Numerical methods on simulating dynamics of the nonlinear Schrödinger equation with rotation and/or nonlocal interactions

Qinglin TANG

INRIA & IECL, University of Lorraine, France

Collaborators: Xavier ANTOINE, Weizhu BAO, Shidong JIANG, Yanzhi ZHANG, Yong ZHANG, Daniel MARAHRENS

CIRM, 28/June/2016, Marseille

Numerics for NLSE/GPE

- Introduction
- GPE/NLSE with rotation term
- GPE/NLSE with nonlocal potential

2 Extension to fractional NLSE

Outline

Numerics for NLSE/GPE

- Introduction
- GPE/NLSE with rotation term
- GPE/NLSE with nonlocal potential

2 Extension to fractional NLSE

3 Summary

(日)

Gross-Pitaevskii/Nonlinear Schrödinger equations

$$i\partial_t \psi(\mathbf{x}, t) = -\frac{1}{2}\nabla^2 \psi + V(\mathbf{x})\psi + \beta |\psi|^2 \psi, \qquad \mathbf{x} \in \mathbb{R}^d, \quad t \ge 0.$$
(1)

- \blacktriangleright $V(\mathbf{x})$: trapping potential.
- ▶ β : const. charactering short-range interaction.

Energy

$$\mathcal{E}(t) = \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \psi|^2 + V(\mathbf{x}) |\psi|^2 + \frac{\beta}{2} |\psi|^4 \right] d\mathbf{x} \equiv \mathcal{E}(0) \quad (2)$$

BEC @ JILA

Well studied:

- Theoretical aspects: T. Cazenave, 03; C. Sulem & P.L. Sulem, 99', E. H. Lieb, R. Seiringer, R. Carl, P. Degond, W. Bao, Y. Cai, H. T. Yau, E. Grenier, F. Poupaud, C. Sparber, B. Guo, C. Miao, P. A. Markowich, P.L. Lious,.....
- Numerical aspects: G. D. Akrivis, C. Bess, X. Antoine, R. Duboscq, I. Danaila, Q. Du, Y. Zhang, H. Wang, Y. Cai T. F. Chan, Q. S. Chang, V. A. Dougalis, L. J. Shen, E. Jia, D. F. Griffiths, M. Delfour, M. Fortin, G. Payre, P. Markowich, S. Jin,.....

(日)

Existing numerics

Time splitting spectral method (TSSP): (Bao, Du, Jin, Bess, Markowich, etc)

Step 1:
$$i\partial_t \psi = -\frac{1}{2}\nabla^2 \psi$$
, Step 2: $i\partial_t \psi = (V + \beta |\psi|^2)\psi$. (3)

- **Step 1**: discretised by spectral method and integrated in phase space exactly.
- **Step 2**: nonlinear ODE integrated analytically. $(\rho = |\psi(\mathbf{x}, t)|^2, \frac{d \rho}{dt} \equiv 0)$.

Existing numerics

Time splitting spectral method (TSSP): (Bao, Du, Jin, Bess, Markowich, etc)

Step 1:
$$i\partial_t \psi = -\frac{1}{2}\nabla^2 \psi$$
, Step 2: $i\partial_t \psi = (V + \beta |\psi|^2)\psi$. (3)

Step 1: discretised by spectral method and integrated in phase space exactly.

Step 2: nonlinear ODE integrated analytically. $(\rho = |\psi(\mathbf{x}, t)|^2, \frac{d\rho}{dt} \equiv 0)$.

Good Properties:

- very easy to implement, explicit, unconditionally stable.
- mass **CONSERVED**, time reversible, time transverse invariant.
- spectral order in spatial, easy to extend to higher order in time.

< D > < 同 > < 三 >

BEC in rotating frame: generation of vortex lattices

Figure: (a) BEC at ENS (b) BEC at MIT

Q. Tang (INRIA & IECL, UdL)

Numerics for dynamics of NLSE

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

BEC in rotating frame: generation of vortex lattices

Figure: (a) BEC at ENS (b) BEC at MIT

NLSE/GPE with rotation term

$$i\partial_t \psi(\mathbf{x},t) = \left[-\frac{1}{2} \nabla^2 + V(\mathbf{x}) + \beta |\psi|^2 - \omega \mathbf{L}_z \right] \psi(\mathbf{x},t), \quad \mathbf{x} \in \mathbb{R}^d$$
(4)

▶ $d = 2, 3, \omega$: rotating frequency.

