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Single vortex ring : a movie example

@© D. Kleckner & W. Irvine, Nature, 2013
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Helmholtz master paper on vorticity

Vortex rings :

Hence #n a eircular vortex-filament of very small section in an in-
definitely extended fluid, the centre of gravity of the section has, from
the commencement, an approzimately constant and verygreat velocity
parallel to the azis of the vortex-ring,and this is directed towards the
side to whick the fluid flows through the ring.

Leapfrogging :

We can now see generally how two ring-formed vortex-filaments
having the same axis would mutually affect each other, since
each, in addition to its proper motion, has that of its elements
of fluid as produced by the other. If they have the same direc-
tion of rotation, they travel in the same direction ; the foremost
widens and travels more slowly, the pursuer shrinks and travels
faster, till finally, if their velocities are not too different, it over-
takes the first and penetrates it. Then the same game goes on
in the opposite order, so that the rings pass through each other

altcrnate]y.
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Leapfrogging vortices : a movie example

©T.T. Lim
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Leapfrogging vortices : a movie example

B. Balog, Q. Kriaa, S. Yehudi




Existence of vortex rings : a practical point of view

Professor Tait’s plan of exhibiting smoke-rings is as follows :—
A large rectangular box, open at one side, has a circular hole
of 6 or 8 inches diameter cut in the opposite side. A common
rough packing-box of 2 feet cube, or thereabout, will answer the
purpose very well. The open side of the box is closed by a stout
towel or piece of cloth, or by a sheet of india-gubber stretched
across it. A blow on this flexible side causes a circular vortex
ring to shoot out from the hole on the other side. The vortex
rings thus generated are visible if the box is filled with smoke.
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Euler equation for incompressible fluids

The 3 dimensional Euler equations read

Otv+ (v-V)v = —Vp,
divv =0,

where
o v: R3 xR — R3 is the velocity field,
o p: R¥ xR — R is the pressure field.

For a number of physically meaningful flows, an important quantity is given by the vorticity
w = curlv

which satisfies
Otw + vVw = wVv.

The velocity v can always be recovered from the vorticity w through the Biot-Savart law

v(t,x) = i/ YTX w(t,y)dy.

ar Jes lly = x?
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Gross-Pitaevskii equation for quantum fluids

The 3 dimensional Gross-Pitaevskii equation reads
O — Au = S u(1 2
iOru — u—g—zu( — |ul?)

where
o u: R3 xR — C is the complex field function

@ ¢ > 0 is a given length-scale.

In the framework of thin vortex tubes, it bears some resemblance with the Euler equation.
An important quantity here is given by the vorticity

Ju= %curlj(u) = curl (u x Vu).

In contrast with the Euler equation, the “current” j(u) is not fully determined by the Jacobian Ju
since an additional degree of freedom is present through the phase:

1
u=pexp(ip) = j(u) = p*Vo, p=1=—= Ju= Ecurl Ve =0.
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On the analogy between GP and Euler

For axisymmetric solutions of (GP) we have the equation for the vorticity

d
—/Jugodrdz:}'(Vu,cp),
dt Ju
where 9
r
.F(VU,Lp) = —/Hﬂaij%(aju,aku)((‘);(p-i-Aﬂ&y(aju,aku)aikw.

For the axisymmetric Euler equation we have

%/Hw@drdz = F(v, ).

In contrast to Euler, for (GP) we also need an equation for the “compressible” part of j(u) :

uf? —1

£

£ = %div(rj(u)).
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Existence of vortex rings : a mathematical point of view

One looks for cylindrically symmetric traveling wave solutions of the Euler equation.
These can be obtained by the variational problem

maximize E:://w(x)G(x,x')w(x')dudl/
H JH

= / r’wdrdz = given Cst,
H
w0
is a transport measure of —, where wy is given.
r

under constrains

~1€

Here, H := {(r,z), r > 0,z € R}, dv = rdrdz and G refers to the Green function of the Laplacian
in cylindrical coordinates.

Important contributions by Arnold 1964, Fraenkel-Berger 1974, Benjamin 1976, Friedman-Turkington
1981, Burton 2003.

For the Gross-Pitaevskii, a related strategy is given by
L 1 2 1 2 2
minimize E := [ [=|Vu|® 4+ —(|u]* — 1)°] rdrdz
H 2 462
under constrain P := / r? Ju drdz = given Cst.
H
Analysis by Bethuel-Orlandi-S. 2003.
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Leapfrogging for GP : notion of reference vortex tubes
Let C be a smooth oriented closed curve in R3 and let 7 be the vector distribution corresponding
to 27 times the circulation along C, namely

(T, X) = /x vX € D(R3,R?),

where 7 is the tangent vector to C. To the “current density” J is associated the “induction” B,
which satisfies the equations

div(B)=0, cwl(B)=J inR3

and is obtained from J by the Biot-Savart law. To B is then associated a vector potential A
which satisfies . . =

div(A) = 0, curl(A) = B in R3,
so that . .

