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1. Introduction

What 1s quantum turbulence?

Quantum turbulence(QT) means

Turbulence in quantum condensed fluids .

The main stages of QT are
* Superfluid helium (since 1950’s)

 Atomic Bose-Einstein condensates(BECs) (since 1995)



| Bose-EinSt,ein condehsation (BEC),and the macroscopic Wave function .

Physics of scalar BEC at OK is described by the
macroscopic wave function (order parameter).

Y(r,t) = +/n(r,?) exp(iH(r,t))

n(r,t) : Density of the Bose condensate

h
v(r.r)= ;VQ(I’J) : Superfluid velocity

In a weakly interacting BEC, lI’(l‘,t ) obeys the

Gross-Pitaevskil (GP) equation.
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A quantized vortex is a vortex of superflow in a BEC.
Any rotational motion in superfluid is sustained b

quantized vortices.
(1) The circulation i1s quantized.

%vs-ds:/@n(n:O,l,Q,---) ©
k=h/m

A vortex with n=2 is unstable.

Every vortex has the same circulation.

(1) Free from the decay mechanism of the viscous diffusion of the vorticity.

The vortex is stable once it is nucleated.

A quantized vortex is definite

and well-defined!



Vortex tangle in Quantum Turbulence.

Numerical simulation by the
Gross-Pitaevskii model.

The blue lines show the thin
cores of quantized vortices.

Vortices are disordered
spatially and temporally.

So are superflow created by
the vortices.
—> Superfluid turbulence




Classical Turbulence (CT) vs. Quantum Turbulence (QT)

Classical turbulence Quantum turbulence

Motion of
vortex cores

The vortices are unstable. Not easy

to identify each vortex stable topologlcal defects.

Every vortex has exactly the
* The circulation differs from one to same circulation.
another, not conserved. - Circulation is conserved.




Models available for simulation of QT

Gross-Pitaevskii (GP) model for the macroscopic wave function

- W(r)= ‘/no (r)e ™"
ih &lp;r’t) =|- h2V +V_.(r)+ g“P(r,t) ? W(r,?)
f " ATOMIC BECS

Vortex filament model(VFEM) Biot-Savart law
K (s-r)xds r

(
Vilr) - 4J'L’f s — [ e e

S

A vortex makes the superflow of the Biot-Savart law, and moves with

this local flow.
SUPERFLUID HELIUM



2. Quantum turbulence in atomic BECs

There are two main cooperative phenomena of
quantized vortices; Vortex lattice under rotation
and Quantum turbulence.

Vortex lattice Quantum turbulence

Superfluid He

Atomic BEC Few works, but

recently active




Some methods of how to create QT 1n a trapped BEC.

- Phase printing: N. G. Berloft, B. V. Svistunov, PRA66,
013603(2002)

 Manipulating the trapping potential: M. Kobayashi, M.
Tsubota, PRA76,045603(2007)

e Stirring the condensate: A. J. Allen et al., PRAS9,
023602(2014) other several works




QT in a trapped BEC

M. Kobayashi and M. Tsubota, Phys. Rev. A76, 045603 (2007)

Making QT by combining two rotations

<t 1. Trap the BEC in a
Q.| F weakly elliptic potential.

U(x) = > [(1—81)(1—82))62+(1+€1)(1—€2)y2+(1+82)Z2]

2. Rotate the system first
around the x-axis, next
around the z-axis.

Q(r) = (RQ,, QsinQ 7,Q _cosQ 1)



Actually this 1dea has been already used in CT.

S. Goto, N. Ishii, S. Kida, and M. Nishioka, Phys. Fluids 19, 061705 (2007)

Rotation
around
one axis

Rotation
around
two axes




QT made by two precessions in a trapped BEC

Two precessions (0w, xXm,) |
M. Kobayashi and MT, Phys. Rev. A76, 045603 (2007)
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We confirmed a scaling law of the energy
spectrum similar to the Kolmogorov -5/3 law.



QT 1s realized experimentally.

0 Density distribution in turbulence Quantized vortex

1] E. A. L. Henn et al. , Phys. Rev. Lett. 103, 045301 (2009).
2] K. E. Wilson et al., Annu. Rev. Cold At. Mol. 1, 261 (2013).
3] Woo Jin Kwon et al., Phys. Rev. A 90,063627 (2014).