▶ $L_z = -i(x\partial_y - y\partial_x)$: z-component of the angular momentum $\mathbf{L} = \mathbf{x} \times (-i\nabla)$

◆ロ > ◆母 > ◆臣 > ◆臣 >

Numerical methods for rotating GPE/NLSE

Difficulty located in rotating term

$$L_z = -i(\boldsymbol{x}\boldsymbol{\partial}_{\boldsymbol{y}} - \boldsymbol{y}\boldsymbol{\partial}_{\boldsymbol{x}})$$

TSSP Cannot be simply extended to NLSE with rotation term!

Numerical methods for rotating GPE/NLSE

Difficulty located in rotating term

$$L_z = -i(\boldsymbol{x}\boldsymbol{\partial}_{\boldsymbol{y}} - \boldsymbol{y}\boldsymbol{\partial}_{\boldsymbol{x}})$$

TSSP Cannot be simply extended to NLSE with rotation term!

Some existing numerical methods

- ▶ Time splitting + ADI^a: extra splitting error, non-trivial to extent to higher order in time
- ► Time splitting + polar/cylindrical coordinates^b: low order accuracy in radial direction.
- Time splitting + Laguerre-Fourier-Hermite^c: not easy to be implemented

^aBao and Wang, JCP, 2006. ^bBao, Du and Zhang, SIAP, 2006. ^cBao, Li and Shen, SISC, 2009.

< D > < 同 > < 三 >

A rotating Lagrangian coordinate transformation¹

$$\blacktriangleright \quad \widetilde{\mathbf{x}} = \mathbf{A}^T(t)\mathbf{x} \quad \& \quad \phi(\widetilde{\mathbf{x}}, t) := \psi(\mathbf{x}, t) = \psi(\mathbf{A}(t)\widetilde{\mathbf{x}}, t),$$

$$\begin{split} \mathbf{A}(t) &= \begin{bmatrix} \cos(\omega t) & \sin(\omega t) \\ -\sin(\omega t) & \cos(\omega t) \end{bmatrix}, & \text{for } \mathbf{d} = 2 \\ \mathbf{A}(t) &= \begin{bmatrix} \cos(\omega t) & \sin(\omega t) & 0 \\ -\sin(\omega t) & \cos(\omega t) & 0 \\ 0 & 0 & 1 \end{bmatrix}, & \text{for } \mathbf{d} = 3. \end{split}$$

$$i\partial_t \phi(\widetilde{\mathbf{x}}, t) = \left[-\frac{1}{2} \nabla^2 + V(\mathbf{A}(t)\widetilde{\mathbf{x}}) + \beta |\phi|^2 \right] \phi(\widetilde{\mathbf{x}}, t), \qquad \widetilde{\mathbf{x}} \in \mathbb{R}^d.$$
(5)

TSSP

Step 1:
$$i\partial_t \phi = -\frac{1}{2}\nabla^2 \phi$$
, Step 2: $i\partial_t \phi(\widetilde{\mathbf{x}}, t) = \left[V(\mathbf{A}(t)\widetilde{x}) + \beta |\phi|^2\right] \phi$. (6)

Dynamics of Vortex lattice

< □ > < □ > < □ > < □ > < □ > < □ >

Recent development in dipolar BEC

Dipolar BEC: degenerate dipolar quantum gas²

same scattering length, the so-called contact interaction giver

Novel phenomena: e.g. Collapse dynamics³ —partially attractive & repulsive nature of

DDI

²A. Griesmaier et al, PRL, 05'; M. Lu et al PRL, 11'; K. Aikawa et al, PRL, 12'.

