On Some Variational Optimization Problems in Classical Fluids and Superfluids

Bartosz Protas

Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada URL: http://www.math.mcmaster.ca/bprotas

Funded by Early Researcher Award (ERA) and NSERC Computational Time Provided by SHARCNET

New Challenges in Mathematical Modelling and Numerical Simulation of Superfluids, CIRM 2016

Agenda

Minimization of the Gross-Pitaevskii Energy Functional

Formulation of the Problem Gradient Minimization Sobolev Gradients

Riemannian Optimization

First-Order Geometry Second-Order Geometry Riemannian Conjugate Gradients

Probing Fundamental Bounds in Hydrodynamics

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Collaborators

Ionut Danaila

(Université de Rouen)

Diego Ayala

(former Ph.D. student, now at University of Michigan)

Charles Doering

(University of Michigan)

PROBLEM I

RIEMANNIAN OPTIMIZATION FOR COMPUTATION GROUND STATES IN BOSE-EINSTEIN CONDENSATES

(joint work with I. Danaila)

Minimization of the Gross-Pitaevskii Energy Functional Riemannian Optimization Probing Fundamental Bounds in Hydrodynamics Browner State S

Gross-Pitaevskii Free Energy Functional (non-dimensional form)

$$\begin{split} E(u) &= \int_{\mathcal{D}} \left[\frac{1}{2} |\nabla u|^2 + C_{\text{trap}} |u|^2 + \frac{1}{2} C_g |u|^4 - i C_{\Omega} u^* A^t \nabla u \right] d\mathbf{x}, \\ \|u\|_2^2 &= \int_{\mathcal{D}} |u(\mathbf{x})|^2 d\mathbf{x} = 1, \qquad \mathcal{D} \subseteq \mathbb{R}^d \end{split}$$

where

$$\begin{split} u &= \frac{\psi}{\sqrt{N} \, x_s^{-d/2}}, \qquad \psi - \text{wavefunction}, \quad \psi \ : \ \mathcal{D} \to \mathbb{C} \\ &\qquad \qquad N - \text{number of atoms in the condensate} \\ &\qquad \qquad x_s - \text{characteristic length scale} \\ \mathcal{A}^t &= [y, -x, 0], \qquad C_{\text{trap}}(x, y, z) - \text{trapping potential} \\ &\qquad \qquad C_g, C_\Omega - \text{constants} \end{split}$$

• C_{Ω} characterizes the effect of rotation

Minimization of the Gross-Pitaevskii Energy Functional Riemannian Optimization Probing Fundamental Bounds in Hydrodynamics Browner State S

- Dirichlet boundary conditions: u = 0 on ∂D
- Variational optimization, $E : H^1_0(D) o \mathbb{R}$

 $\min_{u \in H_0^1(\mathcal{D})} E(u)$ subject to $||u||_{L_2(\mathcal{D})} = 1$

• Minimizers constrained to a nonlinear manifold \mathcal{M} in $H^1_0(\mathcal{D})$

$$\mathcal{M} := \left\{ u \in H^1_0(\mathcal{D}) : \|u\|_{L_2(\mathcal{D})} = 1 \right\}$$

- Computational approaches:
 - Euler-Lagrange equation for $E(u) \implies$ nonlinear eigenvalue problem
 - Direct minimization of E(u) via a gradient method

Formulation of the Problem Gradient Minimization Sobolev Gradients

Steepest-gradient approach

$$\begin{aligned} u^{(n+1)} &= u^{(n)} - \tau_n \, \nabla E \big(u^{(u)} \big), & n = 0, 1, \dots, \\ u^{(0)} &= u_0, & \text{(initial guess)}, \end{aligned}$$

where:

$$\begin{split} \tilde{u} &= \lim_{n \to \infty} u^{(n)} \quad - \text{ the minimizer ("ground state")} \\ \nabla E(u^{(u)}) \quad - \text{ gradient of } E(u) \text{ at } u^{(n)} \\ \tau_n &= \operatorname{argmin}_{\tau > 0} E(u^{(n)} - \tau \, \nabla E(u^{(u)})) \quad - \text{ optimal step size} \end{split}$$

