# FRACTIONAL SCHRÖDINGER EQUATION: STATIONARY STATES AND DYNAMICS

#### Yanzhi Zhang

# Department of Mathematics and Statistics Missouri University of Science and Technology

Collaborators: S. Duo (Missouri S& T), K. Kirkpatrick (University of Illinois at Urbana-Champaign) and H.-W. van Wyk (Auburn University)

This research is supported by NSF-DMS 1217000.

New Challenges in Mathematical Modelling and Numerical Simulation of Superfluids CIRM, Marseille, June 27 – July 1, 2016

### Outline

- The fractional Schrödinger equation
- Output in the second second
- Spatial discretization
- Stationary states
- Oynamics
- Summary

# Fractional Schrödinger equation

Consider the fractional nonlinear Schrödinger equation:

$$i\partial_t \psi(\mathbf{x}, t) = \frac{1}{2} (-\Delta)^{\alpha/2} \psi + V(\mathbf{x})\psi + \gamma |\psi|^2 \psi, \quad \mathbf{x} \in \mathbb{R}^d, \quad t > 0,$$
  
$$\psi(\mathbf{x}, 0) = \psi_0(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d,$$

where

- $\psi(\mathbf{x},t)$ : Complex-valued wave function
- $(-\Delta)^{\alpha/2}$ : Fractional Laplacian
- $V(\mathbf{x})$ : Real-valued external trapping potential
- $\gamma \in \mathbb{R}$ : Strength of particle interactions

# Fractional Laplacian

From a probabilistic point of view, it represents an infinitesimal generator of a symmetric  $\alpha$ -stable Lévy process.

It can be defined in two different forms:

O Pseudo-differential representation:

$$(-\Delta)^{\alpha/2}u(\mathbf{x}) := \mathcal{F}^{-1}\left[|\xi|^{\alpha}\mathcal{F}(u)\right], \qquad \alpha > 0.$$

where  $\mathcal{F}$  represents Fourier transform, and  $\mathcal{F}^{-1}$  is its inverse.

#### Note:

- This definition is usually used for problems defined on the entire domain R<sup>d</sup> or a bounded domain Ω with periodic boundary conditions.
- If  $\alpha = 2$ ,  $-(-\Delta)^{\alpha/2}$  reduces to the Laplace operator  $\Delta = \partial_{xx} + \partial_{yy} + \partial_{zz}$ .

# Fractional Laplacian

From a probabilistic point of view, it represents an infinitesimal generator of a symmetric  $\alpha$ -stable Lévy process.

It can be defined in two different forms:

• Hypersingular integral representation:

$$(-\Delta)^{\alpha/2} u(\mathbf{x}) = C_{d,\alpha} \text{ P.V.} \int_{\mathbb{R}^d} \frac{u(\mathbf{x}) - u(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+\alpha}} \, d\mathbf{y}, \qquad 0 < \alpha < 2,$$

where P.V. stands for principal value, and  $C_{d,\alpha}$  is a normalization constant:

$$C_{d,\alpha} = \frac{2^{2\alpha} \alpha \Gamma(\alpha + d/2)}{\pi^{d/2} \Gamma(1 - \alpha)}.$$

# Fractional Laplacian

#### Remarks.

In the literature, the fractional Laplacian is sometimes referred to as

$$(-\Delta)_s^{\alpha/2} u(\mathbf{x}) = \sum_{k \in \mathbb{N}^d} c_k \, \lambda_k^{\alpha/2} \varphi_k(\mathbf{x}), \qquad \alpha > 0,$$

where  $(\lambda_k, \varphi_k)$  satisfies the eigenvalue problem:

$$-\Delta \varphi_k(\mathbf{x}) = \lambda_k \, \varphi_k(\mathbf{x}), \qquad \mathbf{x} \in \Omega, \\ \varphi_k(\mathbf{x}) = 0, \qquad \mathbf{x} \in \partial \Omega.$$

with the normalization condition  $\|\varphi_k(\mathbf{x})\|_{L^2(\Omega)} = 1$ .

It  $((-\Delta)_s^{\alpha/2})$  is called the fractional power of the Laplacian operator, or the spectral fractional Laplacian.