³The physics of dipolar bosonic quantum gases, T Lahaye et al, Rep. Prog. Phys., 09'

NLSE with nonlocal potential

$$i\partial_t \psi = \left[-\frac{1}{2} \nabla^2 + V(\mathbf{x}) + \beta |\psi|^2 + \lambda \Phi \right] \psi,$$

$$\Phi = \mathcal{U} * \rho := \mathcal{U} * |\psi|^2, \quad \mathbf{x} \in \mathbb{R}^d.$$
(8)

where

$$\mathcal{U}(\mathbf{x}) = \begin{cases} -(\mathbf{n} \cdot \mathbf{n})\delta(\mathbf{x}) - 3 \partial_{\mathbf{nn}} \left(\frac{1}{4\pi |\mathbf{x}|}\right), & 3D \text{ Dipolar}, \\ \frac{1}{2^{d-1}\pi} \frac{1}{|\mathbf{x}|}, & 2D/3D \text{ Coulomb}, \\ -\frac{1}{2\pi} \ln |\mathbf{x}|, & 2D \text{ Poisson.} \end{cases}$$
(9)

Fields of common interests

Bose-Einstein Condensates (Dipolar), Many-body system (Coulomb, Poisson)

Computational physics, chemistry, Density function theory, Surface physics etc.

Image: A matched black

Dynamics simulation

- ▶ Numerics: Time splitting method + Spectral method
- Key algorithm: Effective potential evaluation of Φ with fast-decaying smooth ρ

Difficulty in evaluation of Φ

(1) Nonlocal (2) Singularity: $\mathcal{U}(\mathbf{x})$ at $\mathbf{x} = 0$ and $\widehat{\mathcal{U}}(\mathbf{k})$ at $\mathbf{k} = 0$

Some existing solvers for the nonlocal potential

- Fast Fourier Transform (FFT)^a
- PDE/pseudo differential equation approach: boundary condition^b
- NonUniform FFT (NUFFT) based method: Fourier Transform^c

^aUeda et al, Phys. Rev. Lett., 08 ^bBao et al, JCP 10'; Zhang et al, JCP 11'; Zhang et al, CiCP, 14' ^cBao et al SISC 14'; Tang et al, JCP,15', CiCP 16'

(日)

NUFFT-based method

Ideas: Fourier transform in spherical/polar coordinates

$$\begin{split} \Phi(\mathbf{x}) &= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{i\,\mathbf{k}\cdot\mathbf{x}}\,\widehat{\mathcal{U}}(\mathbf{k})\,\widehat{\rho}(\mathbf{k})\,d\mathbf{k} \approx \frac{1}{(2\pi)^d} \int_{|\mathbf{k}| \leq P} e^{i\mathbf{k}\cdot\mathbf{x}}\,\widehat{\mathcal{U}}(\mathbf{k})\,\widehat{\rho}(\mathbf{k})\,d\mathbf{k} \\ &= \frac{1}{(2\pi)^d} \begin{cases} \int_0^P \int_0^{\pi} \int_0^{2\pi} e^{i\mathbf{k}\cdot\mathbf{x}}\,\widehat{\rho}(\mathbf{k})\,\widehat{\mathcal{U}}(\mathbf{k})\,|\mathbf{k}|^2\,\sin\theta\,d|\mathbf{k}|d\theta d\phi, \quad d=3, \\ \int_0^P \int_0^{2\pi} e^{i\mathbf{k}\cdot\mathbf{x}}\,\widehat{\rho}(\mathbf{k})\,\widehat{\mathcal{U}}(\mathbf{k})\,|\mathbf{k}|\,d|\mathbf{k}|d\phi, \qquad d=2, \end{cases} \\ \end{split}$$

$$\begin{aligned} & \left(\text{Coulomb/Dipolar:} \quad \widehat{\mathcal{U}}(\mathbf{k}) \sim 1/|\mathbf{k}|^2, \quad \text{if } d=3, \quad \widehat{\mathcal{U}}(\mathbf{k}) \sim 1/|\mathbf{k}| \quad \text{if } d=2. \end{cases} \right) \end{split}$$

Question: extension to the 2D Poisson potential??

$$\Phi(\mathbf{x}) \approx \frac{1}{(2\pi)^2} \int_{|\mathbf{k}| \le P} \frac{1}{|\mathbf{k}|^2} e^{i\mathbf{k} \cdot \mathbf{x}} \,\widehat{\rho}(\mathbf{k}) \, d\mathbf{k}, \qquad \mathbf{x} \in \mathbb{R}^2$$

Q. Tang (INRIA & IECL, UdL)

NUFFT-based method: Bao, Jiang, Tang, Zhang, JCP 15'

