Quantum nature and statistical law in quantum turbulence

Michikazu Kobayashi (Kyoto University)

July 1, 2016 : CIRM Conference "New Challenges in Mathematical Modelling and Numerical Simulation of Superfluids"

Plan of talk

 Introduction of Gross-Pitaevskii equation and turbulence

Directed percolation universality class at turbulent transition

 Topologically protected helicity cascade in non-Abelian quantum turbulence

Plan of talk

 Introduction of Gross-Pitaevskii equation and turbulence

Directed percolation universality class at turbulent transition

Topologically protected helicity cascade in non-Abelian quantum turbulence

Quantized vortices & quantum turbulence

Quantum turbulence : tangled state of quantized vortices

Lathrop group from Youtube

Motivation of this work : Can we find some universality class of turbulence in quantum turbulence?

Gross-Piteavskii equation : model equation for superfluid system

$$\mathcal{H} = \int d^3x \left\{ \frac{\hbar^2}{2M} |\nabla\psi|^2 + \frac{g}{2} (|\psi|^2 - \bar{\rho})^2 \right\}$$
$$i\hbar\dot{\psi} = \frac{\delta\mathcal{H}}{\delta\psi^*} = \left\{ -\frac{\hbar^2}{2M} \nabla^2 + g(|\psi|^2 - \bar{\rho}) \right\} \psi$$

 $\rho = |\psi|^2 : \text{ superfluid density}$ $\boldsymbol{v} = \bar{\kappa} \nabla(\arg[\psi]) : \text{ supefluid velocity } (\bar{\kappa} \equiv \hbar/M)$

Quantum hydrodynamic equation

$$\dot{
ho} + \nabla \cdot (
ho \boldsymbol{v}) = 0 \qquad
ho \left(\dot{\boldsymbol{v}} + \frac{\nabla \boldsymbol{v}^2}{2} \right) = -\nabla \left(\frac{g \rho^2}{2M} \right) + \bar{\kappa}^2 \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2\sqrt{\rho}} \right)$$

Vortex & turbulence

$$ho = |\psi|^2$$
 : superfluid density
 $m{v} = ar{\kappa}
abla (\arg[\psi])$: supefluid velocity ($ar{\kappa} \equiv \hbar/M$)

2D : topological point defect

3D : vortex line

turbulence

How to generate turbulence in GP equation

Origin of energy dissipation

E. Zaremba, T. Nikuni, and A. Griffin, JLTP **116**, 277 (1999)

thermal gas : Boltzmann equation $\frac{\partial f}{\partial t} + \frac{\mathbf{p} \cdot \nabla f}{m} - 2g\nabla n \cdot \nabla_{\mathbf{p}} f = C_{12}(f) + C_{22}(f)$ condensate : GP equation $i\hbar\frac{\partial\psi}{\partial t} = \left\{-\frac{\hbar^2}{2M}\nabla^2 + g(|\psi|^2 + 2\tilde{n}) + i\Gamma_{12}(f)\right\}\psi$ exchange between thermal gas and condensate Assumption : random and Markov process $(i\hbar - \gamma)\frac{\partial\psi}{\partial t} = \left\{-\frac{\hbar^2}{2M}\nabla^2 + g(|\psi|^2 - \bar{\rho})\right\}\psi + \sqrt{\gamma k_{\rm B}T}\xi \quad \text{Stochastic GP Eq.}$

Shifts from Gaussian noise ξ can be renormalized to γ (CLT)

Fully developed quantum turbulence

Large scale random current : $(v_{\text{ext}})_{x,y,z} = \bar{v} \sum_{0 \le |\boldsymbol{n}| \le 2} \cos\left(\frac{2\pi \boldsymbol{n} \cdot \boldsymbol{x}}{L} + \theta(\boldsymbol{n})_{x,y,z}\right)$

$$(i\hbar - \gamma)(\partial_t - \boldsymbol{v}_{\text{ext}} \cdot \nabla)\psi$$
$$= \left\{-\frac{\hbar^2}{2M}\nabla^2 + g(|\psi|^2 - \bar{\rho})\right\}\psi$$

Kinetic energy and its spectrum

$$E = \int d^3x \, |\psi|^2 |\nabla \operatorname{Arg}[\psi]|^2 = \int dk \, E(k)$$

Fully developed quantum turbulence

 Kolmogorov's power law is widely universal over classical and quantum turbulence.