Key issues:

- Regularity of the minimizers $\tilde{u} \in H_0^1(\mathcal{D}) \implies$ Sobolev gradients
- Enforcement of the constraint $\tilde{u} \in \mathcal{M} \implies$ Riemannian optimization

 Minimization of the Gross-Pitaevskii Energy Functional Riemannian Optimization
 Formulation of the Problem

 Probing Fundamental Bounds in Hydrodynamics
 Sobolev Gradients

Gâteaux differential of the Gross-Pitaevskii Energy Functional

$$E'(u; v) = \lim_{\epsilon \to 0} \epsilon^{-1} \left[E(u + \epsilon v) - E(u) \right], \qquad u, v \in \mathcal{X}$$

 \mathcal{X} — some function space

▶ Riesz Representation Theorem:
 E'(u; ·) bounded linear functional on X
 ⇒ ∀_{v∈X} E'(u; v) = ⟨∇^XE(u), v⟩_X

Relevant inner products (Danaila & Kazemi 2010)

$$\begin{array}{l} \langle u, v \rangle_{L_{2}} = \int_{\mathcal{D}} \langle u, v \rangle \, d\mathbf{x}, & \text{where } \langle u, v \rangle = uv^{*} \\ \langle u, v \rangle_{H^{1}} = \int_{\mathcal{D}} \langle u, v \rangle + \langle \nabla u, \nabla v \rangle \, d\mathbf{x} \\ \langle u, v \rangle_{H_{A}} = \int_{\mathcal{D}} \langle u, v \rangle + \langle \nabla_{A}u, \nabla_{A}v \rangle \, d\mathbf{x}, & \nabla_{A} = \nabla + iC_{\Omega}A^{t} \end{array}$$

Formulation of the Problem Gradient Minimization Sobolev Gradients

• Different Sobolev gradients ($\mathcal{X} = L_2, H^1, H_A$)

$$E'(u;v) = \Re \left\langle \nabla^{L^2} E(u), v \right\rangle_{L^2} = \Re \left\langle \nabla^{H^1} E(u), v \right\rangle_{H^1} = \Re \left\langle \nabla^{H_A} E(u), v \right\rangle_{H_A}$$

The L₂ gradient

$$\nabla^{L^2} E(u) = 2 \left(-\frac{1}{2} \nabla^2 u + C_{trap} u + C_g |u|^2 u - i C_{\Omega} A^t \nabla u \right),$$

► The Sobolev gradient G = ∇_{H_A}E(u) obtained from the L₂ gradient via an elliptic boundary-value problem

$$\begin{aligned} \forall_{\mathbf{v}\in\mathcal{H}_{0}^{1}(\mathcal{D})} \int_{\mathcal{D}} \left[\left(1 + C_{\Omega}^{2}(\mathbf{x}^{2} + \mathbf{y}^{2}) \right) G\mathbf{v} + \nabla G \cdot \nabla \mathbf{v} - 2iC_{\Omega}A^{t}\nabla G\mathbf{v} \right] \, d\mathbf{x} \\ &= \int_{\mathcal{D}} \frac{1}{2} \nabla u \cdot \nabla \mathbf{v} + \left[C_{\mathsf{trap}}u + C_{\mathsf{g}}|u|^{2}u - iC_{\Omega}A^{t}\nabla u \right] \mathbf{v} \, d\mathbf{x} \end{aligned}$$

- Riemannian Optimization is general approach based on differential geometry
 - here made simple by the constraint $||u||_{L_2(\mathcal{D})} = 1$
- ► "Intrinsic" approach with optimization performed directly on the manifold *M* without reference to the space H¹(*D*)
 - optimization problem becomes unconstrained
 - can apply more efficient optimization algorithms (conjugate gradients, Newton's method)
- Reference: P.-A. Absil, R. Mahony and R. Sepulchre, "Optimization Algorithms on Matrix Manifolds", Princeton University Press, (2008).