Idea

$$\Phi(\mathbf{x}) = \mathcal{U} * \rho = \mathcal{U} * \left[G_1(\mathbf{x}) + \left(\rho(\mathbf{x}) - G_1(\mathbf{x}) \right) \right] =: u_1(\mathbf{x}) + u_2(\mathbf{x}), \quad (10)$$

$$u_1(\mathbf{x}) = \mathcal{U} * G_1(\mathbf{x}),\tag{11}$$

$$u_2(\mathbf{x}) = \int_{\mathbb{R}^2} \widehat{\mathcal{U}}(\mathbf{k}) \left(\widehat{\rho^n} - \widehat{G_1} \right) d\mathbf{k} = \int_{\mathbb{R}^2} \frac{\widehat{\rho} - \widehat{G_1}}{|\mathbf{k}|} \frac{e^{i \, \mathbf{k} \cdot \mathbf{x}}}{|\mathbf{k}|} d\mathbf{k}.$$
 (12)

▲□▶ ▲□▶ ▲ □▶ ▲

NUFFT-based method: Bao, Jiang, Tang, Zhang, JCP 15'

Idea

$$\Phi(\mathbf{x}) = \mathcal{U} * \rho = \mathcal{U} * \left[G_1(\mathbf{x}) + \left(\rho(\mathbf{x}) - G_1(\mathbf{x}) \right) \right] =: u_1(\mathbf{x}) + u_2(\mathbf{x}), \quad (10)$$

$$u_1(\mathbf{x}) = \mathcal{U} * G_1(\mathbf{x}),\tag{11}$$

$$u_{2}(\mathbf{x}) = \int_{\mathbb{R}^{2}} \widehat{\mathcal{U}}(\mathbf{k}) \left(\widehat{\rho^{n}} - \widehat{G}_{1}\right) d\mathbf{k} = \int_{\mathbb{R}^{2}} \frac{\widehat{\rho} - \widehat{G}_{1}}{|\mathbf{k}|} \frac{e^{i \mathbf{k} \cdot \mathbf{x}}}{|\mathbf{k}|} d\mathbf{k}.$$
 (12)

Proper choice of function $G_1(\mathbf{x})$ s.t

▶ (1). u_1 : integrated analytically. (2). $\hat{G}_1(\mathbf{k})$: exponentially decay.

▶ (3).
$$w(\mathbf{k}) =: \frac{\widehat{\rho}(\mathbf{k}) - \widehat{G}_1(\mathbf{k})}{|\mathbf{k}|}$$
: smooth at $\mathbf{k} = 0$, \implies solve $u_2(\mathbf{x})$ by **NUFFT.**

Example: $G_1(\mathbf{x}) = \widehat{\rho}(\mathbf{0}) G(\mathbf{x}) - \widehat{(\mathbf{x}\rho)}(\mathbf{0}) \cdot \nabla_{\mathbf{x}} G(\mathbf{x}), \text{ with } G(\mathbf{x}) = \exp\left\{-|\mathbf{x}|^2/(2\sigma^2)\right\}/(2\pi\sigma^2).$

(13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)

Comparison: NUFFT vs DST (PDE approach with Dirichlet BC)

We take 3D DDI as an example, let $\mathbf{n} = (0, 0, 1)^T$, c = 1.4

$$\rho(\mathbf{x}) = e^{-|\mathbf{x}|^2/c^2} \Longrightarrow \quad \Phi(\mathbf{x}) = -\rho(\mathbf{x}) - 3 \,\mathbf{n}^T \mathbf{D} \,\mathbf{n} \tag{14}$$

Table: l^2 -errors of Φ on $\mathcal{D} = [-L, L]^3$ computed by **DST** (upper) & **NUFFT** (lower)

	h = 1	h = 1/2	h = 1/4	h = 1/8	
$\overline{L=8}$	6.919E-02	7.720E-02	8.124E-02	8.327E-02	
L = 16	2.709E-02	2.853E-02	2.925E-02	2.961E-02	
L = 32	1.008E-02	1.033E-02	1.046E-02	1.052E-02	
	h = 1	h = 1/2	h = 1/4	h = 1/8	
L = 8	3.428E-4	9.834E-12	1.601E-14	<1E-14	
L = 16	3.551E-4	1.143E-11	8.089E-15	<1E-15	

Image: A mathematical states of the state

Collapse dynamics for 3D dipolar BEC⁴: Bao, Tang, Zhang, CICP, 16.