In this talk, we will consider the fractional Laplacian in the hypersingular integral form.

# Fractional Schrödinger equation

Conservation properties:

• L<sub>2</sub> norm, or the total mass:

$$N(\psi) := \int_{\mathbb{R}^d} |\psi(\mathbf{x}, t)|^2 d\mathbf{x} = \int_{\mathbb{R}^d} |\psi_0(\mathbf{x}, t)|^2 d\mathbf{x}$$
$$= N(\psi_0), \quad t \ge 0.$$

• Hamiltonian, or the total energy:

$$E(\psi) := \int_{\mathbb{R}^d} \left[ \frac{1}{2} \left| \nabla^{\alpha/2} \psi \right|^2 + V(\mathbf{x}) |\psi|^2 + \frac{\gamma}{2} |\psi|^4 \right] d\mathbf{x}$$
  
=  $E(\psi_0), \quad t \ge 0,$ 

where the fractional operator  $\nabla^s = -(-\Delta)^{s/2}$ .

# Fractional Schrödinger equation

#### • Fractional quantum mechanics:

The (fractional) Schrödinger equation was proposed as a fundamental model of (fractional) quantum mechanics.

- Fractional quantum mechanics and Lévy path integrals, N. Laskin, Phys. Lett. A, **268** (2000) 298–305.
- Fractals and quantum mechanics, N. Laskin, Chaos, 10 (2000) 780–790.
- Experiment attempts and applications:
  - Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal, B. A. Stickler, Phys. Rev. E, 88 (2013) 012120.
  - Fractional Schrödinger equation in optics, S. Longhi, Optics Lett., **40** (2015) 1117–1120.
  - Fractional quantum mechanics in polariton condensates with velocity dependent mass, F. Pinsker, W. Bao, Y. Zhang, H. Ohadi, A. Dreismann, J. Baumberg, Phys. Rev. B, 92 (2015) 195310.

• • • • • • •

### Outline

- The fractional Schrödinger equation
- Motivation and challenges
- Spatial discretization
- Stationary states
- Oynamics
- Summary

# Motivation and challenges

#### Motivation:

**1** Understand how the fractional Laplacian affects the solutions of the Schrödinger equation.

#### Main challenges:

The fractional Laplacian is a nonlocal operator,

$$(-\Delta)^{\alpha/2} u(\mathbf{x}) = C_{d,\alpha} \operatorname{P.V.} \int_{\mathbb{R}^d} \frac{u(\mathbf{x}) - u(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+\alpha}} \, d\mathbf{y}.$$



Accurate numerical scheme for discretizing the fractional Laplacian is still scant.

Let's consider the 1D linear Schrödinger equation:

$$i\partial_t\psi(x,t) = -\Delta\psi + V(x)\psi, \quad x \in \mathbb{R}, \quad t > 0,$$

with a box potential (or infinite well potential), i.e.,

$$V(x) = \begin{cases} 0, & \text{if } |x| < L, \\ \infty, & \text{otherwise,} \end{cases} \quad x \in \mathbb{R}.$$

This is one important model to understand the quantum effects.



Its stationary states can be found by solving

$$\mu\phi(x) = -\Delta\phi + V(x)\phi, \qquad x \in \mathbb{R}$$

with the normalization

$$\|\phi\|^2 = \int_{\mathbb{R}} |\phi(x)|^2 dx = 1.$$



Due to the constraint of box potential,  $\phi(x) \equiv 0$  for x located outside of box.

The eigenvalue problem reduces to

$$\begin{split} \mu\phi(x) &= -\Delta\phi, \qquad x\in\Omega, \\ \phi(x) &= 0, \qquad x\in\partial\Omega, \\ \|\phi(\cdot)\|^2 &= 1. \end{split}$$

That is, stationary states of Schrödinger equation in a box potential are equivalent to the eigenfunctions of the Dirichlet Laplacian on  $\Omega$ .