• Quantum nature of vortices is hidden in the inertial range (k < 1/l).

We here consider quantum turbulence in which quantum nature of quantized vortices appears.

Plan of talk

Introduction of Gross-Pitaevskii equation and turbulence

Directed percolation universality class at turbulent transition

 Topologically protected helicity cascade in non-Abelian quantum turbulence

Turbulence with weak energy injection

strength of turbulence (Reynolds number if classical fluid)

static laminar flow without vortices

turbulence with vortices

fully developed turbulence (K41)

Laminar-turbulent transition (nonequilibrium critical state)(X) Whether vortices can be nucleated under the flow?(O) Whether vortices can survive under the flow?

pipe-flow simulation : $V = 512\xi \times 64\xi \times 64\xi$ with periodic BC

$$oldsymbol{v}_{ ext{ext}} = (v_x, 0, 0) \quad \gamma = 0.1\hbar$$

$$(i\hbar - \gamma)(\partial_t - \boldsymbol{v}_{\text{ext}} \cdot \nabla)\psi = \left\{-\frac{\hbar^2}{2M}\nabla^2 + g(|\psi|^2 - \bar{\rho})\right\}\psi$$

Pipe flow turbulence simulation

$$m{v}_{
m ext}=(0,0,v_0)$$
 $v_0=0.85c_{
m s}$ $c_{
m s}=\sqrt{gar{
ho}/M}$: sound velocity

400

600 integration of vortex density in y-z plane

Pipe flow turbulence simulation

$$m{v}_{
m ext} = (0,0,v_0)$$
 $v_0 = 0.8 c_{
m s}$ $c_{
m s} = \sqrt{gar{
ho}/M}$: sound velocity

400

600 integration of vortex density in y-z plane

Pipe flow turbulence simulation

$$m{v}_{
m ext} = (0,0,v_0)$$
 $v_0 = 0.75 c_{
m s}$ $c_{
m s} = \sqrt{g ar{
ho}/M}$: sound velocity

350

100

50

0

- Turbulent domains are localized.
- A domain sometimes
 splits into two domains,
 or is annihilated in a
- ¹⁵⁰ stochastic manner.
 - An annihilated domain never returns to turbulent domain (finite energy gap).

Order parameter of turbulence

Order parameter of turbulence : vortex density $\rho_{\rm vortex}$

Transition looks like second ordered thermodynamic transition in equilibrium (critical exponent : $\beta = 0.81$)

Directed percolation

 $\beta = 0.81$: 1+3D directed percolation universality class Directed percolation : percolation is directed in 1 dimension

2D isotropic bond percolation

1+1D directed bond percolation

Directed percolation & quantum turbulence

position i

time

Directed dimension is set to time

 $p < p_{\rm c}$: Percolation in time is stopped

 $v_0 < v_c$: When turbulent region

is annihilated, it never go back to turbulence

 \boldsymbol{p} : percolation probability

Directed percolation & quantum turbulence

Vortex is a topological defect with a finite energy gap and is never nucleated after annihilation (at least for $v_0 < c_s$)

 \rightarrow Nature of directed percolation universality for the laminar-turbulent transition

We are now checking other critical exponents (especially $\eta_{\text{time}} \& \eta_{\text{space}}$)

