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Single vortex ring : a movie example

c© D. Kleckner & W. Irvine, Nature, 2013
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Helmholtz master paper on vorticity

Vortex rings :

Leapfrogging :
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Leapfrogging vortices : a movie example

c©T.T. Lim
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Leapfrogging vortices : a movie example

B. Balog, Q. Kriaa, S. Yehudi
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Existence of vortex rings : a practical point of view
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Euler equation for incompressible fluids

The 3 dimensional Euler equations read{
∂t v + (v · ∇)v = −∇p,
div v = 0,

where

v : R3 × R→ R3 is the velocity field,

p : R3 × R→ R is the pressure field.

For a number of physically meaningful flows, an important quantity is given by the vorticity

ω = curl v

which satisfies
∂tω + v∇ω = ω∇v .

The velocity v can always be recovered from the vorticity ω through the Biot-Savart law

v(t, x) =
1

4π

∫
R3

y − x

‖y − x‖3
× ω(t, y) dy .
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Gross-Pitaevskii equation for quantum fluids

The 3 dimensional Gross-Pitaevskii equation reads

i∂t u −∆u =
1

ε2
u(1− |u|2)

where

u : R3 × R→ C is the complex field function

ε > 0 is a given length-scale.

In the framework of thin vortex tubes, it bears some resemblance with the Euler equation.
An important quantity here is given by the vorticity

Ju =
1

2
curl j(u) = curl (u ×∇u) .

In contrast with the Euler equation, the “current” j(u) is not fully determined by the Jacobian Ju
since an additional degree of freedom is present through the phase:

u = ρ exp(iϕ) =⇒ j(u) = ρ2∇ϕ, ρ ≡ 1 =⇒ Ju =
1

2
curl∇ϕ ≡ 0.
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On the analogy between GP and Euler

For axisymmetric solutions of (GP) we have the equation for the vorticity

d

dt

∫
H

Ju ϕ drdz = F(∇u, ϕ),

where

F(∇u, ϕ) := −
∫
H
εij
∂k r

r
(∂j u, ∂k u)∂iϕ+

∫
H
εij (∂j u, ∂k u)∂ikϕ.

For the axisymmetric Euler equation we have

d

dt

∫
H
ω ϕ drdz = F(v , ϕ).

In contrast to Euler, for (GP) we also need an equation for the “compressible” part of j(u) :

ε∂t
|u|2 − 1

ε
=

2

r
div(rj(u)).
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Existence of vortex rings : a mathematical point of view

One looks for cylindrically symmetric traveling wave solutions of the Euler equation.
These can be obtained by the variational problem

maximize E :=

∫
H

∫
H
ω(x)G(x , x ′)ω(x ′) dνdν′

under constrains


P :=

∫
H

r2ωdrdz = given Cst,

ω

r
is a transport measure of

ω0

r
, where ω0 is given.

Here, H := {(r , z), r ≥ 0, z ∈ R}, dν = r dr dz and G refers to the Green function of the Laplacian
in cylindrical coordinates.

Important contributions by Arnold 1964, Fraenkel-Berger 1974, Benjamin 1976, Friedman-Turkington
1981, Burton 2003.

For the Gross-Pitaevskii, a related strategy is given by

minimize E :=

∫
H

[
1

2
|∇u|2 +

1

4ε2
(|u|2 − 1)2] rdrdz

under constrain P :=

∫
H

r2Ju drdz = given Cst.

Analysis by Bethuel-Orlandi-S. 2003.
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Leapfrogging for GP : notion of reference vortex tubes
Let C be a smooth oriented closed curve in R3 and let ~J be the vector distribution corresponding
to 2π times the circulation along C, namely

〈 ~J , ~X 〉 = 2π

∫
C
~X · ~τ ∀~X ∈ D(R3,R3),

where ~τ is the tangent vector to C. To the “current density” ~J is associated the “induction” ~B,
which satisfies the equations

div(~B) = 0, curl(~B) = ~J in R3,

and is obtained from ~J by the Biot-Savart law. To ~B is then associated a vector potential ~A,
which satisfies

div(~A) = 0, curl(~A) = ~B in R3,

so that
−∆~A = curl curl(~A) = ~J in R3.