The *s*-th eigenfunction has the form:

$$\phi_s(x) = \sqrt{\frac{1}{L}} \sin\left[\frac{s\pi}{2}\left(1 + \frac{x}{L}\right)\right], \quad x \in \Omega, \qquad s \in \mathbb{N},$$

and the corresponding eigenvalue is

$$\mu_s = \left(\frac{s\pi}{2L}\right)^2, \quad s \in \mathbb{N}.$$

Now, let's focus on 1D fractional linear Schrödinger equation:

$$i\partial_t \psi = (-\Delta)^{\alpha/2} \psi + V(x)\psi, \quad x \in \mathbb{R}, \quad t > 0.$$



#### **Research questions:**

- What are the eigenvalues and eigenfunctions of the fractional Schrödinger equation in a box potential?
- Are they the same as those of the standard Schrödingier equation?

Current literature: No analytical results are reported, except the estimates on the eigenvalues.

Recall: Eigenvalue problem

$$\mu\phi(x) = (-\Delta)^{\alpha/2}\phi + V(x)\phi, \qquad x \in \mathbb{R}$$

with the normalization

$$\|\phi\|^2 = \int_{\mathbb{R}} |\phi(x)|^2 dx = 1.$$



Due to the constraint of box potential,  $\phi(x) \equiv 0$  for x located outside of box.

The eigenvalue problem reduces to

$$\begin{split} \mu \phi(x) &= (-\Delta)^{\alpha/2} \phi, \qquad x \in \Omega, \\ \phi(x) &= 0, \qquad x \in \Omega^c = \mathbb{R} \backslash \Omega, \qquad x \not\bowtie \partial \Omega \\ \| \phi(\cdot) \|^2 &= 1. \end{split}$$

### Outline

- The fractional Schrödinger equation
- Motivation and challenges
- Spatial discretization
- Stationary states
- Optimized Dynamics
- Summary

### Numerical methods

Goal: Discretize the fractional Laplacian

$$(-\Delta)^{\alpha/2}u(x) = C_{1,\alpha} \int_{\mathbb{R}} \frac{u(x) - u(y)}{|x - y|^{1+\alpha}} dy, \quad x \in (-L, L)$$

with the condition

$$u(x) = 0, \quad x \in \mathbb{R} \setminus (-L, L)$$

Numerical methods:

- Finite element method (Duo & Zhang, 2016)
- Finite difference method (Duo & Zhang, 2015; Duo, van Wyk & Zhang, 2016)
- Solution Interpolation method (Huang & Oberman, 2014)

Let's first rewrite the operator

$$(-\Delta)^{\alpha/2} u(x) = -C_{1,\alpha} \mathcal{L}_0^{\infty} u(x) = -C_{1,\alpha} \int_0^{\infty} \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\alpha}} d\xi.$$

Choose a constant A = 2L, i.e., the length of the domain.

$$\mathcal{L}_{0}^{\infty}u(x) = \int_{0}^{A} \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\alpha}} d\xi + \int_{A}^{\infty} \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\alpha}} d\xi = \mathcal{L}_{0}^{A} u(x) + \mathcal{L}_{A}^{\infty} u(x).$$

Computation of

$$\mathcal{L}_A^{\infty}u(x) = \int_A^{\infty} \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\alpha}} \, d\xi.$$

#### Note:

A = 2L;
u(x) = 0, for x ∉ (-L, L).

Hence, for any |x| < L and  $\xi \ge A$ , there is

$$|x\pm\xi|>L \Longleftrightarrow u(x\pm\xi)=0.$$

We can *exactly* compute

$$\mathcal{L}_A^{\infty}u(x) = \int_A^{\infty} \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\alpha}} d\xi$$
$$= \int_A^{\infty} \frac{-2u(x)}{\xi^{1+\alpha}} d\xi = -\frac{1}{\alpha A^{\alpha}} u(x).$$

Discretization of

$$\mathcal{L}_{0}^{A}u(x) = \int_{0}^{A} \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\alpha}} \, d\xi$$

Let's rewrite the integrand

$$\mathcal{L}_{0}^{A}u(x) = \int_{0}^{A} \underbrace{\frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\frac{\alpha}{2}}}}_{\Phi_{\alpha}(x,\xi)} \cdot \frac{1}{\xi^{\frac{\alpha}{2}}} d\xi.$$
$$= \int_{0}^{A} \Phi_{\alpha}(x,\xi) \xi^{-\alpha/2} d\xi.$$