2-2. QT in two-component BECs

h2
ih%\lﬁ = —2—V2\Ifl + 11| W1 |2W; + g12|Ws|? W, | 9115 922 : intracomponent interaction
mi
Zhaqu = —%V Uy + 922|\IJ2‘ Uy + 912|‘I’1‘ U, g12 :intercomponent interaction
2

g11922 > gis * The mixture is stable.

However,

The large relative velocity should make it unstable.

V. 1. Yukalov and E. P. Yukalova, Laser Phys. Lett. 1, 50 (2004).
C. Hamner et al., Phys. Rev. Lett. 106, 065302(2011).



3D 2-component QT

1% /n=|Ts°/n=1 Vp=471 v=10.9

e —

<~ —

o= Flow direction

Counterflow of two BECs

Solitons

— Vortex loops
— QT

H. Takeuchi, S. Ishino, MT,
PRL105, 205301(2010)

S. Ishino, MT, H. Takeuchi,
PRAS3, 063602(2011)



~  Scenario to turbulence (1)
012 /n = |¥s|?/n=1, V=471 ~v=0.9

Counterflow of two BECs

The unstable mode is
amplified to lead to the
disk-shaped low density
regions.

< ‘ Isosurface of |‘I’1|2/n = 0.1
=P> Flow direction



~ Scenario to turbulence (2)

U1|?/n=|Ts|?/n=1 Vip=471 v=0.9
Counterflow of two BECs

Vortex rings are
nucleated inside the low
density regions.

‘ Isosurface of |¥1]°/n = 0.1

,F'Iow FESET R Vortex core of
component 1



= Scenario to turbulence (3)
U1|?/n=|Ts|?/n=1 Vip=471 ~v=0.9
Counterflow of two BECs

The vortices expand and
grow.

‘ Isosurface of |¥1]°/n = 0.1

’F - \/ortex core of

low direction component 1



=" Scenario to turbulence (4)
U1|?/n=|Ts|?/n=1 Vip=471 ~v=0.9
Counterflow of two BECs

The vortices expand to
reconnect with other

vortices.

‘ Isosurface of [¥1]%/n = 0.1

’F — Vortex core of

low direction component 1




=  Scenario to turbulence (5)
U1|?/n=|Ts|?/n=1 Vip=471 v=0.9
Counterflow of two BECs

Eventually the vortices
become tangled.

‘ Isosurface of |‘I’1|2/n = 0.1

’F - \/ortex core of

low direction component 1




=  Scenario to turbulence

0 12.2 12.8 133 13.8 %0 |
momentum exchange
, J’ | e ‘L
As the vortices grow, the two 2 :—T-:]'—x N VLD |
superfluids start to Lo
Communicate and exchange ol Rt C S

the momentum, eventually
reducing the relative motion.

15 30

“Mutual friction” between superfludis



Various kinds of quantum turbulence 1in atomic BECs.

Quantized vortices
QT 1n single-component BECs QT in two-component BECs

Spins
Spin turbulence in spinor BECs

K. Fujimoto, MT, PRA85,033642(2012)

MT., Y. Aoki, K. Fujimoto, PRA&S., 061601(R) (2013
Waves : oki, ujimoto, : (R) ( )

Bogoliubov wave turbulence in BECs

. K. Fujimoto, MT, PRA91, 053260(2015)
Spin Waves

Spin wave turbulence in BECs
K. Fujimoto, MT, PRA93, 033620(2016)



Spin turbulence in spinor BECs i “(5)
Si = wm i mnw”
K. Fujimoto, MT: PRASS, 033642(2012), PRA8S5,053641(2012)

Time-development of the spin density vector s
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3. Quantum turbulence in superfluid helium-

Liquid “He enters the superfluid state below 2. 17 K (A point)
with Bos¢-Einstein condensation.

Its hydrodynamics are well described by the two-fluid model:

1.0 -

The two-fluid model (Tisza, Landau)

0.8 -

The system 1s a mixture of inviscid
superfluid and viscous normal fluid.

p = pS + pn j= psvs i pnvn W e w5 90 95

Temperature (K)

Density | Velocity | Viscosity | Entropy
Superfluid | p,(T) | v,(r) 0 0
Normal fluid | p,(T) | v.(r) n.(T) | s,(T)




3-1. Previous simulation for the homogeneous normal
fluid flow (1980°’s-2010)

Thermal counterflow (Feynman, Vinen)

Vortex tangle

Heater

Normal flow Superflow

Most simulations were performed for homogeneous systems.
- K. W. Schwarz, Phys. Rev. B38, 2398 (1988) LIA
- H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B81, 104511(2010) full

Biot-Savart



Vortex filament model (VEM)

A vortex filament 1s represented by the parametric form s(¢, ).