For a ∈ H, let Ca be the circle of radius r(a) parallel to the xy -plane in R3, centered at the
point (0, 0, z(a)), and oriented so that its binormal vector points towards the positive z-axis. By
cylindrical symmetry, we may write the corresponding vector potential as

~Aa ≡ Aa(r , z)~eθ.

The expression of the vector laplacian in cylindrical coordinates yields the equation for the scalar
function Aa :  −

(
∂2

r +
1

r
∂r −

1

r2
+ ∂2

z

)
Aa = 2πδa in H

Aa = 0 on ∂H,
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Leapfrogging for GP : notion of reference vortex tubes
or equivalently  −div

(
1

r
∇ (rAa)

)
= 2πδa in H

Aa = 0 on ∂H,
which can be integrated explicitly in terms of complete elliptic integrals.
Up to a constant phase factor, there exists a unique unimodular map u∗a ∈ C∞(H \ {a}, S1) ∩
W 1,1

loc (H, S1) such that

r(iu∗a ,∇u∗a ) = rj(u∗a ) = −∇⊥(rAa).

In the sense of distributions in H, we have{
div(rj(u∗a )) = 0
curl(j(u∗a )) = 2πδa,

and the function u∗a corresponds therefore to a singular vortex ring. In order to describe a reference
vortex ring for the Gross-Pitaevskii equation, we shall make the notion of core more precise. In R2,
the Gross-Pitaevskii equation possesses a distinguished stationary solution called vortex : in polar
coordinates, it has the special form

uε(r , θ) = fε(r) exp(iθ)

where the profile fε : R+ → [0, 1] satisfies fε(0) = 0, fε(+∞) = 1, and

∂rr fε +
1

r
∂r fε −

1

r2
fε +

1

ε2
fε(1− f 2

ε ) = 0.

The reference vortex ring associated to the point a ∈ H is defined to be

u∗ε,a(r , z) = fε
(
‖(r , z)− a‖

)
u∗a (r , z).
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Leapfrogging for GP : notion of reference vortex tubes

More generally, when a = {a1, · · · , an} is a family of n distinct points in H, we set

u∗a (r , z) :=
n∏

k=1

u∗ak
(r , z), and u∗ε,a(r , z) :=

n∏
k=1

u∗ε,ak
(r , z),

where the products are meant in C. The field u∗ε,a hence corresponds to a collection of n reference
vortex rings (sharing the same axis and oriented in the same direction), and is the typical kind of
object which we shall study the evolution of. It can be shown that

∥∥∥Ju∗ε,a − π
n∑

i=1

δai

∥∥∥
Ẇ−1,1(H)

= O(ε) as ε→ 0.

Finally, classical computations lead to

E
(
u∗ε,a

)
= Hε(a1, · · · , an) + o(1),

where

Hε(a1, · · · , an) :=
n∑

i=1

r(ai )
[
π log

( r(ai )
ε

)
+ γ + π

(
3 log(2)− 2

)
+ π

∑
j 6=i

Aaj (ai )
]
,

and γ is a numerical constant.
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The ODE of leapfrogging

We consider the associated hamiltonian system

(LF ) ȧi (t) =
1

π
J∇ai Hε

(
a1(t), · · · , an(t)

)
, i = 1, · · · , n,

where, with a slight abuse of notation,

J :=

(
0 − 1

r(ai )
1

r(ai )
0

)
.

In addition to the hamiltonian Hε, the system (LF) also conserves the momentum

P(a1, · · · , an) := π
n∑

k=1

r2(ak ),

which may be interpreted as the total area of the disks determined by the vortex rings. As a matter
of fact, also note that

P(u∗ε,a) :=

∫
H

Ju∗ε,a r2 drdz = π

n∑
k=1

r2(ak ) + o(1),

as ε → 0, and that, at least formally, the momentum P is a conserved quantity for the Gross-
Pitaevskii equation.
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Mathematical convergence results

We consider axisymmetric initial data u0
ε for (GP), we write

a0
i,ε = a0 +

b0
i,ε√
|log ε|

and denote by as
i,ε the corresponding solution of (LF )ε. We let S > 0 and fix a constant K > 0

such that |bs
i,ε| ≤ K for all s ∈ [0, S].