M. Takahashi, M. Kobayashi, and K. Takeuchi, will be appeared in arXiv

Plan of talk

 Introduction of Gross-Pitaevskii equation and turbulence

Directed percolation universality class at turbulent transition

• Topologically protected helicity cascade in non-Abelian quantum turbulence

Universality of fully developed turbulence

Conserving quantity in hydrodynamic equation

$$E = \frac{1}{2} \int d\boldsymbol{x} \, \boldsymbol{v}^2 = [L^2 T^{-2}] \Rightarrow E(k) \propto \varepsilon_E^{2/3} k^{-5/3} : \text{ energy (2D, 3D)}$$
$$\Omega = \frac{1}{2} \int d\boldsymbol{x} \, (\nabla \times \boldsymbol{v})^2 = [T^{-2}] \Rightarrow E(k) \propto \varepsilon_\Omega^{2/3} k^{-3} : \text{ enstrophy (2D)}$$
$$H = \int d\boldsymbol{x} \, \boldsymbol{v} \cdot (\nabla \times \boldsymbol{v}) = [LT^{-2}] \Rightarrow E(k) \propto \varepsilon_H^{2/3} k^{-7/3} : \text{ helicity (3D)}$$

Energy spectrum with the helicity cascade : $E(k) \propto k^{-7/3}$ has never been observed in 3D classical turbulence

 \rightarrow Helicity and its cascade seem not to be so important in turbulence. Why?

In quantum fluid, helicity consists of two parts.

- \bullet $H_{\rm twist}$ is quantized by κ^2 for closed loops
- A loop should be linked or knotted to have a finite $H_{\rm twist}$ ($H_{\rm twist}$ corresponds to linking number of vortices)
- Vortex reconnection can cause the change of the helicity

- \bullet $H_{\rm twist}$ is quantized by κ^2 for closed loops
- \bullet A loop should be linked or knotted to have a finite $H_{\rm twist}$
 - ($H_{\rm twist}$ corresponds to linking number of vortices)
- Vortex reconnection can cause the change of the helicity

- \bullet $H_{\rm writhe}$ is the other contribution of the helicity (spiral Kelvin waves)
- H_{writhe} is not the topological quantity (Thank you very much for Prof. M. E. Brachet).
- \bullet Vortex reconnection transfer from $H_{\rm twist}$ to $H_{\rm writhe}$

- *H*_{writhe} is the other contribution of the helicity (spiral Kelvin waves)
 *H*_{writhe} is not the topological quantity and is easily dissipated (Thank you very much for Prof. M. E. Brachet).
- \bullet Vortex reconnection transfer from $H_{\rm twist}$ to $H_{\rm writhe}$

Can we suppress vortex reconnection?

Key idea : non-Abelian vortex in spinor condensate

spin-S spinor wave function : $\psi = \begin{pmatrix} \psi_{-S} & \cdots & \psi_0 & \cdots & \psi_S \end{pmatrix}^T$

$$\mathcal{H} = \int d^3x \left[\frac{\hbar^2}{2M} \sum_{m=-S}^{S} |\nabla \psi_m|^2 + \frac{1}{2} \sum_{L=0}^{4} g_L \sum_{\mu=-L}^{L} \sum_{m_1,\dots,m_4=-S}^{S} C_{m_1m_2}^{L\mu} \left(C_{m_3m_4}^{L\mu} \right)^* \psi_{m_1}^* \psi_{m_2}^* \psi_{m_3} \psi_{m_4} \right]$$

• Symmetry of the Hamiltonian : $U(1) \times SO(3)$

• Classification of topological charges of vortex : discrete subgroup of $U(1) \times SO(3)$

Possible discrete subgroup of SO(3)

L. Michel, Rev. Mod. Phys. 52 , 617 (1980)												
$\ S$	C_2	C_3	C_4	C_5	D_1	D_2	D_3	D_4	D_5	T	0	Y
$\begin{bmatrix} 1 \end{bmatrix}$	×	×	X	X	\bigcirc	\bigcirc	×	×	×	×	×	×
2	\bigcirc	\bigcirc	×	×	\bigcirc	\bigcirc	\bigcirc	×	×	\bigcirc	×	×
3	\bigcirc	×	×	×	\bigcirc	\bigcirc	\bigcirc	\bigcirc	×	×	\bigcirc	×
4	\bigcirc	×	×	×								
5	\bigcirc	\bigcirc	×	×	\bigcirc							