**Remark:** As  $\alpha \rightarrow 2$ , we have

$$\Phi_{\alpha}(x,\xi) \to \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^2}.$$

We discretize it by the weighted trapezoidal method, i.e.,

$$\begin{aligned} \mathcal{L}_{0}^{A}u(x) &= \int_{0}^{A} \Phi_{\alpha}(x,\xi) \, \xi^{-\alpha/2} d\xi \\ &\approx \sum_{l=1}^{M} \frac{\Phi_{\alpha}(x,\xi_{l-1}) + \Phi_{\alpha}(x,\xi_{l})}{2} \int_{\xi_{l-1}}^{\xi_{l}} \xi^{-\alpha/2} d\xi \\ &= \frac{1}{2-\alpha} \sum_{l=1}^{M} \left( \xi_{l}^{1-\alpha/2} - \xi_{l-1}^{1-\alpha/2} \right) \left[ \Phi_{\alpha}(x,\xi_{l-1}) + \Phi_{\alpha}(x,\xi_{l}) \right]. \end{aligned}$$

Recall

$$\Phi_{\alpha}(x,\xi) = \frac{u(x-\xi) - 2u(x) + u(x+\xi)}{\xi^{1+\frac{\alpha}{2}}}.$$

Combining  $\mathcal{L}_0^A$  and  $\mathcal{L}_A^\infty$  gives the finite difference scheme of the fractional Laplacian.

# Accuracy of spatial discretization

**Example 1.** Consider a function

$$u(x) = \begin{cases} -(1-x^2)^{3+\frac{\alpha}{2}}, & \text{for } x \in (-1,1), \\ 0, & \text{otherwise,} \end{cases} \qquad x \in \mathbb{R}.$$

The fractional Laplacian of u(x) can be found exactly as

$$(-\Delta)^{\alpha/2}u(x) = \frac{2^{\alpha}\Gamma(\frac{\alpha+1}{2})\Gamma(4+\frac{\alpha}{2})}{-\sqrt{\pi}\Gamma(4)} \cdot {}_{2}F_{1}\left(\frac{\alpha+1}{2}, -3; \frac{1}{2}; x^{2}\right),$$

where  ${}_2F_1$  denotes the Gauss' hypergeometric function.

### Accuracy of spatial discretization

| $\alpha$ | $h = \frac{1}{64}$ | h = 1/128 | $h = \frac{1}{256}$ | $h = \frac{1}{512}$ | $h = \frac{1}{1024}$ | $h = \frac{1}{2048}$ |
|----------|--------------------|-----------|---------------------|---------------------|----------------------|----------------------|
| 0.2      | 1.2640E-5          | 3.1594E-6 | 7.8983E-7           | 1.9746E-7           | 4.9364E-8            | 1.2341E-8            |
|          |                    | 2.0002    | 2.0000              | 2.0000              | 2.0000               | 2.0000               |
| 0.6      | 5.1754E-5          | 1.2920E-5 | 3.2286E-6           | 8.0708E-7           | 2.0177E-7            | 5.0443E-8            |
|          | -                  | 2.0021    | 2.0006              | 2.0001              | 2.0000               | 2.0000               |
| 1        | 1.3586E-4          | 3.3626E-5 | 8.3618E-6           | 2.0846E-6           | 5.2039E-7            | 1.3000E-7            |
|          | -                  | 2.0145    | 2.0077              | 2.0040              | 2.0021               | 2.0011               |
| 1.5      | 4.9828E-4          | 1.1834E-4 | 2.8339E-5           | 6.8470E-6           | 1.6677E-6            | 0.4.0870E-7          |
|          | _                  | 2.0740    | 2.0621              | 2.0492              | 2.0376               | 2.0288               |
| 1.99     | 3.3929E-3          | 8.5911E-4 | 2.1570E-4           | 5.3920E-5           | 1.3448E-5            | 3.3517E-6            |
|          | _                  | 1.9816    | 1.9938              | 2.0001              | 2.0034               | 2.0045               |