We define∥∥∥∥Ju0
ε − π

∑n
i=1 δa0

i,ε

∥∥∥∥
Ẇ−1,1

=: r0
a (concentration scale)[

E(u0
ε)− Hε(a0

1,ε, · · · , a0
n,ε)
]+

=: Σ0
a (energy excess).

Theorem (Jerrard-S.)

Under the above assumptions, there exist constants ε0, σ0,C0 (depending only on a0, n,K) such
that if ε ≤ ε0 and if Σ0

a + r0
a |log ε| ≤ σ0, then

r s
a :=

∥∥∥∥∥Jus
ε − π

n∑
i=1

δas
i,ε

∥∥∥∥∥
Ẇ−1,1

≤ C0

(
r0
a +

Σ0
a√
|log ε|

+
Cδ

|log ε|1−δ

)
exp(C0s)

for s ∈ [0, S], where δ > 0 is arbitrary.
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Analysis of the leapfrogging system for two vortex rings

When n = 2, the system (LF ) may be analyzed in great details. Since P is conserved and since
Hε is invariant by a joint translation of both rings in the z direction, it is classical to introduce the
variables (η, ξ) by {

r2(a1) = P
2
− η

r2(a2) = P
2

+ η
, ξ = z(a1)− z(a2),

and to draw the level curves of the function Hε in those two real variables, the momentum P being
considered as a parameter.

−4 −2 0 2 4

−1

−0.5

0

0.5

P = 2

ξ

η

| log ε| = 10

Attract then repel

a pair of traveling vortices
Equilibria corresponding to

Leapfrogging

Pass through

O(

√
log | log ε|√
| log ε|

)

Size of order O(1)
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Collision of vortex rings

c© T.T. Lim17 / 22



Strategy of the proof
We rely mostly on the already mentioned evolution equation for the Jacobian

d

ds

∫
H

Ju ϕ drdz =
F(∇u, ϕ)

|log ε|
,

where

F(∇u, ϕ) := −
∫
H
εij
∂k r

r
(∂j u, ∂k u)∂iϕ+

∫
H
εij (∂j u, ∂k u)∂ikϕ.

We wish to prove that

Ju remains well concentrated around a sum of Dirac masses

F(∇u, ϕ) is a good approximation of the ode (LF)ε.

It is clear that both are not independent and we shall use a common Gronwall argument on r s
a . We

will decompose (
∂j u, ∂k u

)
= ∂j |u|∂k |u|+

j(u)j

|u|
j(u)k

|u|

= ∂j |u|∂k |u|+
(

j(u)

|u|
− j\

)
j

(
j(u)

|u|
− j\

)
k

+

(
j(u)

|u|
− j\

)
j

(
j\
)

k
+

(
j(u)

|u|
− j\

)
k

(
j\
)

j

+
(

j\
)

j

(
j\
)

k
,

where j\ is a “suitable” approximation of j(u).
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Some elements in the proof: excess energy and concentration

Proposition

There exist constants ε1, σ1,C1 > 0, depending only on n, r0 and K, with the following
properties. If ε ≤ ε1 and

Σr
a := Σa + ra|log ε| ≤ σ1|log ε|,

then there exist ξ1, · · · , ξn in H such that

rξ := ‖Ju − π
n∑

i=1

δξi
‖Ẇ−1,1 ≤ C1ε|log ε|C1 eC1Σr

a ,

and ∫
H\∪i B(ξi ,ε

2
3 )

r

[
eε(|u|) +

∣∣ j(u)

|u|
− j(u∗ξ )

∣∣2] ≤ C1

(
Σξ + ε

1
3 |log ε|C1 eC1Σr

a
)
,

where we have written
Σξ := [E(u)− Hε(ξ1, · · · , ξn)]+ .