The vortex filament makes the superfluid velocity field by the Biot-Savart law.
K SHFT NS ds 1
Vs (’r) === 4— / ( ) 3
T ), |81—7]
ds

Every point s on the filament moves with its local superfluid velocity: T (12 =x3)

When we try to obtainvs(8) and letS1 — T = S, this integral
becomes divergent. What to do?



ds, N s’ 1 STt T e
S1 —- S
By introducing some cut-off, the Biot-Savart integral 1s divided into
two terms(Arms & Hama 1965).

Local term Nonlocal term

d d
S:ﬂ%—as’x(fvn

_ 4%
dt dt

d
- ) —a's’ x [s’ X (v, — ﬂ)]

Mutual friction at finite temperatures

The approximation neglecting the nonlocal term is called the
LIA(Localized Induction Approximation).

dsg [

/ !/
— — = —8" X 8
dt 47



Simulation under LIA

o |

K. W. Schwarz, Phys. Rev. B38, 2398
(1988).

-Obtained a statistically steady state by the
vortex filament model (VFM) under the
localized induction approximation (LIA).

Periodic boundary conditions
for all three directions



Schwarz’ s simulation(1) PRB38, 2398(1988)

FIG. 4. Case study of the development of a vortex tangle in a
real channel. Here, a=0. 10, corresponding to a temperature of
about 1.6 K, and v, =75 into the front face of the channel sec-
tion shown. Upper left: 7,=0, no reconnections; upper right;
t,=0.0028, three reconnections; middle left: t,=0.05, 18
reconnections; middle right: z,=0.20, 844 reconnections; lower
left: t,=0.55, 12128 reconnections; lower right: ?,=2.75,
124 781 reconnections.

However, this simulation had

nontrivival serious problems.

1. Vortex reconnections were
modeled artificially.




Reconnection of quantized vortices (1)

In the field of classical fluid dynamics, N
vortex reconnections are believed to occur \ —>

by the viscous diffusion of vorticity.

Can quantized vortices reconnect? The vortex filament

model (VFM) cannot answer the question.

The simulation of the Gross-Pitaevskii model shows
reconnection. J. Koplik and H. Levin, PRL71, 1375 (1993)



Reconnection of quantized vortices (2)

Reconnections in VEM are modeled with an \
algorithmical procedure. However, this \ —

procedure is more or less arbitrary.



Schwarz’ s simulation(2) PRB38, 2398(1988)

However, this simulation had

nontrivial serious problems.

1. Vortex reconnections were
modeled artificially.

2. All calculation was performed
by the LIA.

- He used an artificial mixing
procedure in order to obtain
the steady state.

S
s
N

FIG. 8. Mapping of various vortex configurations into the
computational volume, showing the appearance of the unit cell
when all space is filled by the repetition of these objects. The
end points of the lines represent equivalent points in the unit
cell. Top row: closed loops; middle row: parallel infinite lines
characteristic of a dead-end fluctuation; bottom row: infinite
lines after randomizing procedure designed to reestablish
three-dimensional behavior. The illustrations are intended to be
purely schematic.



Simulation by the full Biot-Savart law

H. Adachi, S. Fujiyama, M. Tsubota,
Phys. Rev. B81, 104511(2010) .

0.00sec
¥ ) n
\ <
l Us

BOX (0.1cm)’ T'=1.6K
Ins = 0.367cm/s

Periodic boundary conditions for
all three directions

The statistically steady states
were obtained without the
artificial mixing procedure.



Comparison between LIA and full Biot-Savart
Full Biot-Savart  7=16K LIA

Vortices become anisotropic,
forming layer structures.

We need intervortex interaction.



3-2. Recent visualization experiments (2006-)

Visualizing quantized vortices and the profile
of the normal fluid flow

Maryland, Tallahassee, Prague

G. P. Bewley, D. P. Lathrop, K. R. Sreenivasan, Nature 441,
588(2006)

* A. Marakov, J. Gao, W. Guo, S. W. Van Sciver, G. G. Ihas,
D. N. McKinsey, W. F. Vinen, Phys. Rev. B 91,
094503(2015).