• Projection of the gradient G on the tangent subspace $T_u \mathcal{M}$

$$P_{u_n,H_A}G = G - \frac{\Re(\langle u_n,G\rangle_{L^2})}{\Re(\langle u_n,v_{H_A}\rangle_{L^2})} v_{H_A}, \quad \text{where}$$
$$\langle v_{H_A}, v \rangle_{H_A} = \langle u_n, v \rangle_{L^2}, \ \forall v \in H_A$$

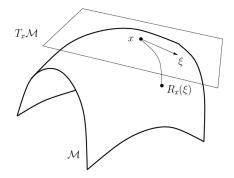
- There is some freedom in choosing the subtracted field (v_{H_A})
- Approach equivalent to constraint enforcement via Lagrange multipliers
 - Error in constraint satisfaction $\mathcal{O}(\tau_n)$

First-Order Geometry Second-Order Geometry Riemannian Conjugate Gradients

► RETRACTION

 \mathcal{R}_{u} : $\mathcal{T}_{u}\mathcal{M} \to \mathcal{M}$

maps a tangent vector $\xi \in \mathcal{T}_u \mathcal{M}$ back to the manifold \mathcal{M}



First-Order Geometry Second-Order Geometry Riemannian Conjugate Gradients

• For our constraint manifold \mathcal{M}

$$\mathcal{R}_u(\xi) = \frac{u+\xi}{\|u+\xi\|_{L_2(\mathcal{D})}}$$

retraction = normalization

Riemannian steepest descent approach

$$u_{n+1} = \mathcal{R}_{u_n} (\tau_n P_{u_n, H_A} G(u_n)), \qquad n = 0, 1, 2, \dots$$

 $u_0 = u^0$

where

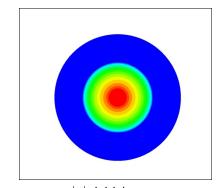
$$\tau_n = \operatorname{argmin}_{\tau>0} E\left(\mathcal{R}_{u_n}(\tau P_{u_n, H_A}G(u_n))\right)$$

First-Order Geometry Second-Order Geometry Riemannian Conjugate Gradients

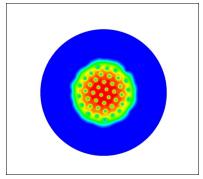
Results: Abrikosov Lattice ($C_g = 1000$, $C_\Omega = 0.9$)

Finite-element approximation of energy functional and PDE operators

▶ implementation in FreeFEM++ (with 10⁵ P1 elements)

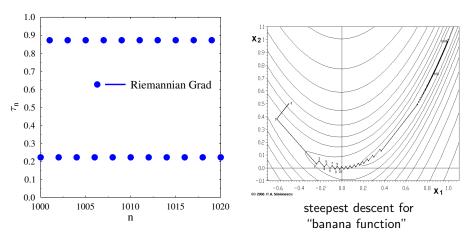


|*u*|, initial guess (Thomas-Fermi approximation)



|u|, final state

Minimization of the Gross-Pitaevskii Energy Functional Riemannian Optimization Probing Fundamental Bounds in Hydrodynamics Riemannian Conjugate Gradients



step size τ_n

• Consider
$$\min_{\mathbf{x}\in\mathbb{R}^N} f(\mathbf{x})$$
, where $f : \mathbb{R}^N \to \mathbb{R}$

Nonlinear Conjugate Gradients Method

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \tau_n \, \mathbf{d}_n, \qquad n = 0, 1, \dots$$

 $\mathbf{x}_0 = \mathbf{x}^0$

descent direction d_n is defined as

$$\begin{aligned} \mathbf{d}_n &= -\mathbf{g}_n + \beta_n \, \mathbf{d}_{n-1}, \qquad n = 1, 2, \dots \\ \mathbf{d}_0 &= -\mathbf{g}_0, \qquad \qquad \mathbf{g}_n = \boldsymbol{\nabla} f(\mathbf{x}_n) \end{aligned}$$