Abelian (or solvable)

Non-Abelian

Atomic species for ultracold BEC in an nonmagnetic optical trap

⁸⁷ Rb, ²³ Na, ⁷ Li, ⁴¹ K	$S{=}1,2$
⁸⁵ Rb	S=2,3
¹³³ Cs	S=3,4
⁵² Cr	S=3

Spin-2 condensate

$$\psi = \left(\psi_{-2} \quad \psi_{-1} \quad \psi_0 \quad \psi_1 \quad \psi_2\right)^T$$

$$H = \int d^3x \left[\frac{\hbar^2}{2M} \sum_{m=-2}^2 |\nabla\psi_m|^2 + \frac{c_0}{2} (\rho - \bar{\rho})^2 + \frac{c_1}{2} |A|^2 + \frac{c_2}{2} S^2\right]$$

$$\rho = \sum_{m=-2}^2 \psi_m^* \psi_m \quad A = \sum_{m=-2}^2 (-1)^m \psi_m \psi_{-m} \quad S = \sum_{m,n=-2}^2 \psi_m^* \hat{S}_{mn} \psi_n$$

$$c_0 = \frac{4g_2 + 3g_4}{7} \quad c_1 = \frac{7g_0 - 10g_2 + 3g_4}{35} \quad c_2 = \frac{g_4 - g_2}{7}$$

With $c_{0,1,2} > 0$, non-Abelian tetrahedral symmetry for topological charges of vortices becomes possible

ground state :
$$\psi = \frac{\sqrt{\overline{
ho}}}{2} \begin{pmatrix} i & 0 & \sqrt{2} & 0 & i \end{pmatrix}^T$$

Tetrahedral symmetry

Gross-Pitaevskii Equation

GP equation :
$$i\hbar\dot{\psi}_m = \frac{\delta\mathcal{H}}{\delta\psi_m^*}$$

$$\begin{split} i\hbar\dot{\psi}_{\pm2} &= -\frac{\hbar^2}{2M}\nabla^2\psi_{\pm2} + c_0(\rho - \bar{\rho})\psi_{\pm2} + c_1(S_{\mp}\psi_{\pm1} \pm 2S_z\psi_{\pm2}) + c_2A\psi_{\mp2}^* \\ i\hbar\dot{\psi}_{\pm1} &= -\frac{\hbar^2}{2M}\nabla^2\psi_{\pm1} + c_0(\rho - \bar{\rho})\psi_{\pm1} + c_1\left(\frac{\sqrt{6}}{2}S_{\mp}\psi_0 + S_{\pm}\psi_{\pm2} \pm S_z\psi_{\pm1}\right) - c_2A\psi_{\mp1}^* \\ i\hbar\dot{\psi}_0 &= -\frac{\hbar^2}{2M}\nabla^2\psi_0 + c_0(\rho - \bar{\rho})\psi_0 + \frac{\sqrt{6}}{2}c_1(S_-\psi_{-1} + S_+\psi_1) + c_2A\psi_0^* \end{split}$$

ground state :
$$\psi = \frac{\sqrt{\overline{\rho}}}{2} \begin{pmatrix} i & 0 & \sqrt{2} & 0 & i \end{pmatrix}^T$$

Collision dynamics of non-Abelian vortices

GP equation :
$$i\hbar\dot{\psi}_m = \frac{\delta\mathcal{H}}{\delta\psi_m^*}$$

Topological configuration of vortices are kept (as a spin helicity) through the collision due to the formation of a new "rung" vortex