—AA =curlcurl(A) = F  inR3.

For a € H, let C, be the circle of radius r(a) parallel to the xy-plane in R3, centered at the
point (0,0, z(a)), and oriented so that its binormal vector points towards the positive z-axis. By
cylindrical symmetry, we may write the corresponding vector potential as

As = As(r, 2)8.

The expression of the vector laplacian in cylindrical coordinates yields the equation for the scalar
function A, :
1 1
—(83+78,——2+8§)A3:27r63 in H
r r
A;=0 on JOH,
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Leapfrogging for GP : notion of reference vortex tubes
or equivalently
1
—div (*V (rAa)> = 2md, in H
r
A:=0 on OH,

which can be integrated explicitly in terms of complete elliptic integrals.
Up to a constant phase factor, there exists a unique unimodular map u¥ € C®°(H\ {a},S') N

WI})’CI(H, S1) such that
r(iu},Vuy)=rj(u}) = —Vl(rAa).
In the sense of distributions in H, we have
div(rj(u7)) =0
curl(j(u})) = 2n6a,

and the function u} corresponds therefore to a singular vortex ring. In order to describe a reference
vortex ring for the Gross-Pitaevskii equation, we shall make the notion of core more precise. In R2?,
the Gross-Pitaevskii equation possesses a distinguished stationary solution called vortex : in polar
coordinates, it has the special form

e (r, 0) = £ (r) exp(i6)
where the profile f; : R* — [0, 1] satisfies z(0) = 0, fz(+o0) = 1, and
1 1 1
3rrfa + *arfs - jfs + 7&(1 - f52) =0.
r r €
The reference vortex ring associated to the point a € H is defined to be
uZ o(r,2) = £ (||(r,2) — all) u3 (r, 2).
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Leapfrogging for GP : notion of reference vortex tubes

More generally, when a = {a1,--- ,an} is a family of n distinct points in H, we set
n n
ui(rz):=[Jus(r2), and uZ(r,2):=]]ula(r2),
k=1 k=1

where the products are meant in C. The field u? , hence corresponds to a collection of n reference
vortex rings (sharing the same axis and orlented in the same direction), and is the typical kind of
object which we shall study the evolution of. It can be shown that

n
HJu:."a — WZ(S;I-
i=1

Finally, classical computations lead to

E(u;,a) = HE(ah to aa") + 0(1)7

= O(e) ase—0.

W—1.1(H)

where

n

He(a1, -+ ,an) ::Zr(a;)[ﬂlog( ))+'y+7r(3|og(2)—2 +7TZASJ(3 ],

i=1 J#i

and ~y is a numerical constant.
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The ODE of leapfrogging
We consider the associated hamiltonian system
1
(LF) 3i(t) = ~IVaH: (a1(t),+  an(1)), i=1,--.,n

where, with a slight abuse of notation,

0 __1
J:= < 1 r(af)>.
e

In addition to the hamiltonian Hc, the system (LF) also conserves the momentum
n
P(a1, -+ ,an) == Z r?(ax),
k=1

which may be interpreted as the total area of the disks determined by the vortex rings. As a matter
of fact, also note that

n
P(uZ ;) = /H Jug, 2 drdz = TFZ r?(ax) + o(1),
k=1

as ¢ — 0, and that, at least formally, the momentum P is a conserved quantity for the Gross-
Pitaevskii equation.
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Mathematical convergence results
We consider axisymmetric initial data u for (GP), we write

0
0 ie

0 — 04 e
e V/|loge]
and denote by a? _ the corresponding solution of (LF):. We let S > 0 and fix a constant K > 0
such that |b? | < K for all s € [0, S].
We define
Jug -m 27:1 63[.)

° =:r (concentration scale)
W—1.1

+
° [E(us) Hs(a1 R ,3275)] =30 (energy excess).

Theorem (Jerrard-S.)

Under the above assumptions, there exist constants £g, oo, Co (depending only on a% n K ) such
that if e < g and if £ + r|loge| < o9, then

n ZO
Jui — wZéaI;E <G <rg + i + Cs — | exp(Cos)
i=1 -1t

V/|loge|  |loge[t=?
for s € [0, S], where § > O is arbitrary.
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Analysis of the leapfrogging system for two vortex rings

When n = 2, the system (LF) may be analyzed in great details. Since P is conserved and since
Hc is invariant by a joint translation of both rings in the z direction, it is classical to introduce the
variables (7, ¢) by

rz(al) _ P _ n B
{ r’(a2) = é-i—n ’ £ = z(a1) — 2(a2),

and to draw the level curves of the function H. in those two real variables, the momentum P being
considered as a parameter.

