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◮ Plasma is one of the four fundamental states of matter, the
others being solid, liquid, and gas.

◮ A plasma can be created by heating a gas or subjecting it to a
strong electromagnetic field applied with a laser or microwave
generator. This decreases or increases the number of
electrons, creating positive or negative charged particles called
ions.

◮ Plasma, in physics, is fully ionized gas of low density,
containing approximately equal numbers of positive and
negative ions.

◮ Plasma is the most abundant form of ordinary matter in the
Universe, most of which is in stars, including the Sun. Both
lightning and electric sparks are everyday examples of
phenomena made from plasma.
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Vlasov-Poisson-Fokker-Planck (VPFP) system

The motion of ions in a plasma in the absence of a magnetic field
is governed by the following VPFP equations (E. Allen 1994):

∂f

∂t
+ v ·

∂f

∂x
+ E ·

∂f

∂v
= ff , (1.1)

E = −∇Φ (1.2)

−∆Φ =

∫

f (x, , v, t)dv− h(x), (1.3)

where the collisional term

ff = ∇v·

∫

Ψ(v − v
∗)[∇vf (x, v, t)f (x, v

∗, t)−∇v∗f (x, v
∗, t)f (x, v, t)]dv∗,

and Ψ(v) = γ
|v|

(

I − v×v

|v|2
)

.
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The collision term can be reformulated as

ff = ∇v · (A(v, t)∇vf (x, v, t))− b(v, t)f (x, v, t)), (1.4)

where the matrix

A(v, t) =

∫

Ψ(v − v
∗)f (x, v∗, t)dv∗,

and the vector

b(v, t) =

∫

Ψ(v − v
∗)∇v∗f (x, v

∗, t)dv∗.
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Vlasov-Poisson-Fokker-Planck (VPFP) system
In the case that A(v, t) ≈ α and b(v, t) ≈= −βv, equations
(1.1)-(1.3) are reduced to (E. Allen 1994):

∂f

∂t
+ v ·

∂f

∂x
+ E ·

∂f

∂v
= β∇v · (vf ) + α△vf , (1.5)

E = −∇Φ (1.6)

−∆Φ = ρ, (1.7)

where β, α are given constants. x = (x1, x2, x3), v = (v1, v2, v3).

∇v = ( ∂
∂v1

, ∂
∂v2

, ∂
∂v3

). △v =
∂2

∂(v1)2
+ ∂2

∂(v2)2
+ ∂2

∂(v3)2
.

E = E(x, t) = (E1(x, t),E2(x, t),E3(x, t)) is the electric field,
Φ = Φ(x, t) is the self-consistent electrostatic potential and
f (x, v, t) is the probability distribution function which describes the
probability of finding a particle with velocity v at position x at time
t. The charge density, ρ = ρ(x, t) =

∫

Rd f (x, v, t)dv − h(x), and
h(x) is a given known function.
Mathematical analysis ( F. Bouchut et al. 1995, L. Bonilla et al.,
1997).
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Vlasov-Poisson-Fokker-Planck (VPFP) system

They are coupled nonlinear partial derivative differential equations,
whose analytical solution is available only in a few simplified linear
cases. In the nonlinear regime, the VPFP system must be solved
numerically to investigate physical phenomena which are interested.
Development of efficient numerical methods for the VPFP system
will be also be interested by those hope to solve Boltzmann
equation, Vlasov-Maxwell system and many other coupled kinetic
equations.
Development of efficient numerical methods for the VPFP system
will be helpful for numerical investigation of plasma physics, fluid
dynamics, quantum Bose-Einstein condensates at finite
temperature (N. Proukakis, P. Vignolo, B. Jackson).
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Existing numerical methods for VPFP system

Three kinds of numerical methods:

◮ Particle based methods, also called the Lagrangian method.
They have the flexibility to treat complex problems and has
been widely used. Particle based methods are inherently noisy,
which becomes problematic when low density or highly
turbulent regions are studied.