⁴T. Lahaye et al, PRL, 08', Rep. Prog. Phys., 09'

Q. Tang (INRIA & IECL, UdL)

Numerics for dynamics of NLSE

• • • • • • • • • • • •

Dynamics of 3D dipolar BEC: Bao, Tang, Zhang, CICP, 16.

Tunability of the dipole: dipole orientation

 $\mathbf{n}(t) = (\cos(0.2t), 0, \sin(0.2t))^T.$

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Extenstion to rotating dipolar BEC

NLSE with rotation and nonlocal term

$$i\partial_t \psi(\mathbf{x},t) = \left[-\frac{1}{2} \nabla^2 + V(\mathbf{x}) + \beta \left| \psi \right|^2 + \lambda \mathcal{U} * \left| \psi \right|^2 - \omega L_z \right] \psi(\mathbf{x},t), \quad \mathbf{x} \in \mathbb{R}^d$$
(15)

Idea of the Algorithm

• Rotating Lagrangian coordinate transformation \implies eliminate L_z

$$i\partial_t \phi(\widetilde{\mathbf{x}}, t) = \left[-\frac{1}{2} \nabla^2 + V(\mathbf{A}(t)\widetilde{\mathbf{x}}) + \beta |\phi|^2 + \lambda \widetilde{\mathcal{U}} * |\phi|^2 \right] \phi$$
(16)

• Apply TSSP for the new GPE.

Step 1:
$$i\partial_t \phi(\tilde{\mathbf{x}}, t) = -\frac{1}{2} \nabla^2 \phi(\tilde{\mathbf{x}}, t),$$

Step 2: $i\partial_t \phi(\tilde{\mathbf{x}}, t) = \left[V(\mathbf{A}(t)\tilde{x}) + \beta |\phi|^2 + \lambda \tilde{\mathcal{U}} * |\phi|^2 \right] \phi(\tilde{\mathbf{x}}, t).$
(17)

(日)

• NUFFT-based algorithm for nonlocal term: $\tilde{\mathcal{U}} * |\phi|^2$.

Dynamics of vortex lattice in 2d rotating dipolar BEC ($\mathbf{n} = (1, 0, 0)^T$)

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Extenstion to rotating two component dipolar BECs⁵

 $\blacktriangleright\,$ Rotating two-component dipolar BEC: j=1,2

$$i\partial_t \psi_j(\mathbf{x},t) = \left[-\frac{1}{2} \nabla^2 + V_j(\mathbf{x}) - \Omega \mathbf{L}_z + \sum_{l=1}^2 \left(\beta_{jl} |\psi_l|^2 + \lambda_{jl} \, \mathcal{U} * |\psi_l|^2 \right) \right] \psi_j(\mathbf{x},t).$$
(18)

⁵Saito, Kawaguchi & Ueda, PRL, 09', 🛛 Tang, Zhang & Mauser, 16' □ > <♂ > <≧ > <≧ > <

Q. Tang (INRIA & IECL, UdL)

Numerics for dynamics of NLSE

Extenstion to rotating two component dipolar BECs⁵

Initial data: ground state under parameters

$$\mathbf{n} = (0, 0, 1), \gamma_x = \gamma_y = \gamma_z = 1, \Omega = 0, \beta_{11} = \beta_{22} = 103.58, \beta_{12} = \beta_{21} = \lambda_{12} = \lambda_{21} = 0, \lambda_{11} = \lambda_{22} = 82.864.$$

Dynamics: $\beta_{12} = \beta_{21} = 100$, $\lambda_{22} = 0$.

 5 Saito, Kawaguchi & Ueda, PRL, 09', Tang, Zhang & Mauser, $16' \square \rightarrow \langle \square \rightarrow \langle \square \rightarrow \langle \square \rightarrow \rangle$

Q. Tang (INRIA & IECL, UdL)

Outline

Numerics for NLSE/GPE

- Introduction
- GPE/NLSE with rotation term
- GPE/NLSE with nonlocal potential

2 Extension to fractional NLSE

3 Summary

Fractional nonlinear Schödinger equation (FNLSE)

$$i\partial_t \psi(\mathbf{x},t) = \left[\frac{1}{2} \left(-\nabla^2 + m^2\right)^s + V(\mathbf{x}) + \beta |\psi(\mathbf{x},t)|^2 + \lambda \Phi(\mathbf{x},t) - \omega L_z\right] \psi, \quad (19)$$

$$\Phi(\mathbf{x},t) = \mathcal{U} * |\psi|^2, \quad \mathbf{x} \in \mathbb{R}^d, \ t > 0 \quad (20)$$

▶ s > 0 : fractional order. $m \ge 0$: scaled particle mass.