Size of order O(1)

[ 77777577"\*77\\7: Pass through
= u— -
X \/log | log |
n o Vel me =1
# ~ Vllog el

uilibria corresponding to
r of traveling vortices
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Collision of vortex rings




Strategy of the proof

We rely mostly on the already mentioned evolution equation for the Jacobian
d F(Vu,
d / Jupdrdz = TV %)

ds Ju [loge|

where 3
r
]:(Vu,@) = —/]]-Hsij%(aju,aku)aﬂp-i-‘/HE,'j(aju,aku)a,'k@.

We wish to prove that
@ Ju remains well concentrated around a sum of Dirac masses
o F(Vu,¢) is a good approximation of the ode (LF)..
It is clear that both are not independent and we shall use a common Gronwall argument on r;. We
will decompose
J(w); j(u)x
lul - ul

= 0j|ulOx|u] + (’%,) —f”), (ﬂ%) ‘fh)k
+ (), 00+ (37 =), 0,
+ (), ),

where j! is a “suitable” approximation of j(u).
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Some elements in the proof: excess energy and concentration

Proposition

There exist constants €1,01, C; > 0, depending only on n, ry and K, with the following
properties. If e < g1 and
Y =%, + raloge| < o1|logel,

then there exist 1, --- , &, in H such that

n
re = |l Ju— 7> 8¢ lly-11 < Cielloge| e,
i=1

and
. ) )
/ o r [es(|U|) + | J(ug)|2} < G (Z¢ + 23 [loge| 1 eCiTr),
H\U;B(&;,e3)
where we have written

25 = [E(U) - He(él» c 7&")]Jr

Moreover, .
Y <Xo+4 Ciralloge| + Cielloge|reCia,

Note the pointwise identity

i(v)
|ul

i) _

e(uv) = \J(Ug)lzﬂ(u&)( —j(ug)) + e=(Ju) + 5} ] J().
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Some elements in the proof: approximation including the core

Idea : smoothen ug not at scale € but at the larger scale r¢ (i.e. at the best known localization

scale). It actually suffices to regularize j(uf), we call it j”(ug).

Proposition

In addition to the statement of the previous Proposition,

/H |:e5(|u| +|J(u) h( £)| <G Zr+log|logs|)

e-(w) = 2P + () () — () + ex(lu) +

7|J(U)
ul

— )
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Some elements in the proof: get rid of the main translation
Recall that

n

He (a1, , an) ::Zr(a;)[ﬂ'log( ))+'y+7r(3log(2)—2 +7rZAaj(a ]

i=1 J#i
and write
b; b;
a,-:—( r(bi) , 20 z( )) i=1,---,n.
\/|Iog6| \/\Ioga|
Then
H:(a1, - ,an) =Te(ro,n) + We ro(b1,- -, bn) + 0(1) as € = 0, (1)
where
We (b1, -, b —WZ (bi)V/|log el —erZIOg\b (2)
i#j

Also, expansion of the squares leads dlrectly to

b; " r(b;)?
\/|(Iog)s o Zr( :

P(a1,--- ,an) = wnrg +27rrgz

and therefore

|
(Hg — lZﬂP)(al,~~ ,an) = —gnro|loga| + Te(ro,n) + mroW(b1,--- ,bn) +0(1), ase—0,
o
where
W(by,--- , bn E log |bj — bj| — 222 r(b;)?

i#j 011
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Some elements in the proof: get rid of the main translation

Proposition

For o sufficiently small, if
Yo+ |He(at, -+ ,an) — He (&, -+, &n)| < ollogel,

then

Y. <2¥,+C {ra\/“oge + — | + |loge| |P(u) — P(a1,- - ,an)|
For a quantity f write 6f :=|f(a1, -+ ,an) — f(&1,- -+ ,&n)|. By the triangle inequality we have
§H. < § (Hg - MP) o Mogelsp
2ry 2ry
and also

0P <|P(u) — P(&1,- -+ ;&) 4+ [P(u) — P(ay, -+, an)] .
In view of the discussion in the previous slide

loge
5 (e - BELP) < e — av oo+ 60— an)l okl
0
We also have a good control on P since it involves only the Jacobian :

C(A+%) _ C (1+4%,+0H)?
2rp |logel T 2n [log e|

||°g8|

|P(u) = P(&1, -+, &n)| <

and we may then absorb the last term involving dH: in the left-hand side above.
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