8 / 44



Existing numerical methods for VPFP system

Three kinds of numerical methods:

◮ Particle based methods, also called the Lagrangian method.
They have the flexibility to treat complex problems and has
been widely used. Particle based methods are inherently noisy,
which becomes problematic when low density or highly
turbulent regions are studied.

◮ See book by C.K. Birdsall and and A.B. Langdon 1991 and
many other latest reference.
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◮ Semi-Lagrangian methods which have first been introduced in
meteorology, try to take advantage of both Lagrangian and
Eulerian approaches and have been proposed to solve the
VPFP system. Indeed, they allow a relatively accurate
description of the phase space using a fixed mesh and avoid
traditional step size restriction using the invariance of the
distribution function along the trajectories.

9 / 44



◮ Semi-Lagrangian methods which have first been introduced in
meteorology, try to take advantage of both Lagrangian and
Eulerian approaches and have been proposed to solve the
VPFP system. Indeed, they allow a relatively accurate
description of the phase space using a fixed mesh and avoid
traditional step size restriction using the invariance of the
distribution function along the trajectories.

◮ For example J. Qiu 2010, K. Havlak 1999, N. Crouseilles 2009.
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◮ Eulerian methods They directly discretize the VPFP system
on a grid of the phase space. They can offer a good
alternative to particle based methods as can deal with
strongly nonlinear processes without additional complexity.
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◮ Eulerian methods They directly discretize the VPFP system
on a grid of the phase space. They can offer a good
alternative to particle based methods as can deal with
strongly nonlinear processes without additional complexity.

◮ Finite difference method ( see J. Schaeffer 1997, S. Wollman
2006, S. Wollman 2009, M. Asadzadeh 2005, M. Asadzadeh
2007)

◮ Finite volume method (see F. Filbet 2001, A. Christlieb 2014).

◮ Spectral method (see A. Klimas 1983, A. Klimas 1994, B.
Eliasson 2002, B. Eliasson 2006, S. Bourdiec 2006 ).

◮ We consider splitting Fourier pseudospectral method. The
method has wide applications, see the review paper by W.
Bao and Y. Cai, 2013.
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Basis of spectral method

The basic idea of spectral method is to assume that the unknown
u(x) can be approximated by a sum of N + 1 ”basis functions”
φn(x):

uN(x) =
N
∑

n=0

anφn(x) (3.1)

where the basis functions are given and are orthogonal with respect
to some weights ω(x). When this series is substituted into the
equation

Lu(x) = f (x) (3.2)

where L is some differential operator, the result is the so-called
”residual function” defined by

R(x , a0, a1, · · · , aN) = LuN − f . (3.3)
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The different spectral and pseudospectral methods differ mainly in
choosing the series coefficients an, i = 0, · · · ,N so that the
residual function is minimized.
Collocation methods impose the condition so that

R(xi , a1, a2, · · · , aN) = 0, for i = 0, · · · ,N (3.4)

for each collocation point xi . Here the xi belongs to some suitable
set of interpolation or collocation points.
Galerkin spectral methods are obtained by imposing the condition
so that

(R(x , a1, a2, · · · , aN), φi (x))w = 0, for i = 0, · · · ,N, (3.5)

where the inner product is defined by

(u, v)w ≡

∫ b

a

u(x)v(x)ω(x)dx (3.6)

for a given non-negative weight function ω(x) and any two
functions u(x) and v(x).
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Splitting Fourier pseudospectral method: 1D

We propose a splitting Fourier pseudospectral method for VP
system in 1D. The VPFP system in 1D is defined as follows:

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= β

∂

∂v
(vf ) + α

∂2

∂v2
f , (4.1)

E = −
∂Φ

∂x
, (4.2)