**Observation:** It has the second-order convergence rate for  $\alpha \in (0, 2)$ .

Error analysis (Duo, van Wyk & Zhang, 2016)

### Comparison between methods

**Example 2.** Consider the function  $u(x) = e^{-x^2}$ . At x = 0, we can obtain

$$(-\Delta)^{\alpha/2}u(0) = (-\Delta)^{\alpha/2}u(x) \mid_{x=0} = \frac{2^{\alpha}}{\sqrt{\pi}} \Gamma\left(\frac{1+\alpha}{2}\right).$$

We compare finite difference method ( $^{\circ}O^{\circ}$ ) with interpolation method ( $^{\circ}\Box^{\circ}$ ) as follows:



Furthermore, the implementation of the finite difference method is straightforward.

### Outline

- The fractional Schrödinger equation
- Motivation and challenges
- Spatial discretization
- Stationary states
- Oynamics
- Summary

### Literature review: Eigenvalues and eigenfunctions

#### Eigenvalues: Lower and upper bounds <sup>1</sup>

The lower and upper bounds of the eigenvalue  $\mu_s$  are given by

$$\frac{1}{2} \left(\frac{s\pi}{2L}\right)^{\alpha} \le \mu_s \le \left(\frac{s\pi}{2L}\right)^{\alpha}, \qquad \alpha \in (0,2],$$

for any  $s \in \mathbb{N}$ , where  $\alpha = 2$  corresponds to the standard Laplacian.

Recently, a better estimate is found for s = 1,

$$\frac{(\alpha+1)(\alpha+2)(6-\alpha)}{(12+14\alpha)}p(\alpha) \le \mu_1 \le \frac{B(\frac{1}{2},1+\frac{\alpha}{2})}{B(\frac{1}{2},1+\alpha)}p(\alpha), \qquad \alpha \in (0,2),$$

where B(a, b) defines the Beta function of a and b

with 
$$p(\alpha) = \frac{2^{\alpha} \Gamma(1 + \frac{\alpha}{2}) \Gamma(\frac{1+\alpha}{2})}{\Gamma(\frac{1}{2})}$$

<sup>1</sup>Z. -Q. Chen and R. Song, J. Funct. Anal., **226** (2005) 90–113.

Yanzhi ZHANG (Missouri S&T)

# Literature review: Eigenvalues and eigenfunctions

#### **Eigenvalues:** Asymptotic approximations<sup>2</sup>

The asymptotic approximation of  $\mu_s$  in an interval (-1, 1) is given by:

$$\mu_s = \left[\frac{s\pi}{2} - \frac{(2-2\alpha)\pi}{8}\right]^{2\alpha} + O\left(\frac{2-2\alpha}{s\sqrt{2\alpha}}\right), \qquad \alpha \in (0,1],$$

where

$$s \ge (C/2\alpha)^{\frac{3}{4\alpha}}$$
 with C a positive constant.

#### **Eigenfunctions:**

Conjecture<sup>3</sup>: Eigenfunctions cannot be written in terms of elementary functions.

<sup>&</sup>lt;sup>2</sup>M. Kwaśnicki, J. Funct. Anal., **262** (2012) 2379–2402.

<sup>&</sup>lt;sup>3</sup>Y. Luchko, J. Math. Phys., **54** (2013) 012111.