Fractional kinetic operator defined via Fourier integral:

$$\left(-\nabla^2 + m^2\right)^s \psi = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{\psi}(\mathbf{k}) \left(|\mathbf{k}|^2 + m^2\right)^s e^{i\mathbf{k}\cdot\mathbf{x}} d\mathbf{k},\tag{21}$$

▶ U: Kernel of Coulomb potential or dipole potential.

$$\mathcal{U}(\mathbf{x}) = \begin{cases} -(\mathbf{n} \cdot \mathbf{n})\delta(\mathbf{x}) - 3\,\partial_{\mathbf{n}\mathbf{n}}\left(\frac{1}{4\pi|\mathbf{x}|}\right), & 3D \text{ Dipolar}, \\ -\frac{3}{2}\left(\partial_{\mathbf{n}_{\perp}\mathbf{n}_{\perp}} - n_{3}^{2}\nabla_{\perp}^{2}\right)\left(\frac{1}{2\pi|\mathbf{x}|}\right), & 2D \text{ Dipolar}, \\ \frac{1}{2^{d-1}\pi}\frac{1}{|\mathbf{x}|}, & 2D/3D \text{ Coulomb.} \end{cases}$$
(22)

< □ > < 同 > <

⁶N. Laskin, Phys. Lett. A., 00', Phys. Rev. E, 02'

⁷E. Lenzmann, Math. Phys. Anal. Geom., 07', etc.

⁸I. Carusotto & C. Ciuti, Rev. Mod. Phys., 13'.

Q. Tang (INRIA & IECL, UdL)

Fractional nonlinear Schödinger equation (FNLSE)

$$i\partial_t \psi(\mathbf{x},t) = \left[\frac{1}{2} \left(-\nabla^2 + m^2\right)^s + V(\mathbf{x}) + \beta |\psi(\mathbf{x},t)|^2 + \lambda \Phi(\mathbf{x},t) - \omega L_z\right] \psi, \quad (19)$$

$$\Phi(\mathbf{x},t) = \mathcal{U} * |\psi|^2, \quad \mathbf{x} \in \mathbb{R}^d, \ t > 0 \quad (20)$$

▶ s > 0 : fractional order. $m \ge 0$: scaled particle mass.

Fractional kinetic operator defined via Fourier integral:

$$\left(-\nabla^2 + m^2\right)^s \psi = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{\psi}(\mathbf{k}) \left(|\mathbf{k}|^2 + m^2\right)^s e^{i\mathbf{k}\cdot\mathbf{x}} d\mathbf{k},\tag{21}$$

N. Laskin⁶: Generalise Feynman path integral to Lévy-like quantum paths (λ = ω = 0)
 Model for boson stars:⁷ s = 1/2, ω = 0, U kernel of Coulomb potential
 Model for polariton condensates with mass dependent velocity⁸:

$$\frac{1}{2} \left(-\nabla^2 + m^2 \right)^s \psi \quad \to \quad q * \psi, \quad \text{with} \quad \mathcal{F}(q)(\mathbf{k}) = \frac{|\mathbf{k}|^2}{m(\mathbf{k})} \tag{23}$$

< □ > < 同 > <

⁶N. Laskin, Phys. Lett. A., 00', Phys. Rev. E, 02'

⁷E. Lenzmann, Math. Phys. Anal. Geom., 07', etc.

⁸I. Carusotto & C. Ciuti, Rev. Mod. Phys., 13'.

Q. Tang (INRIA & IECL, UdL)

Fractional nonlinear Schrödinger equation

Two conserved quantities: mass and energy

$$\mathcal{N}(t) = \int_{\mathbb{R}^d} |\psi(\mathbf{x}, t)|^2 d\mathbf{x},$$
(24)

< □ > < 同 > < 三 >

$$\mathcal{E}(t) = \int_{\mathbb{R}^d} \left[\frac{1}{2} \psi^* \left(-\nabla^2 + m^2 \right)^s \psi + V(\mathbf{x}) |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{\lambda}{2} \Phi |\psi|^2 - \omega \psi^* L_z \psi \right] d\mathbf{x}.$$
(25)

Ground states exists ??