−
∂2Φ

∂x2
= ρ, (4.3)

where f = f (x , v , t), E = E (x , t), Φ = Φ(x , t),
ρ =

∫∞
−∞ f (x , v , t)dv , h = h(x) (here we let x = x1 and v = v1 for

simplification).
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We consider a periodic plasma with period L, and solve the
problem on the bounded phase space (x , v) ∈ [0, L]× [a, b] and the
unknown functions f , E , and Φ are assumed to satisfy the
following periodic boundary conditions:

f (0, v , t) = f (L, v , t), v ∈ [a, b], t ≥ 0,

f (x , a, t) = f (x , b, t), x ∈ [0, L], t ≥ 0,

E (0, t) = E (L, t),

Φ(0, t) = Φ(L, t),

where L, a, b are some constants.
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When β = α = 0, it is well known that the one-dimensional system
(4.1)-(4.3) with periodic boundary conditions has several invariants
with respect to time including

N = N(t) =

∫ L

0

∫ b

a

f (x , v , t) dxdv , (4.4)

S = S(t) =

∫ L

0

∫ b

a

f 2(x , v , t) dxdv , (4.5)

P = P(t) =

∫ L

0

∫ b

a

vf (x , v , t) dxdv , (4.6)

W = W (t) =

∫ L

0

∫ b

a

v2

2
f (x , v , t) dxdv +

1

2

∫ L

0
E 2(x , t) dx ,

which describe the conservation of the total number of particles,
the energy norm, total momentum and total energy, respectively.
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Splitting in time

For simplification, we solve Eq. (4.1) with first-order splitting
technique. From tn to tn+1, we discretize Eq. (4.1) with the
following first-order splitting technique:
Step 1, Given f njk , we solve the equation

∂f

∂t
+ E

∂f

∂v
= βf + βv

∂

∂v
(f ) + α

∂2

∂v2
(f ), tn ≤ t ≤ tn+1 (4.7)

where E = E (x , tn), and get the intermediate numerical solution
f ∗jk for all j and k ;
Step 2, Taking the intermediate solution f ∗jk as the initial data, we
solve the equation

∂f

∂t
+ v

∂f

∂x
= 0, tn ≤ t ≤ tn+1, (4.8)

and get the numerical solution f n+1
jk for all j and k at time tn+1.
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Step 1

Fourier collocation method is applied in velocity direction. Why
not Fourier Galerkin method?
To do this, we assume the following Fourier spectral expansion in
v -direction

f (x , v , t) =
N−1
∑

j=0

f (x , vj , t)Hj

(

2π(v − a)

b − a

)

, (4.9)

where Hj (v) =
1
N
sin[N

v−vj
2 ] cot[

v−vj
2 ] satisfies

Hj (vk) = δjk =

{

1 j = k

0 j 6= k
.
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Then, according to Fourier collocation method, ∂f
∂v at grid point vk

can be evaluated as (see J. Hesthaven et al., 2007)

∂f

∂v
(x , v , t)|v=vk =

N−1
∑

j=0

f (x , vj , t)D
(1)
jk , (4.10)

Similarly, ∂2f
∂v2 at grid point vk can be evaluated as

∂2f

∂v2
(x , v , t)|v=vk =

N−1
∑

j=0

f (x , vj , t)D
(2)
jk , (4.11)

where D
(2)
jk is element of matrix D2.
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Plugging both (4.10) and (4.11) into (4.7), with collocation
method in mind, we get the following matrix formulation

∂

∂t
F + Λ1F =

(

βI + βΛ2D + αD2
)

F (4.12)

where the column vector
F = (f (x , v0, t), f (x , v1, t), · · · , f (x , vN−1, t))

T , the diagonal
matrix Λ1 = E (x , tn)I with I being a N × N identity matrix, and
the diagonal matrix Λ2 = diag(v0, v1, · · · , vN−1). Eq. (4.12) can
be reduced to

∂

∂t
F = BF , B = −Λ1 + βI + βΛ2D + αD2. (4.13)
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Using the method of matrix factorization, we can factorize the
matrix B into PΛP−1 where Λ is a diagonal matrix of N × N, P
and its inverse are N × N matrix, then from the above Eq. (4.13),
we can get

