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PROBLEM I

Riemannian Optimization for

Computation Ground States in

Bose-Einstein Condensates

(joint work with I. Danaila)
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Formulation of the Problem
Gradient Minimization
Sobolev Gradients

I Gross-Pitaevskii Free Energy Functional (non-dimensional form)

E (u) =

∫
D

[
1

2
|∇u|2 + Ctrap |u|2 +

1

2
Cg |u|4 − iCΩ u∗At∇u

]
dx,

‖u‖2
2 =

∫
D
|u(x)|2 dx = 1, D ⊆ Rd

where

u =
ψ√

N x
−d/2
s

, ψ — wavefunction, ψ : D → C

N — number of atoms in the condensate

xs — characteristic length scale

At = [y ,−x , 0], Ctrap(x , y , z) — trapping potential

Cg ,CΩ — constants

I CΩ characterizes the effect of rotation
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Formulation of the Problem
Gradient Minimization
Sobolev Gradients

I Dirichlet boundary conditions: u = 0 on ∂D

I Variational optimization, E : H1
0 (D)→ R

min
u∈H1

0 (D)
E (u)

subject to ‖u‖L2(D) = 1

I Minimizers constrained to a nonlinear manifold M in H1
0 (D)

M :=
{
u ∈ H1

0 (D) : ‖u‖L2(D) = 1
}

I Computational approaches:
I Euler-Lagrange equation for E (u) =⇒ nonlinear eigenvalue problem

I Direct minimization of E (u) via a gradient method
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Formulation of the Problem
Gradient Minimization
Sobolev Gradients

I Steepest-gradient approach

u(n+1) = u(n) − τn∇E
(
u(u)

)
, n = 0, 1, . . . ,

u(0) = u0, (initial guess),

where:

ũ = lim
n→∞

u(n) — the minimizer (“ground state”)

∇E
(
u(u)

)
— gradient of E (u) at u(n)

τn = argminτ>0 E
(
u(n) − τ ∇E

(
u(u)

))
— optimal step size

I Key issues:
I Regularity of the minimizers ũ ∈ H1

0 (D) =⇒ Sobolev gradients

I Enforcement of the constraint ũ ∈M =⇒ Riemannian optimization
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Formulation of the Problem
Gradient Minimization
Sobolev Gradients

I Gâteaux differential of the Gross-Pitaevskii Energy Functional

E ′(u; v) = lim
ε→0

ε−1 [E (u + εv)− E (u)] , u, v ∈ X

X — some function space

I Riesz Representation Theorem:
E ′(u; ·) bounded linear functional on X

=⇒ ∀v∈X E ′(u; v) =
〈
∇XE (u), v

〉
X

I Relevant inner products (Danaila & Kazemi 2010)

〈u, v〉L2
=

∫
D
〈u, v〉 dx, where 〈u, v〉 = uv∗

〈u, v〉H1 =

∫
D
〈u, v〉+ 〈∇u,∇v〉 dx

〈u, v〉HA
=

∫
D
〈u, v〉+ 〈∇Au,∇Av〉 dx, ∇A = ∇+ iCΩA

t
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Formulation of the Problem
Gradient Minimization
Sobolev Gradients

I Different Sobolev gradients (X = L2,H
1,HA)

E ′(u; v) = <
〈
∇L2

E (u), v
〉
L2

= <
〈
∇H1

E (u), v
〉
H1

= <
〈
∇HAE (u), v

〉
HA

I The L2 gradient

∇L2

E (u) = 2

(
−1

2
∇2u + Ctrapu + Cg |u|2u − iCΩA

t∇u
)
,

I The Sobolev gradient G = ∇HA
E (u) obtained from the L2 gradient

via an elliptic boundary-value problem

∀v∈H1
0 (D)

∫
D

[(
1 + C 2

Ω(x2 + y2)
)
Gv +∇G · ∇v − 2iCΩA

t∇Gv
]
dx

=

∫
D

1

2
∇u · ∇v +

[
Ctrapu + Cg |u|2u − iCΩA

t∇u
]
v dx
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

I Riemannian Optimization is general approach based on differential
geometry

I here made simple by the constraint ‖u‖L2(D) = 1

I “Intrinsic” approach with optimization performed directly on the
manifold M without reference to the space H1(D)

I optimization problem becomes unconstrained

I can apply more efficient optimization algorithms (conjugate gradients,
Newton’s method)

I Reference: P.-A. Absil, R. Mahony and R. Sepulchre, “Optimization
Algorithms on Matrix Manifolds”, Princeton University Press, (2008).
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

I Projection of the gradient G on the tangent subspace TuM

Pun,HA
G = G − < (〈un,G 〉L2)