Ground state $\phi_q(\mathbf{x})$: non-convex minimization problem

$$\phi_g(\mathbf{x}) = \arg\min_{\phi \in S} \mathcal{E}(\phi), \quad \text{with} \quad S = \{\phi \mid \|\phi\| = 1, \mathcal{E}(\phi) < \infty\}.$$
(26)

 $V(\mathbf{x})$: harmonic potential

(i) $s > 1 \& \beta \ge 0 \Longrightarrow \exists$ ground states for $\forall \Omega > 0$ if one of the following holds: (A) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type.

(B) For 3D DDI: $-\beta/2 \le \lambda \le \beta$.

(C) For 2D DDI: (c1) $\lambda = 0$. (c2) $\lambda > 0$ and $n_3 = 0$. (c3) $\lambda < 0$ and $n_3^2 \ge \frac{1}{2}$.

(ii) $\Omega = 0, \ \beta \ge 0 \Longrightarrow \exists$ ground states for $\forall \ s > 0$ if one of following holds (1) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type and $\lambda \ge 0$. (2) (B) or (C) in (i) holds.

Image: A mathematical states of the state

 $V(\mathbf{x})$: harmonic potential

(i) $s > 1 \& \beta \ge 0 \Longrightarrow \exists$ ground states for $\forall \Omega > 0$ if one of the following holds: (A) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type.

- (B) For 3D DDI: $-\beta/2 \le \lambda \le \beta$.
- (C) For 2D DDI: (c1) $\lambda = 0$. (c2) $\lambda > 0$ and $n_3 = 0$. (c3) $\lambda < 0$ and $n_3^2 \ge \frac{1}{2}$.
- (ii) $\Omega = 0, \ \beta \ge 0 \implies \exists$ ground states for $\forall \ s > 0$ if one of following holds (1) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type and $\lambda \ge 0$. (2) (B) or (C) in (i) holds.

Non-existence results when 0 < s < 1:

(A) $\forall \Omega > 0, \lambda = 0.$

(B) $\forall \Omega > 0$, $\mathcal{U}(\mathbf{x})$ is a Coulomb-type interaction or a 3D DDI.

(C) $\mathcal{U}(\mathbf{x})$ is the 2D DDI, $\forall \Omega > \Omega_0 = c |\lambda|^{\frac{2}{5}}$ with $c = \sqrt[5]{(2\pi^2 + 1)^4 \gamma^6/(48e\pi^9)}$.

(日) (同) (日) (日)

 $V(\mathbf{x})$: harmonic potential

(i) $s > 1 \& \beta \ge 0 \Longrightarrow \exists$ ground states for $\forall \Omega > 0$ if one of the following holds: (A) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type.

- (B) For 3D DDI: $-\beta/2 \le \lambda \le \beta$.
- (C) For 2D DDI: (c1) $\lambda = 0$. (c2) $\lambda > 0$ and $n_3 = 0$. (c3) $\lambda < 0$ and $n_3^2 \ge \frac{1}{2}$.
- (ii) $\Omega = 0, \ \beta \ge 0 \implies \exists$ ground states for $\forall \ s > 0$ if one of following holds (1) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type and $\lambda \ge 0$. (2) (B) or (C) in (i) holds.

Non-existence results when 0 < s < 1:

(A) $\forall \Omega > 0, \lambda = 0.$

(B) $\forall \Omega > 0$, $\mathcal{U}(\mathbf{x})$ is a Coulomb-type interaction or a 3D DDI.

(C) $\mathcal{U}(\mathbf{x})$ is the 2D DDI, $\forall \Omega > \Omega_0 = c |\lambda|^{\frac{2}{5}}$ with $c = \sqrt[5]{(2\pi^2 + 1)^4 \gamma^6/(48e\pi^9)}$.

Open Question

How about the smallest possible Ω_0 ?