• "momentum" coefficients β_n ensure conjugacy of decent directions

$$\beta_{n} = \beta_{n}^{FR} := \frac{\langle \mathbf{g}_{n}, \mathbf{g}_{n} \rangle_{\mathcal{X}}}{\langle \mathbf{g}_{n-1}, \mathbf{g}_{n-1} \rangle_{\mathcal{X}}}$$
(Fletcher-Reeves),
$$\beta_{n} = \beta_{n}^{PR} := \frac{\langle \mathbf{g}_{n}, (\mathbf{g}_{n} - \mathbf{g}_{n-1}) \rangle_{\mathcal{X}}}{\langle \mathbf{g}_{n-1}, \mathbf{g}_{n-1} \rangle_{\mathcal{X}}}$$
(Polak-Ribiére)

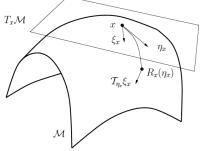
First-Order Geometry Second-Order Geometry Riemannian Conjugate Gradients

In the Riemannian setting

$$\mathbf{g}_{n-1}, \mathbf{d}_{n-1} \in \mathcal{T}_{\mathbf{x}_{n-1}} \quad \text{and} \quad \mathbf{g}_n, \mathbf{d}_n \in \mathcal{T}_{\mathbf{x}_n},$$

hence cannot be added or multiplied ...

- ▶ Need a mapping between the tangent spaces $\mathcal{T}_{u_{n-1}}\mathcal{M}$ and $\mathcal{T}_{u_n}\mathcal{M}$
- ► VECTOR TRANSPORT $\mathcal{T}_{\eta}(\xi)$: $\mathcal{TM} \times \mathcal{TM} \to \mathcal{TM}$, $\xi, \eta \in \mathcal{TM}$ describing how the vector field ξ is transported along the manifold \mathcal{M} by the field η



First-Order Geometry Second-Order Geometry Riemannian Conjugate Gradients

Conclusions (I)

- Riemannian optimization accelerates the computation of BEC ground states
- ► Key enablers for Riemannian Conjugate Gradients:
 - projections onto $\mathcal{T}_{u_n}\mathcal{M}$
 - retractions from $\mathcal{T}_{u_n}\mathcal{M}$ onto \mathcal{M} ,
 - vector transport between $\mathcal{T}_{u_{n-1}}$ and \mathcal{T}_{u_n}
- Riemannian Newton's method?

Minimization of the Gross-Pitaevskii Energy Functional Riemannian Optimization Probing Fundamental Bounds in Hydrodynamics Riemannian Conjugate Gradients

PROBLEM II Probing Fundamental Bounds in Hydrodynamics

(joint work with D. Ayala and Ch. Doering)

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

• Navier-Stokes equation
$$(\Omega = [0, L]^d, d = 2, 3)$$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{0}, & \text{in } \Omega \times (0, T] \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T] \\ \mathbf{v} = \mathbf{v}_0 & \text{in } \Omega \text{ at } t = 0 \\ \text{Boundary Condition} & \text{on } \Gamma \times (0, T] \end{cases}$$

2D Case

 Existence Theory Complete — smooth and unique solutions exist for arbitrary times and arbitrarily large data

3D Case

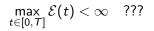
- Weak solutions (possibly nonsmooth) exist for arbitrary times
- Classical (smooth) solutions (possibly nonsmooth) exist for finite times only
- Possibility of "blow-up" (finite-time singularity formation)
- One of the Clay Institute "Millennium Problems" (\$ 1M!) http://www.claymath.org/millennium/Navier-Stokes_Equations

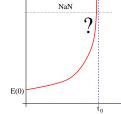
Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

What is known? — Available Estimates

$$\mathcal{E}(t) riangleq \int_{\Omega} |oldsymbol{
abla} imes oldsymbol{v}|^2 \, d\Omega \qquad (= \|oldsymbol{
abla} oldsymbol{v}\|_2^2)$$