< (〈un, vHA
〉L2)

vHA
, where

〈vHA
, v〉HA

= 〈un, v〉L2 , ∀v ∈ HA

I There is some freedom in choosing the subtracted field (vHA
)

I Approach equivalent to constraint enforcement via Lagrange
multipliers

I Error in constraint satisfaction O(τn)

B. Protas On Some Variational Optimization Problems



Minimization of the Gross-Pitaevskii Energy Functional
Riemannian Optimization

Probing Fundamental Bounds in Hydrodynamics

First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

I Retraction
Ru : TuM→M

maps a tangent vector ξ ∈ TuM back to the manifold M
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

I For our constraint manifold M

Ru(ξ) =
u + ξ

‖u + ξ‖L2(D)

retraction = normalization

I Riemannian steepest descent approach

un+1 = Run (τnPun,HA
G (un)) , n = 0, 1, 2, . . .

u0 = u0

where
τn = argminτ>0 E (Run(τPun,HA

G (un)))
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

Results: Abrikosov Lattice (Cg = 1000, CΩ = 0.9)

I Finite-element approximation of energy functional and PDE operators
I implementation in FreeFEM++ (with 105 P1 elements)

I

|u|, initial guess
(Thomas-Fermi approximation)

|u|, final state
(Thomas-Fermi approximation)
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

I Consider minx∈RN f (x), where f : RN → R

I Nonlinear Conjugate Gradients Method

xn+1 = xn + τn dn, n = 0, 1, . . .

x0 = x0

I descent direction dn is defined as

dn = −gn + βn dn−1, n = 1, 2, . . .

d0 = −g0, gn = ∇f (xn)

I “momentum” coefficients βn ensure conjugacy of decent directions

βn = βFR
n :=

〈gn, gn〉X
〈gn−1, gn−1〉X

(Fletcher-Reeves),

βn = βPR
n :=

〈gn, (gn − gn−1)〉X
〈gn−1, gn−1〉X

(Polak-Ribiére)
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

I In the Riemannian setting

gn−1,dn−1 ∈ Txn−1 and gn,dn ∈ Txn ,

hence cannot be added or multiplied ...

I Need a mapping between the tangent spaces Tun−1M and TunM

I Vector transport Tη(ξ) : TM× TM→ TM, ξ, η ∈ TM
describing how the vector field ξ is transported along the manifold M
by the field η
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

Conclusions (I)

I Riemannian optimization accelerates the computation
of BEC ground states

I Key enablers for Riemannian Conjugate Gradients:

I projections onto TunM
I retractions from TunM onto M,

I vector transport between Tun−1 and Tun

I Riemannian Newton’s method?
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First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

PROBLEM II

Probing Fundamental Bounds

in Hydrodynamics

(joint work with D. Ayala and Ch. Doering)
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I Navier-Stokes equation (Ω = [0, L]d , d = 2, 3)

∂v

∂t
+ (v ·∇)v + ∇p − ν∆v = 0, in Ω× (0,T ]

∇ · v = 0, in Ω× (0,T ]

v = v0 in Ω at t = 0

Boundary Condition on Γ× (0,T ]

I 2D Case
I Existence Theory Complete — smooth and unique solutions

exist for arbitrary times and arbitrarily large data

I 3D Case
I Weak solutions (possibly nonsmooth) exist for arbitrary times
I Classical (smooth) solutions (possibly nonsmooth) exist for

finite times only
I Possibility of “blow-up” (finite-time singularity formation)
I One of the Clay Institute “Millennium Problems” ($ 1M!)

http://www.claymath.org/millennium/Navier-Stokes Equations
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

What is known? — Available Estimates

I A Key Quantity — Enstrophy

E(t) ,
∫

Ω
|∇× v|2 dΩ (= ‖∇v‖2

2)

I Smoothness of Solutions ⇐⇒ Bounded Enstrophy
(Foias & Temam, 1989)

max
t∈[0,T ]

E(t) <∞ ???

?

t

E(t)

E(0)

t

NaN

0

I Can estimate dE(t)
dt using the momentum equation, Sobolev’s

embeddings, Young and Cauchy-Schwartz inequalities, ...
I Remark: incompressibility not used in these estimates ....
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I 2D Case:
dE(t)

dt
≤ C 2

ν
E(t)2

I Grönwall’s lemma and energy equation yield ∀t E(t) <∞
I smooth solutions exist for all times

I 3D Case:
dE(t)

dt
≤ 27C 2

128ν3
E(t)3

I corresponding estimate not available ....
I upper bound on E(t) blows up in finite time

E(t) ≤ E(0)√
1− 4CE(0)2

ν3 t

I singularity in finite time cannot be ruled out!
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

Problem of Lu & Doering (2008), I

I Can we actually find solutions which “saturate” a given
estimate?