# First eigenvalues

| $\alpha$ | Lower bounds | Asymptotical | Our results | Upper bounds |
|----------|--------------|--------------|-------------|--------------|
|          |              | results      |             |              |
| 0.01     | 0.9960       | 0.9976       | 0.996636    | 0.9974       |
| 0.1      | 0.9676       | 0.9809       | 0.97261     | 0.9786       |
| 0.2      | 0.9499       | 0.9712       | 0.9575      | 0.9675       |
| 0.3      | 0.9442       | 0.9699       | 0.9528      | 0.9655       |
| 0.5      | 0.9620       | 0.9908       | 0.9702      | 0.9862       |
| 0.6      | 0.9839       | 1.0126       | 0.9913      | 1.0084       |
| 0.8      | 1.0521       | 1.0789       | 1.0576      | 1.0763       |
| 1.0      | 1.1538       | 1.1781       | 1.1578      | $3\pi/8$     |
| 1.1      | 1.2183       | 1.2415       | 1.2222      | 1.2432       |
| 1.3      | 1.3781       | 1.4007       | 1.3837      | 1.4064       |
| 1.5      | 1.5861       | 1.6114       | 1.5976      | 1.6223       |
| 1.8      | 2.0140       | 2.0555       | 2.0488      | 2.0777       |
| 1.9      | 2.1952       | 2.2477       | 2.2441      | 2.2747       |
| 1.95     | 2.3784       | 2.4441       | 2.4437      | 2.4563       |

Note: As  $\alpha \to 2$ , it converges to  $\pi^2/4 = 2.4674$ , the first eigenvalue of  $-\Delta$ .

### First eigenfunctions



Figure: The first eigenfunction (ground state) solutions for  $\alpha = 0.2, 0.7, 1.1, 1.5$ , and 1.9, where the arrow indicates the change of  $\phi_q(x)$  for progressively increasing  $\alpha$ .

# Second eigenvalues

| $\alpha$ | Lower bounds | Asymptotical | Our results | Upper bounds |
|----------|--------------|--------------|-------------|--------------|
|          |              | results      |             |              |
| 0.01     | 0.5058       | 1.0086       | 1.008719    | 1.0115       |
| 0.1      | 0.5606       | 1.0913       | 1.09221     | 1.1213       |
| 0.2      | 0.6286       | 1.1948       | 1.1966      | 1.2573       |
| 0.3      | 0.7049       | 1.3122       | 1.3148      | 1.4098       |
| 0.5      | 0.8862       | 1.5977       | 1.6016      | 1.7725       |
| 0.6      | 0.9937       | 1.7708       | 1.7753      | 1.9874       |
| 0.8      | 1.2494       | 2.1941       | 2.1995      | 2.4987       |
| 1.0      | $\pi/2$      | 2.7489       | 2.7549      | $\pi$        |
| 1.1      | 1.7613       | 3.0892       | 3.0954      | 3.5226       |
| 1.3      | 2.2144       | 3.9319       | 3.9380      | 4.4289       |
| 1.5      | 2.7842       | 5.0545       | 5.0600      | 5.5683       |
| 1.8      | 3.9250       | 7.5003       | 7.5033      | 7.8500       |
| 1.9      | 4.4010       | 8.5942       | 8.5959      | 8.8021       |
| 1.95     | 4.8786       | 9.7330       | 9.7332      | 9.7573       |

Note: As  $\alpha \to 2$ , it converges to  $\pi^2 = 9.8698$ , the second eigenvalue of  $-\Delta$ .

### Second eigenfunctions



Figure: The second eigenfunction (the first excited state) solutions for  $\alpha = 0.2, 0.7, 1.1, 1.5$ , and 1.9, where the arrow indicates the change of  $\phi_1(x)$  for progressively increasing  $\alpha$ .

### Extensions

- Stationary states of fractional NLS: Imaginary time method (Duo & Zhang, 2015)
- Stationary states in other potentials (Kirkpatrick & Zhang, 2016)



Ground states of fractional Schrödinger equation with a harmonic potential. (Legend of the plots corresponding to  $(-\Delta)^{\alpha}$ ).

### Outline

- The fractional Schrödinger equation
- Motivation and challenges
- Spatial discretization
- Stationary states
- Oynamics
- Summary

### Fractional Schrödinger equation

Consider the 1D fractional Schrödinger equation with harmonic potential

$$i\partial_t\psi(x,t) = \frac{1}{2}(-\Delta)^{\alpha/2}\psi + \frac{x^2}{2}\psi + \gamma|\psi|^2\psi, \qquad x \in \mathbb{R}.$$

Numerical methods for temporal discretization:

