo, van Wyk & Zhang, 2016)

3 Interpolation method (Huang & Oberman, 2014)
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Spatial Discretization

Finite difference method

Let’s first rewrite the operator

(−∆)α/2u(x) = −C1,αL∞0 u(x)

= −C1,α

∫ ∞
0

u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
dξ.

Choose a constant A = 2L, i.e., the length of the domain.

L∞0 u(x) =

∫ A

0

u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
dξ

+

∫ ∞
A

u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
dξ

= LA0 u(x) + L∞A u(x).
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Spatial Discretization

Finite difference method

Computation of

L∞A u(x) =

∫ ∞
A

u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
dξ.

Note:
A = 2L;

u(x) = 0, for x /∈ (−L,L).

Hence, for any |x| < L and ξ ≥ A, there is

|x± ξ| > L⇐⇒ u(x± ξ) = 0.

We can exactly compute

L∞A u(x) =

∫ ∞
A

u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
dξ

=

∫ ∞
A

−2u(x)

ξ1+α
dξ = − 1

αAα
u(x).
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Spatial Discretization

Finite difference method

Discretization of

LA0 u(x) =

∫ A

0

u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
dξ

Let’s rewrite the integrand

LA0 u(x) =

∫ A

0

u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
2︸ ︷︷ ︸ ·

1

ξ
α
2
dξ.

Φα(x, ξ)

=

∫ A

0

Φα(x, ξ) ξ−α/2dξ.

Remark: As α→ 2, we have

Φα(x, ξ)→ u(x− ξ)− 2u(x) + u(x+ ξ)

ξ2
.
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Spatial Discretization

Finite difference method

We discretize it by the weighted trapezoidal method, i.e.,

LA0 u(x) =

∫ A

0

Φα(x, ξ) ξ−α/2dξ

≈
M∑
l=1

Φα(x, ξl−1) + Φα(x, ξl)

2

∫ ξl

ξl−1

ξ−α/2dξ

=
1

2− α

M∑
l=1

(
ξ

1−α/2
l − ξ1−α/2

l−1

)[
Φα(x, ξl−1) + Φα(x, ξl)

]
.

Recall

Φα(x, ξ) =
u(x− ξ)− 2u(x) + u(x+ ξ)

ξ1+α
2

.

Combining LA0 and L∞A gives the finite difference scheme of the fractional Laplacian.
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Spatial Discretization

Accuracy of spatial discretization

Example 1. Consider a function

u(x) =

{
−(1− x2)3+α

2 , for x ∈ (−1, 1),
0, otherwise,

x ∈ R.

The fractional Laplacian of u(x) can be found exactly as

(−∆)α/2u(x) =
2αΓ(α+1

2
)Γ(4 + α

2
)

−
√
πΓ(4)

· 2F1

(
α+ 1

2
,−3;

1

2
;x2

)
,

where 2F1 denotes the Gauss’ hypergeometric function.
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Spatial Discretization

Accuracy of spatial discretization

α h = 1
64

h = 1/128 h = 1
256

h = 1
512

h = 1
1024

h = 1
2048

0.2
1.2640E-5 3.1594E-6 7.8983E-7 1.9746E-7 4.9364E-8 1.2341E-8

2.0002 2.0000 2.0000 2.0000 2.0000

0.6
5.1754E-5 1.2920E-5 3.2286E-6 8.0708E-7 2.0177E-7 5.0443E-8

– 2.0021 2.0006 2.0001 2.0000 2.0000

1
1.3586E-4 3.3626E-5 8.3618E-6 2.0846E-6 5.2039E-7 1.3000E-7

– 2.0145 2.0077 2.0040 2.0021 2.0011

1.5
4.9828E-4 1.1834E-4 2.8339E-5 6.8470E-6 1.6677E-6 0.4.0870E-7

– 2.0740 2.0621 2.0492 2.0376 2.0288

1.99
3.3929E-3 8.5911E-4 2.1570E-4 5.3920E-5 1.3448E-5 3.3517E-6

– 1.9816 1.9938 2.0001 2.0034 2.0045

Observation: It has the second-order convergence rate for α ∈ (0, 2).

Error analysis (Duo, van Wyk & Zhang, 2016)
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Spatial Discretization

Comparison between methods

Example 2. Consider the function u(x) = e−x
2

. At x = 0, we can obtain

(−∆)α/2u(0) = (−∆)α/2u(x) |x=0=
2α√
π

Γ
(1 + α

2

)
.