I Estimate dE(t)
dt ≤ cE(t)3 at a fixed instant of time t

max
v∈H1(Ω),∇·v=0

dE(t)

dt

subject to E(t) = E0

where
I

dE(t)

dt
= −ν‖∆v‖2

2 +

∫
Ω

v ·∇v ·∆v dΩ

I E0 is a parameter

I Solution using a gradient-based descent method
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

Problem of Lu & Doering (2008), II

[
dE(t)
dt

]
max

= 8.97× 10−4 E2.997
0

vorticity field (top branch)
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I How about solutions which saturate dE(t)
dt ≤ cE(t)3 over a

finite time window [0,T ]?

max
v0∈H1(Ω),∇·v=0

E(T )

subject to E(0) = E0

where
I

E(t) =

∫ t

0

dE(τ)

dτ
dτ + E0

I E0 and T are parameters

I In principle doable, but will try something simpler first ...
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

Relevant Estimates

Best Estimate Sharp?

1D Burgers
instantaneous

dE(t)
dt
≤ 3

2

(
1
π2ν

)1/3 E(t)5/3 Yes
Lu & Doering (2008)

1D Burgers
finite–time

maxt∈[0,T ] E(t) ≤
[
E1/3

0 +
(
L
4

)2 ( 1
π2ν

)4/3 E0

]3 No
Ayala & P. (2011)

2D Navier–Stokes
instantaneous

dP(t)
dt
≤ −

(
ν
E

)
P2 + C1

(E
ν

)
P

dP(t)
dt
≤ C2

ν
K1/2 P3/2

2D Navier–Stokes
finite–time

maxt>0 P(t) ≤
[
P1/2

0 + C2
4ν2K

1/2
0 E0

]2

3D Navier–Stokes
instantaneous

dE(t)
dt
≤ 27C2

128ν3 E(t)3 Yes
Lu & Doering (2008)

3D Navier–Stokes
finite–time

E(t) ≤ E(0)√
1−4

CE(0)2

ν3 t
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I Question #1 (“small”)

Sharpness of instantaneous estimates
(at some fixed t)

max
u

dE
dt

(1D, 3D)

max
u

dP
dt

(2D)

max

E(t)

E(0)

t

I Question #2 (“big”)

Sharpness of finite–time estimates
(at some time window [0,T ], T > 0)

max
u0

[
max

t∈[0,T ]
E(t)

]
(1D, 3D)

max
u0

[
max

t∈[0,T ]
P(t)

]
(2D)

m
a
x

E(t)

E(0)

T t
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

Relevant Estimates

Best Estimate Sharp?

1D Burgers
instantaneous

dE(t)
dt
≤ 3

2

(
1
π2ν

)1/3 E(t)5/3 Yes
Lu & Doering (2008)

1D Burgers
finite–time

maxt∈[0,T ] E(t) ≤
[
E1/3

0 +
(
L
4

)2 ( 1
π2ν

)4/3 E0

]3 No
Ayala & P. (2011)

2D Navier–Stokes
instantaneous

dP(t)
dt
≤ −

(
ν
E

)
P2 + C1

(E
ν

)
P

dP(t)
dt
≤ C2

ν
K1/2 P3/2

2D Navier–Stokes
finite–time

maxt>0 P(t) ≤
[
P1/2

0 + C2
4ν2K

1/2
0 E0

]2

3D Navier–Stokes
instantaneous

dE(t)
dt
≤ 27C2

128ν3 E(t)3 Yes
Lu & Doering (2008)

3D Navier–Stokes
finite–time

E(t) ≤ E(0)√
1−4

CE(0)2

ν3 t
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I 2D vorticity equation in a periodic box (ω = ez ·ω)

∂ω

∂t
+ J(ω, ψ) = ν∆ω where J(f , g) = fxgy − fygx

−∆ψ = ω

I Enstrophy uninteresting in 2D flows (w/o boundaries)

1

2

d

dt

∫
Ω
ω2 dΩ = −ν

∫
Ω

(∇ω)2 dΩ < 0

I Evolution equation for the vorticity gradient ∇ω

∂∇ω

∂t
+ (u ·∇)∇ω = ν∆∇ω + ∇ω ·∇u︸ ︷︷ ︸

“stretching” term
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I Palinstrophy

P(t) ,
∫

Ω
(∇ω(t, x))2 dΩ =

∫
Ω

(∇∆ψ(t, x))2 dΩ

I Also of interest — Kinetic Energy

K(t) ,
∫

Ω
u(t, x)2 dΩ =

∫
Ω

(∇ψ(t, x))2 dΩ

I Poincaré’s inequality

K ≤ (2π)−2 E ≤ (2π)−2 P
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I Estimates for the Rate of Growth of Palinstrophy

dP(t)

dt
=

∫
Ω
J(∆ψ,ψ)∆2ψ dΩ− ν

∫
Ω

(∆2ψ)2 dΩ , RP(ψ)

dP(t)

dt
≤ −

(ν
E
)
P2 + C1

(E
ν

)
P (Doering & Lunasin, 2011)

dP(t)

dt
≤ C2

ν
K1/2 P3/2 (Ayala, 2012)