Q. Tang (INRIA & IECL, UdL)

 $V(\mathbf{x})$: harmonic potential

(i) $s > 1 \& \beta \ge 0 \Longrightarrow \exists$ ground states for $\forall \Omega > 0$ if one of the following holds: (A) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type.

- (B) For 3D DDI: $-\beta/2 \le \lambda \le \beta$.
- (C) For 2D DDI: (c1) $\lambda = 0$. (c2) $\lambda > 0$ and $n_3 = 0$. (c3) $\lambda < 0$ and $n_3^2 \ge \frac{1}{2}$.
- (ii) $\Omega = 0, \ \beta \ge 0 \implies \exists$ ground states for $\forall \ s > 0$ if one of following holds (1) $\mathcal{U}(\mathbf{x})$ reads as Coulomb-type and $\lambda \ge 0$. (2) (B) or (C) in (i) holds.

Non-existence results when 0 < s < 1:

(A) $\forall \Omega > 0, \lambda = 0.$

(B) $\forall \Omega > 0$, $\mathcal{U}(\mathbf{x})$ is a Coulomb-type interaction or a 3D DDI.

(C) $\mathcal{U}(\mathbf{x})$ is the 2D DDI, $\forall \Omega > \Omega_0 = c |\lambda|^{\frac{2}{5}}$ with $c = \sqrt[5]{(2\pi^2 + 1)^4 \gamma^6/(48e\pi^9)}$.

Open Question

How about the smallest possible Ω_0 ? Can the constant Ω_0 be relaxed to 0?

Q. Tang (INRIA & IECL, UdL)

Ground states: rotating FNLSE with $\lambda = 0, \beta = 100$ and s = 1.2

Figure: Contour plots of the density $|\phi_g(\mathbf{x})|^2$ (superdispersion: s > 1).

(日)

Dynamics simulation

Rotating Lagrangian coordinates transformation: $\widetilde{\mathbf{x}} = \mathbf{A}^T(t)\mathbf{x}$

F-NLSE in rotating Lagrangian coordinate

$$i\partial_t \phi(\widetilde{\mathbf{x}}, t) = \left[\frac{1}{2}(-\nabla^2 + m^2)^s + V(\mathbf{A}(t)\widetilde{\mathbf{x}}, t) + \beta |\phi|^2 + \lambda \widetilde{\Phi}(\widetilde{\mathbf{x}}, t)\right] \phi(\widetilde{\mathbf{x}}, t) \quad (27)$$

TSSP + NUFFT

Step 1:
$$i\partial_t \phi(\widetilde{\mathbf{x}}, t) = \frac{1}{2} (-\nabla^2 + m^2)^s,$$
 (28)
Step 2: $i\partial_t \phi(\widetilde{\mathbf{x}}, t) = \left[V(\mathbf{A}(t)\widetilde{\mathbf{x}}) + \beta |\phi(\widetilde{\mathbf{x}}, t)|^2 + \lambda \widetilde{\Phi}(\widetilde{\mathbf{x}}, t) \right] \phi(\widetilde{\mathbf{x}}, t),$ (29)

Э

・ロト ・四ト ・ヨト ・ヨト

Dynamics of vortex cluster: initial: $s = s_0 = 1.2$, $\Omega = 1.35$, $\beta = 100$ and $\lambda = 0$

Perturb fractional order: s = 0.7

(日)

Dynamics of vortex cluster: initial: $s = s_0 = 1.2$, $\Omega = 1.35$, $\beta = 100$ and $\lambda = 0$

Turn on DDI: $\lambda = 80$, $\mathbf{n} = (1, 0, 0)^T$.

A B >
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Numerics for NLSE/GPE

- Introduction
- GPE/NLSE with rotation term
- GPE/NLSE with nonlocal potential

2 Extension to fractional NLSE

Summary

- Numerics on dynamics simulation of NLSE with nonlocal potential & rotation term
- Rotating Lagrangian Coordinate transformation technique.
- NUFFT-based solver for non-local potential
- Extension to fractional NLSE: decoherence & chaotic dynamics

< □ > < 🗇 >

Summary

- Numerics on dynamics simulation of NLSE with nonlocal potential & rotation term
- Rotating Lagrangian Coordinate transformation technique.
- NUFFT-based solver for non-local potential
- Extension to fractional NLSE: decoherence & chaotic dynamics

Thank You For Attention !

Image: A mathematical states of the state