► Smoothness of Solutions ⇔ Bounded Enstrophy (Foias & Temam, 1989)





t

- Can estimate dE(t)/dt using the momentum equation, Sobolev's embeddings, Young and Cauchy-Schwartz inequalities, ...
 - REMARK: incompressibility not used in these estimates

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{C^2}{\nu} \mathcal{E}(t)^2$$

- Grönwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times

3D Case:

2D Case:

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

- corresponding estimate not available
- upper bound on $\mathcal{E}(t)$ blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{C}\mathcal{E}(0)^2}{
u^3}t}}$$

singularity in finite time cannot be ruled out!

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Problem of Lu & Doering (2008), I

- Can we actually find solutions which "saturate" a given estimate?
- Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^3$ at a *fixed* instant of time t

$$\max_{\mathbf{v}\in H^{1}(\Omega), \ \boldsymbol{\nabla}\cdot\mathbf{v}=0} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$rac{d\mathcal{E}(t)}{dt} = -
u \|\mathbf{\Delta}\mathbf{v}\|_2^2 + \int_\Omega \mathbf{v}\cdot \mathbf{
abla}\mathbf{v}\cdot \mathbf{\Delta}\mathbf{v}\,d\Omega$$

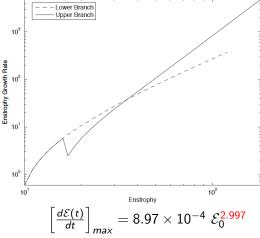
• \mathcal{E}_0 is a parameter

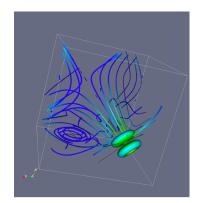
Solution using a gradient-based descent method

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Problem of Lu & Doering (2008), II

Enstrophy Growth Rate vs Enstrophy





vorticity field (top branch)

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

► How about solutions which saturate <u>d</u> $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^3 \text{ over a } finite \text{ time window } [0, T]?$

$$\max_{\mathbf{v}_0 \in H^1(\Omega), \, \nabla \cdot \mathbf{v} = 0} \mathcal{E}(T)$$

subject to $\mathcal{E}(0) = \mathcal{E}_0$

where

$$\mathcal{E}(t) = \int_0^t rac{d\mathcal{E}(au)}{d au} \, d au + \mathcal{E}_0$$

• \mathcal{E}_0 and T are parameters

▶ In principle doable, but will try something simpler first ...

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

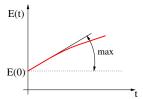
Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	
1D Burgers finite–time	$max_{t \in [0, T]} \mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4} \right)^2 \left(\frac{1}{\pi^2 \nu} \right)^{4/3} \mathcal{E}_0 \right]^3$	
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	
2D Navier–Stokes finite–time	$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + rac{\mathcal{C}_2}{4 u^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 ight]^2$	
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{C}\mathcal{E}(0)^2}{ u^3}t}}$	

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

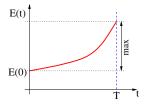
 QUESTION #1 ("SMALL")
 Sharpness of *instantaneous* estimates (at some *fixed* t)

$$\max_{\mathbf{u}} \frac{d\mathcal{E}}{dt} \qquad (1D, 3D)$$
$$\max_{\mathbf{u}} \frac{d\mathcal{P}}{dt} \qquad (2D)$$



 QUESTION #2 ("BIG")
 Sharpness of *finite-time* estimates (at some time window [0, T], T > 0)

$$\max_{\mathbf{u}_{0}} \left[\max_{t \in [0, T]} \mathcal{E}(t) \right] \qquad (1D, 3D)$$
$$\max_{\mathbf{u}_{0}} \left[\max_{t \in [0, T]} \mathcal{P}(t) \right] \qquad (2D)$$



Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$\max_{t \in [0,T]} \mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4} \right)^2 \left(\frac{1}{\pi^2 \nu} \right)^{4/3} \mathcal{E}_0 \right]^3$	No Ayala & P. (2011)
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	
2D Navier–Stokes finite–time	$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + rac{C_2}{4 u^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 ight]^2$	
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1 - 4rac{\mathcal{C}\mathcal{E}(0)^2}{ u^3}t}}$	

▶ 2D VORTICITY EQUATION IN A PERIODIC BOX $(\omega = \mathbf{e}_z \cdot \boldsymbol{\omega})$

$$\begin{aligned} \frac{\partial \omega}{\partial t} + J(\omega, \psi) &= \nu \Delta \omega \quad \text{where } J(f, g) = f_x g_y - f_y g_x \\ - \Delta \psi &= \omega \end{aligned}$$

Enstrophy uninteresting in 2D flows (w/o boundaries)

$$rac{1}{2}rac{d}{dt}\int_{\Omega}\omega^2\,d\Omega=-
u\,\int_{\Omega}(oldsymbol{
abla}\omega)^2\,d\Omega<0$$

- Evolution equation for the vorticity gradient ${oldsymbol
abla} \omega$

$$\frac{\partial \boldsymbol{\nabla} \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \boldsymbol{\nabla} \boldsymbol{\omega} = \boldsymbol{\nu} \Delta \boldsymbol{\nabla} \boldsymbol{\omega} + \underbrace{\boldsymbol{\nabla} \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \mathbf{u}}_{\text{"STRETCHING" TERM}}$$

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Palinstrophy

$$\mathcal{P}(t) \triangleq \int_{\Omega} (\boldsymbol{\nabla} \omega(t, \mathbf{x}))^2 \, d\Omega = \int_{\Omega} (\boldsymbol{\nabla} \Delta \psi(t, \mathbf{x}))^2 \, d\Omega$$

Also of interest — Kinetic Energy

$$\mathcal{K}(t) \triangleq \int_{\Omega} \mathbf{u}(t, \mathbf{x})^2 \, d\Omega = \int_{\Omega} (\mathbf{\nabla} \psi(t, \mathbf{x}))^2 \, d\Omega$$

Poincaré's inequality

$$\mathcal{K} \leq (2\pi)^{-2} \mathcal{E} \leq (2\pi)^{-2} \mathcal{P}$$

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Estimates for the Rate of Growth of Palinstrophy

$$\frac{d\mathcal{P}(t)}{dt} = \int_{\Omega} J(\Delta\psi,\psi) \Delta^2\psi \, d\Omega - \nu \, \int_{\Omega} (\Delta^2\psi)^2 \, d\Omega \quad \triangleq \mathcal{R}_{\mathcal{P}}(\psi)$$

$$\begin{aligned} \frac{d\mathcal{P}(t)}{dt} &\leq -\left(\frac{\nu}{\mathcal{E}}\right)\mathcal{P}^2 + \mathcal{C}_1\left(\frac{\mathcal{E}}{\nu}\right)\mathcal{P} \qquad \text{(Doering \& Lunasin, 2011)}\\ \frac{d\mathcal{P}(t)}{dt} &\leq \frac{\mathcal{C}_2}{\nu}\mathcal{K}^{1/2}\mathcal{P}^{3/2} \qquad \text{(Ayala, 2012)} \end{aligned}$$

Using Poincaré's inequality (may not be sharp)

$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{C}{\nu}\mathcal{P}^2,$$

Bound on growth in finite time

$$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + \frac{C_2}{4\nu^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 \right]^2 \qquad (\text{Ayala, 2012})$$

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

• Maximum Growth of
$$\frac{d\mathcal{P}(t)}{dt}$$
 for fixed $\mathcal{E}_0 > 0, \mathcal{P}_0 > (2\pi)^2 \mathcal{E}_0$