I Using Poincaré’s inequality (may not be sharp)

dP(t)

dt
≤ C

ν
P2,

I Bound on growth in finite time

max
t>0
P(t) ≤

[
P1/2

0 +
C2

4ν2
K1/2

0 E0

]2

(Ayala, 2012)
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I Maximum Growth of dP(t)
dt for fixed E0 > 0,P0 > (2π)2E0

max
ψ∈SP0,E0

RP0(ψ) where

SP0,E0 =

ψ ∈ H4(Ω) :

1

2

∫
Ω

(∇∆ψ)2 dΩ = P0

1

2

∫
Ω

(∆ψ)2 dΩ = E0


I Maximum Growth of dP(t)

dt for fixed K0 > 0,P0 > (2π)4K0

max
ψ∈SP0,K0

RP0(ψ) where

SP0,K0 =

ψ ∈ H4(Ω) :

1

2

∫
Ω

(∇∆ψ)2 dΩ = P0

1

2

∫
Ω

(∇ψ)2 dΩ = K0


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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

I Small Palinstrophy Limit: P0 → (2π)2E0

ϕ̃0 = arg max
ϕ∈S0

R0(ϕ), R0(ϕ) = −ν
∫

Ω

(∆2ϕ)2 dΩ,

S0 =

{
ϕ ∈ H4(Ω) :

1

2

∫
Ω

(∇∆ψ)2 dΩ =
(2π)2

2

∫
Ω

(∆ψ)2 dΩ

}
I Optimizers: Eigenfunctions of the Laplacian (ϕ̃0 ∈ Ker(∆))

x

y

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

ϕ(x , y) = sin(π(y−x)) sin(π(y +x))
x

y

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

ϕ(x , y) = sin(2πx) sin(2πy)
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Sharpness of Estimates as Optimization Problem
Bounds for 2D Navier-Stokes Problem
Computational Approach & Results

Numerical Solution of Maximization Problem

I Discretization of Gradient Flow

dψ

dτ
= −∇H4Rν(ψ), ψ(0) = ψ0

ψ(n+1) = ψ(n) −∆τ (n) ∇H4Rν(ψ(n)), ψ(0) = ψ0

I Gradient in H4(Ω) (via variational techniques)[
Id−L8∆4

]
∇H4Rν = ∇L2Rν (Periodic BCs)

∇L2Rν(ψ) = ∆2J(∆ψ,ψ) + ∆J(ψ,∆2ψ) + J(∆2ψ,∆ψ)− 2ν∆4ψ

I Constraint satisfaction via arc minimization
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Maximizers with Fixed (E0,P0)
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Maximizers with Fixed (K0,P0)

Finite-Time Estimate: maxt>0 P(t) ≤
[
P1/2

0 + C2
4ν2K
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0 E0

]2
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Relevant Estimates

Best Estimate Sharp?

1D Burgers
instantaneous

dE(t)
dt
≤ 3

2

(
1
π2ν

)1/3 E(t)5/3 Yes
Lu & Doering (2008)

1D Burgers
finite–time

maxt∈[0,T ] E(t) ≤
[
E1/3

0 +
(
L
4

)2 ( 1
π2ν

)4/3 E0

]3 No
Ayala & P. (2011)

2D Navier–Stokes
instantaneous

dP(t)
dt
≤ −

(
ν
E

)
P2 + C1

(E
ν

)
P

dP(t)
dt
≤ C2

ν
K1/2 P3/2

[Yes]
Ayala & P. (2013)

2D Navier–Stokes
finite–time

maxt>0 P(t) ≤
[
P1/2

0 + C2
4ν2K

1/2
0 E0

]2 [Yes]
Ayala & P. (2013)

3D Navier–Stokes
instantaneous

dE(t)
dt
≤ 27C2

128ν3 E(t)3 Yes
Lu & Doering (2008)

3D Navier–Stokes
finite–time

E(t) ≤ E(0)√
1−4

CE(0)2

ν3 t

???
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Conclusions (II)

I Variational analysis and numerical optimization as tools for assessing
sharpness of PDEs analysis

I motivated by big open questions in mathematical fluid mechanics
(including one of Clay “Millennium Problems”)

I 2D extreme vortex states saturate the worst-case bounds
I analysis is sharp

I Ongoing work on the 3D case (the real problem)
I so far, no evidence of blow-up, but results still from conclusive ...
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