‘M. La Mantia, L. Skrbek, Phys. Rev. B 90,014519 (2014).



Visualization of quantized vortices
G. P. Bewley, D. P. Lathrop, K. R. Sreenivasan, Nature 441, 588(2006)

Solid hydrogen particles are trapped by quantized vortices.



Marakov et al. observed a novel
profile of the normal fluid flow by

using metastable He,” molecules.

A. Marakov, J. Gao, W. Guo, S. W. Van
Sciver, G. G. Thas, D. N. McKinsey, W. F.
Vinen, Phys. Rev. B 91, 094503(2015).

1 No heat flux - No flow

2 Poiseuille flow (Iaminar)

3,4 Tail-flattened flow(laminar)
5,6 Turbulence

Such tail-flattened flow
has never been observed
even 1n a classical fluid.



Present status of the numerical simulation in superfluid helium

Almost all stimulations
One way

Superfluid (Vortex =~ <@  Prescribed normal fluid
filament model) * (Navier-Stokes equation)

Desirable simulations

Both ways
Superfluid (Vortex =~ 4@  Normal fluid (Navier-Stokes
filament model) ‘ equation)

Lagrangian Eulerian



3-3. The new simulation for the inhomogeneous

normal fluid flow

(1) Counterflow quantum turbulence of He-II in a
square channel: Numerical analysis with nonuniform
flows of the normal fluid

S. Yui and M. Tsubota, Phys. Rev. BO1, 184504 (2015):
arX1v: 1502.06683

(2) Logarithmic velocity profile (the log-law) of
quantum turbulence of superfluid *He

S. Yui, K. Fujimoto and M. Tsubota, Phys. Rev. B 92,
224513 (2015): arXiv:1508.01347



What 1s lacking in the previous simulations?
Most previous numerical works suppose

e Periodic boundary for all three directions

e Prescribing the homogeneous profile of the normal fluid

8 In order to understand these phenomena, we need

*k solid boundary condition in a channel
g ** coupling of superfluid and normal fluid




Ditference between solid- and periodic boundary conditions

Periodic

A vortex ring that comes
out of the right enters the
system from the left again.

Solid boundary

- (

A vortex ring moving to the right
reconnects with the solid wall.

> Solid walls can work as an
absorber for vortices.



(1) Counterflow quantum turbulence of He-II in a square channel: Numerical

analysiswith nonuniform flows of the normal fluid S. Yui and M. Tsubota.

Phys. Rev. B91, 184504 (2015)
e Square cross section Imm xX1mm
e Computational volume 1s Imm X1mm X Imm

e Periodic B. C. along the x-axis, and solid smooth B. C. for
other walls.

e T=1.3K, 1.6K and 1.9K Full Biot-Savart calculation

Tmm



The Handbook of Fluid Dynamics, €dited by R. W. Johnson ( oca Raton,1998)

43



SN

‘ Vortex tangle 1n a square channel ‘

@Uns 1.4cm/s T=1.9K

Vortices expand from the center toward the channel walls,
trapped by the walls.

Vortices are denser near the walls than the center.
At higher temperatures, the strong mutual friction grows the
vortices rapidly and densely.



(2) Tail-flattened flow in a rectangular channel

How to make the flow profile?

Combining the Poisuille flow v} (r) and the flat flow v} (0)

v, (r)=u,max[v’ (r), kv’ (0)]

Parameter &

Vo L LT
1.3 2T /" """""" ' 0.1
’l'// ~\:\‘ O . 8
PR SR/ e\
,.—-Ql R 0.6
19 = e
1 pmmegelyla=es™m T Naileoo
n, 'Y
..!. 09 "5:"\" 0.4
1 ¢ -
05 _', \“ 02
09 O | | | | | 0
-04-02 0 02 04 -04 -02 0 02 04
y (mm) y

Increasing 4 makes the flow profile more uniform.



Tail-flattened flow with A=0.7 Poiseuille flow
1=19K, v_=0.5cm/s 1=19K, v =0.7cm/s

> "ns

Vortex tangle is more homogeneous in tail-flattened flow
than in Poiseuille flow.