 $\max_{\psi\in\mathcal{S}_{\mathcal{P}_{0},\mathcal{E}_{0}}}\ \mathcal{R}_{\mathcal{P}_{0}}(\psi) \quad \text{where} \quad$

$$\mathcal{S}_{\mathcal{P}_0,\mathcal{E}_0} = \left\{ \psi \in \mathcal{H}^4(\Omega) : egin{array}{c} rac{1}{2} \int_\Omega (oldsymbol{
abla} \Delta \psi)^2 \, d\Omega = \mathcal{P}_0 \ rac{1}{2} \int_\Omega (\Delta \psi)^2 \, d\Omega = \mathcal{E}_0 \end{array}
ight\}$$

• Maximum Growth of $\frac{d\mathcal{P}(t)}{dt}$ for fixed $\mathcal{K}_0 > 0, \mathcal{P}_0 > (2\pi)^4 \mathcal{K}_0$

 $\max_{\psi\in\mathcal{S}_{\mathcal{P}_{0},\mathcal{K}_{0}}} \mathcal{R}_{\mathcal{P}_{0}}(\psi)$ where

$$\mathcal{S}_{\mathcal{P}_0,\mathcal{K}_0} = \left\{ \psi \in \mathcal{H}^4(\Omega) : egin{array}{c} rac{1}{2} \int_\Omega (oldsymbol{
abla} \Delta \psi)^2 \, d\Omega = \mathcal{P}_0 \ rac{1}{2} \int_\Omega (oldsymbol{
abla} \psi)^2 \, d\Omega = \mathcal{K}_0
ight\}$$

۰.

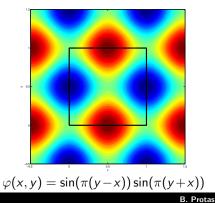
Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem

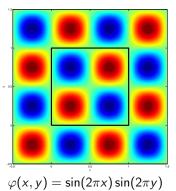
► Small Palinstrophy Limit:
$$\mathcal{P}_0 \to (2\pi)^2 \mathcal{E}_0$$

 $\tilde{\varphi}_0 = \underset{\varphi \in S_0}{\arg \max} \mathcal{R}_0(\varphi), \quad \mathcal{R}_0(\varphi) = -\nu \int_{\Omega} (\Delta^2 \varphi)^2 \, d\Omega,$
 $\mathcal{S}_0 = \left\{ \varphi \in H^4(\Omega) : \frac{1}{2} \int_{\Omega} (\nabla \Delta \psi)^2 \, d\Omega = \frac{(2\pi)^2}{2} \int_{\Omega} (\Delta \psi)^2 \, d\Omega \right\}$

. 10 120

Eigenfunctions of the Laplacian $(\tilde{\varphi}_0 \in \text{Ker}(\Delta))$ Optimizers:





On Some Variational Optimization Problems

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Numerical Solution of Maximization Problem

Discretization of Gradient Flow

$$\begin{split} \frac{d\psi}{d\tau} &= -\boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi), \qquad \qquad \psi(0) = \psi_0 \\ \psi^{(n+1)} &= \psi^{(n)} - \Delta \tau^{(n)} \, \boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi^{(n)}), \qquad \psi^{(0)} = \psi_0 \end{split}$$

• Gradient in $H^4(\Omega)$ (via variational techniques)

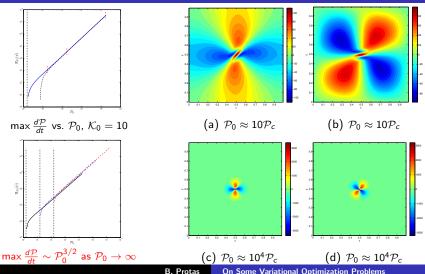
$$\begin{bmatrix} \mathsf{Id} - L^8 \Delta^4 \end{bmatrix} \nabla^{H^4} \mathcal{R}_{\nu} = \nabla^{L_2} \mathcal{R}_{\nu} \qquad \text{(Periodic BCs)}$$
$$\nabla^{L_2} \mathcal{R}_{\nu}(\psi) = \Delta^2 J(\Delta \psi, \psi) + \Delta J(\psi, \Delta^2 \psi) + J(\Delta^2 \psi, \Delta \psi) - 2\nu \Delta^4 \psi$$