Moreover,
Σξ ≤ Σa + C1ra|log ε|+ C1ε|log ε|C1 eC1Σr

a .

Note the pointwise identity

eε(u) =
1

2
|j(u∗ξ )|2 + j(u∗ξ )

( j(u)

|u|
− j(u∗ξ )

)
+ eε(|u|) +

1

2

∣∣ j(u)

|u|
− j(u∗ξ )

∣∣2.
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Some elements in the proof: approximation including the core

Idea : smoothen u∗ξ not at scale ε but at the larger scale rξ (i.e. at the best known localization

scale). It actually suffices to regularize j(u∗ξ ), we call it j\(u∗ξ ).

Proposition

In addition to the statement of the previous Proposition,∫
H
r

[
eε(|u|) +

∣∣ j(u)

|u|
− j\(u∗ξ )

∣∣2] ≤ C1

(
Σr

a + log |log ε|
)
.

eε(u) =
1

2
|j\(u∗ξ )|2 + j\(u∗ξ )

( j(u)

|u|
− j\(u∗ξ )

)
+ eε(|u|) +

1

2

∣∣ j(u)

|u|
− j\(u∗ξ )

∣∣2.
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Some elements in the proof: get rid of the main translation
Recall that

Hε(a1, · · · , an) :=
n∑

i=1

r(ai )
[
π log

( r(ai )
ε

)
+ γ + π

(
3 log(2)− 2

)
+ π

∑
j 6=i

Aaj (ai )
]
,

and write

ai :=
(

r0 +
r(bi )√
|log ε|

, z0 +
z(bi )√
|log ε|

)
, i = 1, · · · , n.

Then
Hε(a1, · · · , an) = Γε(r0, n) + Wε,r0 (b1, · · · , bn) + o(1) as ε→ 0, (1)

where

Wε,r0 (b1, · · · , bn) = π
n∑

i=1

r(bi )
√
|log ε| − πr0

∑
i 6=j

log |bi − bj |. (2)

Also, expansion of the squares leads directly to

P(a1, · · · , an) = πnr2
0 + 2πr0

n∑
i=1

r(bi )√
|log ε|

+ π
n∑

i=1

r(bi )
2

|log ε|
,

and therefore(
Hε −

|log ε|
2r0

P
)

(a1, · · · , an) = −
π

2
nr0|log ε|+ Γε(r0, n) + πr0W (b1, · · · , bn) + o(1), as ε→ 0,

where

W (b1, · · · , bn) := −
∑
i 6=j

log |bi − bj | −
1

2r2
0

n∑
i=1

r(bi )
2.
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Some elements in the proof: get rid of the main translation

Proposition

For σ sufficiently small, if

Σa + |Hε(a1, · · · , an)− Hε(ξ, · · · , ξn)| ≤ σ|log ε|,

then

Σξ ≤ 2Σa + C

[
ra

√
|log ε|+

1

|log ε|
+ |log ε| |P(u)− P(a1, · · · , an)|

]
For a quantity f write δf := |f (a1, · · · , an)− f (ξ1, · · · , ξn)|. By the triangle inequality we have

δHε ≤ δ
(

Hε −
|log ε|

2r0
P

)
+
|log ε|

2r0
δP,

and also
δP ≤ |P(u)− P(ξ1, · · · , ξn)|+ |P(u)− P(a1, · · · , an)| .

In view of the discussion in the previous slide

δ

(
Hε −

|log ε|
2r0

P

)
≤ C |(ξ1 − a1, · · · , ξn − an)|

√
|log ε|.

We also have a good control on P since it involves only the Jacobian :

|log ε|
2r0

|P(u)− P(ξ1, · · · , ξn)| ≤
C

2r0

(1 + Σξ)2

|log ε|
≤

C

2r0

(1 + Σa + δHε)2

|log ε|

and we may then absorb the last term involving δHε in the left-hand side above.
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