∂

∂t
F = PΛP−1F ,

P−1 ∂

∂t
F = ΛP−1F ,

∂

∂t
(P−1F ) = Λ(P−1F ),

∂

∂t
F̃ = ΛF̃ , F̃ = P−1F , (4.14)

The above Eq. (4.14) can be decoupled into ordinary differential
equations for F̃ , which can be solved exactly.
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Thus, we get the following spectral algorithm for this step:
For any fixed xj (0 ≤ j ≤ M) and tn (0 ≤ n ≤ P)

◮ Start from f (xj , vk , tn) (0 ≤ k ≤ N − 1) and define
F =(f (xj , v0, tn), f (xj , v1, tn), · · · , f (xj , vN−1, tn))

T ,

◮ Factorize matrix B into PΛP−1 and compute F̃ = P−1F ,

◮ Solve the decoupled Eq. (4.14) exactly over [tn, tn+1] and get
F̃ ,

◮ Compute F = PF̃ and obtain F at time t = tn+1.
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Step 2
We take Fourier spectral approximation in spatial direction. To do
that, we assume that f (x , v , t) has the following Fourier spectral
approximation in x-direction

f (x , v , t) =

M/2−1
∑

m=−M/2

f̂m(v , t)e
iµmx . (4.15)

Plugging (4.15) into Eq. ∂f
∂t + v ∂f

∂x = 0 gives us





M/2−1
∑

m=−M/2

f̂m(v , t)e
iµmx





t

+ v

M/2−1
∑

m=−M/2

iµmf̂m(v , t)e
iµmx = 0.

(4.16)
Furthermore, we can obtain

∂

∂t
f̂m(v , t) + iµmv f̂m(v , t) = 0. (4.17)
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Thus, we get the following spectral algorithm:
For any fixed k(0 ≤ k ≤ N) and n (0 ≤ n ≤ P)

◮ Starting from f (xj , vk , tn) (0 ≤ j ≤ M − 1) , do the following

one-dimensional forward FFT in x-direction, we get f̂m(vk , tn)
for all −M/2 ≤ k ≤ M/2 − 1, i.e.,

f̂m(vk , tn) =
1

M

M−1
∑

j=0

f (xj , vk , tn)e
−iµmxj .

◮ Second, from Eq. (4.17), we compute f̂m(vk , tn+1) for all m
(−M/2 ≤ m ≤ M/2− 1).

◮ Finally, doing the one-dimensional backward FFT in
x-direction,i.e.,

f (xj , vk , tn+1) =

M/2−1
∑

m=−M/2

f̂m(vk , tn+1)e
iµmxj ,

we obtain f (xj , vk , tn+1) (0 ≤ j ≤ M − 1) from f̂m(vk , tn+1).
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Splitting Fourier pseudospectral method: 2D

We propose a splitting Fourier pseudospectral method for VP
system in 2D. The VPFP system in 2D is defined as follows:

∂f

∂t
+ v1

∂f

∂x1
+ v2

∂f

∂x2
+ E1

∂f

∂v1
+ E2

∂f

∂v2
= β∇v · (vf ) + α△vf ,

E1 = −
∂Φ

∂x1
,E2 = −

∂Φ

∂x2
, (5.1)

−∆Φ = ρ,

where f = f (x1, x2, v1, v2, t), E1 = E1(x1, x2, t), E2 = E2(x1, x2, t),

Φ = Φ(x1, x2, t). ∇v = ( ∂
∂v1

, ∂
∂v2

). △v =
∂2

∂(v1)2
+ ∂2

∂(v2)2
.