Constraint satisfaction via arc minimization

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem **Computational Approach & Results**

Maximizers with Fixed $(\mathcal{K}_0, \mathcal{P}_0)$ $\frac{d\mathcal{P}(t)}{dt} \leq \frac{C_2}{n} \mathcal{K}_0^{1/2} \mathcal{P}_0^{3/2}$

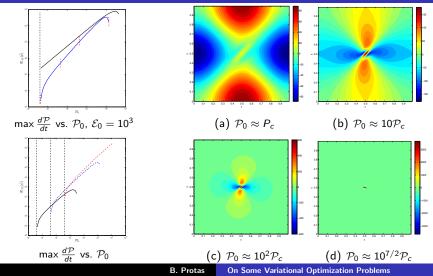
Estimate:



B. Protas

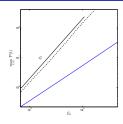
Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

$\begin{array}{l} \text{Maximizers with Fixed } \left(\mathcal{E}_{0}, \mathcal{P}_{0}\right) \\ \text{Estimate:} \quad \frac{d\mathcal{P}(t)}{dt} \leq -\left(\frac{\nu}{\mathcal{E}_{0}}\right) \mathcal{P}_{0}^{2} + C_{1}\left(\frac{\mathcal{E}_{0}}{\nu}\right) \mathcal{P}_{0} \end{array}$

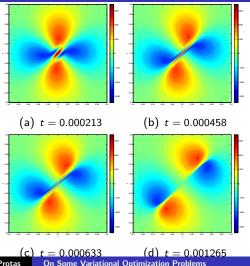


Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

$\begin{array}{l} \text{Maximizers with Fixed } \left(\mathcal{K}_{0}, \mathcal{P}_{0}\right) \\ \text{Finite-Time Estimate:} \quad \max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_{0}^{1/2} + \frac{C_{0}}{4\nu^{2}} \mathcal{K}_{0}^{1/2} \mathcal{E}_{0}\right]^{2} \end{array}$



 $\begin{array}{ll} & & \mathcal{P}_0\text{-constraint} \\ & & - & - & \{\mathcal{K}_0, \mathcal{P}_0\}\text{-constraint} \end{array}$



B. Protas

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	NO Ayala & P. (2011)
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	[YES] Ayala & P. (2013)
2D Navier–Stokes finite–time	$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + rac{C_2}{4 u^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 ight]^2$	[YES] Ayala & P. (2013)
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{C}\mathcal{E}(0)^2}{ u^3}t}}$???

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

Conclusions (II)

- Variational analysis and numerical optimization as tools for assessing sharpness of PDEs analysis
 - motivated by big open questions in mathematical fluid mechanics (including one of Clay "Millennium Problems")
- 2D extreme vortex states saturate the worst-case bounds
 - analysis is sharp
- Ongoing work on the 3D case (the real problem)
 - ▶ so far, no evidence of blow-up, but results still from conclusive ...

Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Computational Approach & Results

References

L. Lu and C. R. Doering, "Limits on Enstrophy Growth for Solutions of the Three-dimensional Navier-Stokes Equations" *Indiana University Mathematics Journal* 57, 2693–2727, 2008.

- D. Ayala and B. Protas, "On Maximum Enstrophy Growth in a Hydrodynamic System", *Physica D* 240, 1553–1563, 2011.
- D. Ayala and B. Protas, "Maximum Palinstrophy Growth in 2D Incompressible Flows: Instantaneous Case", *Journal of Fluid Mechanics* 742 340–367, 2014.
- D. Ayala and B. Protas, "Vortices, Maximum Growth and the Problem of Finite-Time Singularity Formation", *Fluid Dynamics Research (Special Issue for IUTAM Symposium on Vortex Dynamics)*, 46, 031404, 2014.
- D. Ayala and B. Protas, "Extreme Vortex States and the Growth of Enstrophy in 3D Incompressible Flows", (submitted; see arXiv:1605.05742), 2016.