Helicity conservation is topologically protected through the collision

Topological stability of non-Abelian vortex knot

Non-Abelian quantum turbulence

$$(i\hbar - \gamma)(\partial_t - \boldsymbol{v}_{\text{ext}} \cdot \nabla)\psi_m = \frac{\delta\mathcal{H}}{\delta\psi_m^*} \quad v_{x,y,z} = \bar{v}\sum_{0 \le |\boldsymbol{n}| \le 2} \cos\left(\frac{2\pi\boldsymbol{n} \cdot \boldsymbol{x}}{L} + \theta(\boldsymbol{n})_{x,y,z}\right)$$

Abelian turbulence

Vortices are globally dynamic

Quantum nature and statistical law in quantum turbulence

Non-Abelian turbulence

Vortices are locally dynamic

Non-Abelian quantum turbulence

$$(i\hbar - \gamma)(\partial_t - \boldsymbol{v}_{\text{ext}} \cdot \nabla)\psi_m = \frac{\delta\mathcal{H}}{\delta\psi_m^*} \quad v_{x,y,z} = \bar{v}\sum_{0 \le |\boldsymbol{n}| \le 2} \cos\left(\frac{2\pi\boldsymbol{n} \cdot \boldsymbol{x}}{L} + \theta(\boldsymbol{n})_{x,y,z}\right)$$

Almost all vortices are connected through rung vortices

Quantum turbulence comprised of non-Abelian vortices

M. Kobayashi and M. Ueda, arXiv:1606.07190

We have observed two new universality class in quantum turbulence.

(1) : Directed percolation universality class at laminar-turbulent transition

Turbulent domain is never relived after its annihilation due to the finite energy gap of quantized vortex

(Sad news) : DP universality has been observed in classical fluid → not specific to quantum fluid

We have observed two new universality class in quantum turbulence.

(2) : Topologically protected helicity cascade in non-Abelian quantum turbulence

By topologically suppressing vortex reconnections, we obtain new universality class $E(k) \propto k^{-7/3}$ characterized by the helicity cascade in fully developed turbulence.

Thank you very much for your attention

Algebra

Topological charge of vortex can be fixed by a closed path encircling the vortex

Collision of Vortex

Rung BA^{-1} is formed through the collision.

Collision of Vortex

Rung BA^{-1} is formed through the collision.

Collision of Vortex

Rung BA^{-1} is formed through the collision.

Linked Vortex Rings

Spin-2 Spinor BEC

5 - component BEC :
$$\psi = (\psi_2, \psi_1, \psi_0, \psi_{-1}, \psi_{-2})^T$$

$S=2\ensuremath{\,^{\rm 87}{\rm Rb}}$ BEC and its spin dynamics is observed

H. Schmaljohann et al. PRL 92, 040402 (2004)

Vortex free – turbulent transition

Observation of vortices by vibrating wire in ⁴He Yano, 2007

Energy from vortex free to turbulence > Energy keeping turbulence

Gross-Piteavskii equation with dissipation

$$(i\hbar - \gamma)\dot{\psi} = \left\{-\frac{\hbar^2}{2M}\nabla^2 + g(|\psi|^2 - \bar{\rho})\right\}\psi$$

 $\rho = |\psi|^2 : \text{ superfluid density}$ $\boldsymbol{v} = \bar{\kappa} \nabla(\arg[\psi]) : \text{ supefluid velocity } (\bar{\kappa} \equiv \hbar/M)$

$$\rho\left(\dot{\boldsymbol{v}} + \frac{\nabla \boldsymbol{v}^2}{2}\right) = -\nabla\left(\frac{g\rho^2}{2M}\right) + \bar{\kappa}^2\rho\nabla\left(\frac{\nabla^2\sqrt{\rho}}{2\sqrt{\rho}}\right) + \frac{\gamma\rho}{2M}\nabla\left\{\frac{1}{\rho}\nabla\cdot\left(\rho\boldsymbol{v}\right)\right\}$$