ρ =

∫ b

a

∫ d

c

f (x1, x2, v1, v2, t)dv1dv2 − h(x1, x2).
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Splitting in time
To solve the equation (5.1), we take the following first-order
splitting steps:
Step 1, Given f njklm, we solve the equation

∂f

∂t
+ E1

∂f

∂v1
+ E2

∂f

∂v2
= β∇v · (vf ) + α△vf , (5.2)

or
∂f

∂t
+ E1

∂f

∂v1
+ E2

∂f

∂v2
= 2βf + v1

∂f

∂v1
+ v2

∂f

∂v2
+ α△vf , (5.3)

with Fourier collocation method and get the intermediate
numerical solution f ∗jklm. Here we define E1 = E (x1, x2, tn) and
E2 = E (x1, x2, tn);
Step 2, Taking the intermediate solution f ∗jklm as the initial data,
we solve the equation

∂f

∂t
+ v1

∂f

∂x1
+ v2

∂f

∂x2
= 0 (5.4)

with Fourier Galerkin method and get the numerical solution f n+1
jklm .
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Step 1 in 2D
In Step 1, we solve the equation (5.2) from tn to tn+1 by Fourier
collocation method. For shortness of notation, we let
u(v1, v2, t) = f (x1, x2, v1, v2, t), then Eq. (5.2) can be reduced to

∂u

∂t
= 2βu + (−E1 + βv1)

∂u

∂v1
+ (−E2 + βv2)

∂u

∂v2
+ α△u, (5.5)

We assume the following Fourier spectral expansion in
v = (v1, v2)-direction

u(v1, v2, t) =
∑

j ,m

u((v1)j , (v2)k , t)Hj

(

2π(v1 − a)

b − a

)

H̃k

(

2π(v2 − c)

d − c

)

,

(5.6)
where

Hj (v1) =
1

N1
sin[N1

v1 − (v1)j
2

] cot[
v1 − (v1)j

2
]

and

H̃k(v2) =
1

N2
sin[N2

v2 − (v2)k
2

] cot[
v2 − (v2)k

2
].
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Then, according to Fourier collocation method, ∂u
∂v1

and ∂u
∂v2

at grid
points ((v1)l , (v2)m) can be evaluated as

∂u

∂v1
|((v1)l ,(v2)m) =

N1−1
∑

j=0

u((v1)j , (v2)m, t)D
(1)
jl ,

∂u

∂v2
|((v1)l ,(v2)m) =

N2−1
∑

k=0

u((v1)l , (v2)k , t)D̃
(1)
km , (5.7)

where
Similarly, ∂2u

∂(v1)2
and ∂2u

∂(v2)2
at grid points ((v1)l , (v2)m) can be

evaluated as

∂2u

∂(v1)2
|((v1)l ,(v2)m) =

N1−1
∑

j=0

u((v1)j , (v2)m, t)D
(2)
jl ,

∂2u

∂(v2)2
|((v1)l ,(v2)m) =

N2−1
∑

k=0

u((v1)l , (v2)k , t)D̃
(2)
km , (5.8)
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where D
(2)
jk is element of matrix D2. According to collocation

method, Eq. (5.5) is collocated at grid points ((v1)l , (v2)m)
(l = 0, 1, · · · ,N1 − 1 and m = 0, 1, · · · ,N2 − 1), i.e., Furthermore,
plugging both (5.7) and (5.8) into (5.5), we get the following
matrix formulation

∂

∂t
U = B1U + UB2, , (5.9)

where B1 = βI1 − Λ1Θ1 + βV1Θ1 + αΓ1,
B2 = βI2 − Λ2Θ2 + βV2Θ2 + αΓ2.
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Here, we have defined the matrix U as (u((v1)j , (v2)k) for all
0 ≤ j ≤ N1 − 1, 0 ≤ k ≤ N2 − 1. Ij the Nj × Nj identity matrix
(j = 1, 2). Λ1 = (E1(x1, x2, tn)I1, Λ2 = (E2(x1, x2, tn)I2, N1 × N1

matrix Θ1 = D, N2 × N2 matrix Γ2 = D, N2 × N2 matrix
Θ2 = D̃2, N1 × N1 matrix Γ2 = D̃2. N1 × N1 diagonal matrix
V1 = diag((v1)0, (v1)1, · · · , (v1)N1−1) and N2 ×N2 diagonal matrix
V2 = diag((v2)0, (v2)1, · · · , (v2)N2−1).
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Using the method of matrix factorization again, we can factorize
the matrices B1 and B2 in Eq. (5.9) into