We compare finite difference method (‘◦’) with interpolation method (‘�’) as follows:

10
−3

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

h

E
rr

o
r

 

 

α = 0.8

α = 1.5

α = 1.99

Order line 2

Furthermore, the implementation of the finite difference method is straightforward.
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Stationary states

Literature review: Eigenvalues and eigenfunctions

Eigenvalues: Lower and upper bounds 1

The lower and upper bounds of the eigenvalue µs are given by

1

2

( sπ
2L

)α
≤ µs ≤

( sπ
2L

)α
, α ∈ (0, 2],

for any s ∈ N, where α = 2 corresponds to the standard Laplacian.

Recently, a better estimate is found for s = 1,

(α+ 1)(α+ 2)(6− α)

(12 + 14α)
p(α) ≤ µ1 ≤

B( 1
2
, 1 + α

2
)

B( 1
2
, 1 + α)

p(α), α ∈ (0, 2),

where B(a, b) defines the Beta function of a and b

with p(α) =
2α Γ(1 + α

2
) Γ( 1+α

2
)

Γ( 1
2
)

.

1Z. -Q. Chen and R. Song, J. Funct. Anal., 226 (2005) 90–113.
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Stationary states

Literature review: Eigenvalues and eigenfunctions

Eigenvalues: Asymptotic approximations2

The asymptotic approximation of µs in an interval (−1, 1) is given by:

µs =

[
sπ

2
− (2− 2α)π

8

]2α

+O

(
2− 2α

s
√

2α

)
, α ∈ (0, 1],

where

s ≥ (C/2α)
3
4α with C a positive constant.

Eigenfunctions:

Conjecture3: Eigenfunctions cannot be written in terms of elementary functions.

2M. Kwaśnicki, J. Funct. Anal., 262 (2012) 2379–2402.
3Y. Luchko, J. Math. Phys., 54 (2013) 012111.
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Stationary states

First eigenvalues

α Lower bounds Asymptotical Our results Upper bounds
results

0.01 0.9960 0.9976 0.996636 0.9974
0.1 0.9676 0.9809 0.97261 0.9786
0.2 0.9499 0.9712 0.9575 0.9675
0.3 0.9442 0.9699 0.9528 0.9655
0.5 0.9620 0.9908 0.9702 0.9862
0.6 0.9839 1.0126 0.9913 1.0084
0.8 1.0521 1.0789 1.0576 1.0763
1.0 1.1538 1.1781 1.1578 3π/8
1.1 1.2183 1.2415 1.2222 1.2432
1.3 1.3781 1.4007 1.3837 1.4064
1.5 1.5861 1.6114 1.5976 1.6223
1.8 2.0140 2.0555 2.0488 2.0777
1.9 2.1952 2.2477 2.2441 2.2747
1.95 2.3784 2.4441 2.4437 2.4563

Note: As α→ 2, it converges to π2/4 = 2.4674, the first eigenvalue of −∆.
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Stationary states

First eigenfunctions

−1 −0.5 0 0.5 1
0

0.1
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0.8

0.9

1
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x

φ g
(x

)

α

Figure: The first eigenfunction (ground state) solutions for α = 0.2, 0.7, 1.1, 1.5, and 1.9,
where the arrow indicates the change of φg(x) for progressively increasing α.
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Stationary states

Second eigenvalues

α Lower bounds Asymptotical Our results Upper bounds
results

0.01 0.5058 1.0086 1.008719 1.0115
0.1 0.5606 1.0913 1.09221 1.1213
0.2 0.6286 1.1948 1.1966 1.2573
0.3 0.7049 1.3122 1.3148 1.4098
0.5 0.8862 1.5977 1.6016 1.7725
0.6 0.9937 1.7708 1.7753 1.9874
0.8 1.2494 2.1941 2.1995 2.4987
1.0 π/2 2.7489 2.7549 π
1.1 1.7613 3.0892 3.0954 3.5226
1.3 2.2144 3.9319 3.9380 4.4289
1.5 2.7842 5.0545 5.0600 5.5683
1.8 3.9250 7.5003 7.5033 7.8500
1.9 4.4010 8.5942 8.5959 8.8021
1.95 4.8786 9.7330 9.7332 9.7573

Note: As α→ 2, it converges to π2 = 9.8698, the second eigenvalue of −∆.
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Stationary states