- Splitting step method
- Crank-Nicolson method
- Besse Relaxation method

# Equations of motion

• Center of mass:

$$\langle X \rangle := \langle \psi, X \psi \rangle = \int_{\mathbb{R}^d} \mathbf{x} |\psi(\mathbf{x}, t)|^2 d\mathbf{x}.$$

• Expected fractional momentum:

$$\langle P_{\alpha} \rangle := \langle \psi, P_{\alpha} \psi \rangle = -i \frac{\alpha}{2} \int_{\mathbb{R}^d} \psi^* \nabla^{\alpha - 1} \psi \, d\mathbf{x}.$$

where we define the fractional momentum operator

$$P_{\alpha} := -i\frac{\alpha}{2}\nabla^{\alpha-1} = \frac{\alpha}{2}|P^2|^{\alpha/2-1}P,$$

with  $P = -i\nabla$  the standard momentum operator.

### Equations of motion (Standard NLS)

**Theorem:** For a solution  $\psi = \psi(\mathbf{x}, t)$  of the standard NLS with harmonic potential, we have the following equations of motion for t > 0:

$$\begin{split} &\frac{d}{dt}\langle X\rangle = \langle P\rangle,\\ &\frac{d}{dt}\langle P\rangle = -\Lambda\langle X\rangle \end{split}$$

where the matrix  $\Lambda$  in the case d = 1 is  $\Lambda = \gamma_x^2$ , and

$$\Lambda = \begin{pmatrix} \gamma_x^2 & 0\\ 0 & \gamma_y^2 \end{pmatrix} \text{ if } d = 2, \qquad \Lambda = \begin{pmatrix} \gamma_x^2 & 0 & 0\\ 0 & \gamma_y^2 & 0\\ 0 & 0 & \gamma_z^2 \end{pmatrix} \text{ if } d = 3.$$

#### **Remarks:**

- It is a closed system with periodic solution.
- Its dynamics is independent the initial condition and the nonlinearity.

### Equations of motion (Fractional NLS)

**Theorem:** For a solution  $\psi = \psi(\mathbf{x}, t)$  of the fractional NLS with harmonic potential, we have the following equations of motion for t > 0:

where the quantity  $W_{\alpha}$  is the expectation of an operator and can be defined by:

$$W_{\alpha} := \frac{\alpha}{2} (\alpha - 1) (-\nabla V) |P^{2}|^{\alpha/2 - 1} - \frac{\alpha}{2} \left(\frac{\alpha}{2} - 1\right) (\alpha - 1) \left(\nabla^{2} V\right) \nabla^{\alpha - 3}$$
$$- \frac{\alpha}{2} \gamma \sum_{j \ge 1} {\alpha - 1 \choose j} \psi, \left(\nabla^{\alpha - 1 - j} \psi\right) \left(\nabla^{j} (|\psi|^{2})\right)$$

Dynamics

# Comparison 1: Equations of motion



Top: Standard case; Bottom: Fractional case; Left: Linear; Right: Nonlinear.

# Comparison 1: Equations of motion



Linear Schrödinger equation. Top: Standard case; Bottom: Fractional case.

### Comparison 2: Solution dynamics

Initial condition: Shift the center of the ground state from x = 0 to  $x = \langle X \rangle(0)$ .



Ground states of fractional Schrödinger equation with a harmonic potential. (Legend of the plots corresponding to  $(-\Delta)^{\alpha}$ )

Dynamics

# **Comparison 2: Solution dynamics**



Linear Schrödinger equation. Top: <u>Standard case</u>; Bottom: <u>Fractional case</u>. From left to right:  $\langle X \rangle (0) = 1, 2, 5$ .

Dynamics

# **Comparison 2: Solution dynamics**



Linear Schrödinger equation. Left: Standard case; Right: Fractional case.

### Summary

#### **Motivation:**

Understand nonlocal effects of  $(-\Delta)^{\alpha/2}$  on the solutions of the Schrödinger equation

#### **Challenges:**

Accurate numerical methods for discretizing the hypersingular integral

#### Numerical methods:

Weighted trapezoidal method, FEM, ...

#### Solution properties of fractional Schrödinger equation

- Stationary states in box or harmonic potential
- Equation of motions, solution dynamics

# Merci!