What causes the tail-flattened fow?

Vortex tangle made under the prescribed Poiseuille flow

356 e

If we turn on the mutual friction from vortices to
normal fluid, the Poiseuille profile may be changed.

Cf. 2D simulation: L. Galantucci, M. Sciacca, C. F. Barenghi, Phys.
Rev. B92, 174530 (2015)



Superfluid velocity field v, , (y, 2) created by the vortex tangle
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Superfluid velocity field v, , (y, 2) created by the vortex tangle
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(2) Logarithmic velocity profile of quantum turbulence of
superfluid “He

S. Yui, K. Fujimoto and M. Tsubota, Phys.Rev.B92, 224513 (2015)

Two well-known statistical laws 1n classical turbulence

Kolmogorov -5/3 law in the bulk Log- law near walls

g
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Energy spectrum of turbulence




Classical turbulence VS Quantum turbulence

E
Kolmogorov -5/3 =
— = . law in the bulk T T
—2v KR2E(R) \\\@'_/ k [1/cm]
Energy- Energy-dissipative T. Araki, M. Tsubota and S. K. Nemirovskii,
containig range PRLS89, 145301(2002)

range

Paris, Osaka, New Castle, ...

! __w’ 0.2
f 11 0.15
= / ot
| /< = Log- law 5
7\ T 0
] near walls -0.05

Log-law

> -0.1

-0.15 =

P S. Yui, K. Fujimoto and M. Tsubota,
]

PRB92, 224513 (2015)



Turbulent boundary layer in a classical fluid

vl U=U
- U e
— —_— - _—>
.
Boundary
U=0 layer
- > ~ T T 77777 7

Channel walls



How to derive the log-law (1)

Y
A

Turbulent
boundary layer

X

cf. Prandtl: Boundary layer theory
Landau-Lifshitz: Fluid Mechanics

Averaged velocity Uy — u(y), Uy = Uy = 0

* Viscosity is not available except near the walls..
* Constant momentum flux O (Reynolds stress)

flows from the bulk to the walls,

« (O dissipates by the viscosity near the walls.

du /dy is determined only by the fluid density £ , momentum flux O, distance y.

Dimension [duu/dy] = 1/T. [p] = M/L [o] = M/(L-T?).[y] = L

d—y:

du \/o/p

by

b= (0.417 :Karman constant



How to derive the log-law (2) e ———m— T

Y
A

Turbulent
boundary layer

0

By some considerations, — = — log

107 1

Yo | /
ua = uly [ //
AT oy i ' -

viscous sublayer buffer layer log-law region

What determines the width Y0 of the boundary layer ?

VUV« Yo |74
Re = uld ~ 1 — Yo ~ —
%4 Ux

U 1 Yy

Vs b Yo
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Quantum-turbulent boundary layer |GG B CI Sk PR

| |
N Us=0 Yy The averaged velocity of

o L turbulent superfluid flow
| X obeys the log-law !

dw [, |s1 — 7|3

0.2
0.15
0.1
0.05

v* (cm/s)

| J | -0.05
0.1
-0.15




Analogy between classical and quantum cases

Classical Quantum
) 5
Turbulent \
boundary layer
Yo
0/7

Momentum 1s transferred

toward the walls. Vortices move toward the

walls with the momentum.




How about the Karman constant? |kt
ve =\ 0/p

0.2
= [oa () +
vs—/{q oglpy) te

0.15
0.1
0.05

vg' (cm/s)

>k
T v vi/kq ¢

(K) (s/cm) (s/em) —

-0.05
-0.1

1.9 0.184 0.141 1.46
1.6 0.079 0.070 1.40
1.3 0.025 0.028 1.14

-0.15 =

We know v, / k4 from the fitting. Since we have no theory

for ’U; , however, we cannot obtain the Karman constant x q-



1. We review the research of numerical simulation of quantum
turbulence in atomic BECs and superfluid helium.

2. The recent visualization experiments open the door for
inhomogeneous turbulence in Superfluid helium.

3. We discussed the two topics.
3-1. Inhomogeneous turbulence 1n a square channel

S. Yui, M. Tsubota, Phys. Rev. B91, 184504(2015)

3-2. Log-law 1n turbulent boundary layer
S. Yui, K. Fujimoto, M. Tsubota, Phys. Rev. B 92, 224513(2015)