B1 = PΛxP
−1, B2 = QΛyQ

−1 (5.10)

Then Eq. (5.9) can be reduced to

∂

∂t
U = [PΛxP

−1U + U(QΛyQ
−1)T ]. (5.11)

Multiplying the above equation with matrices P−1 and (QT )−1,
we get

∂

∂t
[P−1U(QT )−1] = Λx(P

−1U(QT )−1) + P−1U(QT )−1Λy .

(5.12)
If we define Ũ = P−1U(QT )−1, then Eq. (5.12) can be reduced to
the following decoupled ordinary differential equations

∂

∂t
Ũ = Λx Ũ + ŨΛy , (5.13)

which can also be solved exactly.
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Thus, we get the following spectral algorithm:
Let u(v1, v2, t) = f (x1, x2, v1, v2, t). For any fixed j , k
(0 ≤ j ≤ M1, 0 ≤ k ≤ M2) and n (0 ≤ n ≤ P)

◮ Start from u((v1)l , (v2)m, tn) (0 ≤ l ≤ N1 − 1,
0 ≤ m ≤ N2 − 1) and define U,

◮ Factorize matrix B1 into PΛP−1 and matrix B2 into QΛQ−1

and compute Ũ = P−1U(QT )−1,

◮ Solve the decoupled Eq. (5.13) exactly over [tn, tn+1] and get
Ũ at time tn+1.

◮ Compute U = PŨQT and obtain U at time t = tn+1.
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Step 2 in 2D
In Step 2, we assume the following Fourier spectral expansion

f (x1, x2, v1, v2, t) =

M1/2−1
∑

p=−M1/2

M2/2−1
∑

q=−M2/2

f̂pq(v1, v2, t)e
iµpx1+iλqx2.

(5.14)
where µp = 2πp

L1
and λq = 2πq

L2
Plugging (5.14) into Eq. (5.4), we

can get




M1/2−1
∑

p=−M1/2

M2/2−1
∑

q=−M2/2

f̂pq(v1, v2, t)e
iµpx1+iλqx2





t

+

M1/2−1
∑

p=−M1/2

M2/2−1
∑

q=−M2/2

i(v1µp + v2λq)f̂pq(v1, v2, t)e
iµpx1+iλqx2 = 0.

Furthermore, from the above equation, we reach

∂

∂t
f̂pq(v1, v2, t) + i(v1µp + v2λq)f̂pq(v1, v2, t) = 0. (5.15)

we can get the similar spectral algorithm as those presented in 1D. 32 / 44



Extension to solve the equations (1.1)-(1.3)

we use the following first-order splitting steps:
Step 1, Given f n, we solve the equation

∂f

∂t
+E1

∂f

∂v1
+E2

∂f

∂v2
= ∇·(A(v, tn)∇vf (x, v, t))−b(v, tn)f (x, v, t)),

(5.16)
with Fourier collocation method and get the intermediate
numerical solution f ∗. Here we define E1 = E (x, tn) and
E2 = E (x, tn);
Step 2, Taking the intermediate solution f ∗ as the initial data, we
solve the equation

∂f

∂t
+ v · ∇vf = 0 (5.17)

with Fourier Galerkin method and get the numerical solution f n+1.
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A theorem

Theorem
The proposed splitting method keep the total number numerically,

i.e., for any n, we have

||f (x, v, tn)|| = ||f (x, v, tn+1)||. (5.18)

We remark that L. Pareschi et al. proposed Fourier Galerkin
method for computing the collision term (1.3) in 2000. However
they need solve the resulting highly nonlinear ordinary equations
with some modified Runge-Kutta methods. It remains unclear that
the proposed method can keep the total number numerically.