Second eigenfunctions
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Figure: The second eigenfunction (the first excited state) solutions forα = 0.2, 0.7, 1.1, 1.5,
and 1.9, where the arrow indicates the change of φ1(x) for progressively increasing α.
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Stationary states

Extensions

1 Stationary states of fractional NLS: Imaginary time method (Duo & Zhang, 2015)

2 Stationary states in other potentials (Kirkpatrick & Zhang, 2016)
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Ground states of fractional Schrödinger equation with a harmonic potential. (Legend of the plots corresponding to (−∆)α).
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Dynamics

Fractional Schrödinger equation

Consider the 1D fractional Schrödinger equation with harmonic potential

i∂tψ(x, t) =
1

2
(−∆)α/2ψ +

x2

2
ψ + γ|ψ|2ψ, x ∈ R.

Numerical methods for temporal discretization:

Splitting step method

Crank-Nicolson method

Besse Relaxation method
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Dynamics

Equations of motion

Center of mass:

〈X〉 := 〈ψ,Xψ〉 =

∫
Rd

x|ψ(x, t)|2dx.

Expected fractional momentum:

〈Pα〉 := 〈ψ, Pαψ〉 = −iα
2

∫
Rd
ψ∗∇α−1ψ dx.

where we define the fractional momentum operator

Pα := −iα
2
∇α−1 =

α

2
|P 2|α/2−1P,

with P = −i∇ the standard momentum operator.
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Dynamics

Equations of motion (Standard NLS)
Remark

Theorem: For a solution ψ = ψ(x, t) of the standard NLS with harmonic potential, we have
the following equations of motion for t > 0:

d

dt
〈X〉 = 〈P 〉,

d

dt
〈P 〉 = −Λ〈X〉,

where the matrix Λ in the case d = 1 is Λ = γ2
x, and

Λ =

(
γ2
x 0
0 γ2

y

)
if d = 2, Λ =

 γ2
x 0 0
0 γ2

y 0
0 0 γ2

z

 if d = 3.

Remarks:

It is a closed system with periodic solution.

Its dynamics is independent the initial condition and the nonlinearity.
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Dynamics

Equations of motion (Fractional NLS)

Theorem

Theorem: For a solution ψ = ψ(x, t) of the fractional NLS with harmonic potential, we have
the following equations of motion for t > 0:

d

dt
〈X〉 = Pα,

d

dt
〈Pα〉 = Wα,

where the quantity Wα is the expectation of an operator and can be defined by:

Wα :=
α

2
(α− 1)(−∇V )|P 2|α/2−1 − α

2

(α
2
− 1
)
(α− 1)

(
∇2V )∇α−3

−α
2
γ
∑
j≥1

(
α− 1

j

)
ψ,
(
∇α−1−jψ

)(
∇j(|ψ|2)

)

Yanzhi ZHANG (Missouri S&T) 37 / 44



Dynamics

Comparison 1: Equations of motion

Top: Standard case; Bottom: Fractional case; Left: Linear; Right: Nonlinear.
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Dynamics

Comparison 1: Equations of motion

Linear Schrödinger equation. Top: Standard case; Bottom: Fractional case.
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Dynamics

Comparison 2: Solution dynamics

Initial condition: Shift the center of the ground state from x = 0 to x = 〈X〉(0).
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Ground states of fractional Schrödinger equation with a harmonic potential. (Legend of the plots corresponding to (−∆)α)

Yanzhi ZHANG (Missouri S&T) 40 / 44



Dynamics

Comparison 2: Solution dynamics

Linear Schrödinger equation. Top: Standard case; Bottom: Fractional case. From left to right: 〈X〉(0) = 1, 2, 5.
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Dynamics

Comparison 2: Solution dynamics
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Linear Schrödinger equation. Left: Standard case; Right: Fractional case.
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Dynamics

Summary

Motivation:

Understand nonlocal effects of (−∆)α/2 on the solutions of the Schrödinger equation

Challenges:

Accurate numerical methods for discretizing the hypersingular integral

Numerical methods:

Weighted trapezoidal method, FEM, ...

Solution properties of fractional Schrödinger equation

Stationary states in box or harmonic potential

Equation of motions, solution dynamics
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Dynamics

Merci!

Yanzhi ZHANG (Missouri S&T) 44 / 44


	Fractional Schrödinger equation
	Motivation and Challenges
	Spatial Discretization
	Stationary states
	Dynamics