34 / 44



Numerical results

In Example 1, we consider β = α = 0, the VPFP system in 1D is
reduced to the VP system in 1D. We take the initial data as

f (x , v , t = 0) = 1√
2π
v2e−

v2

2 (1 + a cos(kx)), a = 0.01, k = 0.5 and

investigate the well-known two-stream-instability problem on the
domain (x , v) ∈ [0, 4π] × [−6, 6]. Figure 1 shows us time evolution
of the total number N(t), the energy norm S(t), the total
momentum (P(t)) and the total energy W (t), respectively. From
this Figure, we can see these five conservation laws related to the
VP system in 1D are kept very well.
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Figure 2 shows us image plots for the density function f (x , v , t) at
different times.
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In Example 2, we take the initial data as

f (x , v , t = 0) = 1√
2π
e−

v2

2 (1 + a cos(kx)), a = 0.5, k = 0.5 and

investigate the well-known strong-Landau damping problem on the
domain (x , v) ∈ [0, 4π] × [−6, 6]. Figure 3 shows us time evolution
of the total number of electrons N(t), the energy norm S(t), the
total momentum P(t) and the total energy W (t), respectively.
From this Figure, we can see the conservation laws related to the
VP system in 1D are kept well numerically.
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Figure 39 shows us image plots for the density function f (x , v , t)
at different times.
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In Example 3, we consider the VPFP system in 1D where β = 0.01
and α = 0.05β and we take the initial data as

f (x , v , t = 0) = 1√
2π
e−

v2

2 (1 + a cos(kx)), a = 0.5, k = 0.5 on the

domain (x , v) ∈ [0, 4π] × [−6, 6]. Figure 4 shows us time evolution
of the total number N(t), the energy norm S(t), the total
momentum P(t) and the total energy W (t), respectively.
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Figure 41 shows us image plots for the density function f (x , v , t)
at different times.
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In Example 4, we consider the VPFP system in 1D where β = 0.1
and α = 0.5β and we take the initial data as
f (x , v , t = 0) = ecos(2∗pi∗x)−0.5β/αv2

; and investigate its long time
solution on the domain (x , v) ∈ [0, 1] × [−6, 6].
Figure 42 shows us image plots for the density function f (x , v , t)
at different times.
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Conclusions and discussions

◮ We have proposed an efficient time-splitting Fourier
pseudospectral method for Vlasov-Poisson-Fokker-Planck
system.

43 / 44



Conclusions and discussions

◮ We have proposed an efficient time-splitting Fourier
pseudospectral method for Vlasov-Poisson-Fokker-Planck
system.

◮ The method has spectral accuracy in both space and velocity
direction.

43 / 44



Conclusions and discussions

◮ We have proposed an efficient time-splitting Fourier
pseudospectral method for Vlasov-Poisson-Fokker-Planck
system.

◮ The method has spectral accuracy in both space and velocity
direction.

◮ The presented method has only first-order in time, but it can
be easily extended to higher order (2nd,4th) in time.

43 / 44



Conclusions and discussions

◮ We have proposed an efficient time-splitting Fourier
pseudospectral method for Vlasov-Poisson-Fokker-Planck
system.

◮ The method has spectral accuracy in both space and velocity
direction.

◮ The presented method has only first-order in time, but it can
be easily extended to higher order (2nd,4th) in time.

◮ Numerical results have been shown that the method can keep
conservation laws and reproduce the relevant physical
phenomena.

43 / 44



Conclusions and discussions

◮ We have proposed an efficient time-splitting Fourier
pseudospectral method for Vlasov-Poisson-Fokker-Planck
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◮ The method has spectral accuracy in both space and velocity
direction.

◮ The presented method has only first-order in time, but it can
be easily extended to higher order (2nd,4th) in time.

◮ Numerical results have been shown that the method can keep
conservation laws and reproduce the relevant physical
phenomena.

◮ The method might be able to extended to other basis
functions such as Chebyshev polynomials, Legendre
polynomials as well Hermit polynomials.
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Thank you very much for your attention!
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