Nearly parallel vortex filaments in the Gross-Pitaevskii equation

Robert L. Jerrard

Department of Mathematics University of Toronto

June 30, 2016.

joint work with A Contreras and D.Smets

We consider

the Gross-Pitasvskii equation

$$i\partial_t u - \Delta u + \frac{1}{\varepsilon^2}(|u|^2 - 1)u = 0$$

for $u: \Omega \times (0, T) \to \mathbb{C}$, where Ω is a cylinder in \mathbb{R}^3 :

$$\Omega = B \times (0, L) \subset \mathbb{R}^2$$
, $B \subset \mathbb{R}^2$ is a ball of radius R ;

and its steady states

$$-\Delta u + \frac{1}{\varepsilon^2}(|u|^2 - 1)u = 0$$

for $u:\Omega\to\mathbb{C}$, with Ω as above .

Notation: points in Ω denoted (x, z), with $x \in B \subset \mathbb{R}^2$ and $z \in (0, L)$.

relevant quantities

- density: $|u|^2$
- energy density: $e_{\varepsilon}(u) := \frac{1}{2} |\nabla u|^2 + \frac{1}{4\varepsilon^2} (|u|^2 1)^2$
- momentum density: $j(u) := iu \cdot \nabla u$
- vortex density:

$$Ju := \frac{1}{2} \nabla \times j(u) = \nabla u^1 \times \nabla u^2$$
 if $u = u^1 + iu^2$

conservation laws

- mass: $\frac{1}{2}\partial_t |u|^2 = \nabla \cdot j(u) \ .$
- ullet energy : $\partial_t e_{arepsilon}(u) :=
 abla \cdot (\partial_t u \cdot
 abla u) \ .$
- momentum:

$$\partial_t j(u) := 2\nabla \cdot (\nabla u \otimes \nabla u) + \nabla [\cdots] .$$

vorticity:

$$\partial_t Ju := \nabla \times \nabla \cdot (\nabla u \otimes \nabla u).$$

the eqivariant vortex solution is a solution of $(GL)_{\varepsilon}$ of the form

$$U_{d,\varepsilon}(x) = f_d(r/\varepsilon)e^{id\theta}, \qquad x = re^{i\theta} \in \mathbb{R}^2 \cong \mathbb{C}$$

where $d \in \mathbb{Z}$ and

$$f_d(0) = 0, \qquad f_d ext{ nondecreasing}, \qquad f_d(s) o 1 ext{ as } s o \infty$$

We will write U_{ε} for $U_{1,\varepsilon}$.

Facts

• $e_{\varepsilon}(U_{d,\varepsilon}) \approx \frac{d^2}{2r^2}$ for $r \geq C\varepsilon$; smooth near r = 0. Thus

$$\int_{B(R)} e_{\varepsilon}(U_{d,\varepsilon}) dx \approx \pi d^2 \log(R/\varepsilon) .$$

• $JU_{d,\varepsilon}$ has the form $\pi d\eta_{\varepsilon}$ with $\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^2} \eta(x/\varepsilon)$, with $\eta \geq 0$, $\int_{\mathbb{P}^2} \eta = 1$. Thus

$$\|J_X U_{d,\varepsilon} - \pi d\delta_0\|_{W^{-1,1}} pprox \varepsilon$$
 .

Ansatz

We seek solutions of roughly the form

$$ext{ansatz} = e^{iarphi_arepsilon} \prod_{i=1}^d U_arepsilon(x-h_arepsilon f_i(z,t))\,, \qquad \mathsf{f}: (0,L) o \mathbb{C}^n \cong (\mathbb{R}^2)^n.$$

for some intermediate length scale $\varepsilon\ll h_\varepsilon\ll 1$. The role of φ_ε is to take account of boundary conditions.

5/13

del Pino and Kowalczyk (2008) compute energy of the above ansatz.

They find that if $h_{\varepsilon} := |\log \varepsilon|^{1/2}$ (which we henceforth assume) then for fixed t,

$$G_{\varepsilon}(ansatz) = G_0(f),$$

where

$$G_{arepsilon}(u) := \int_{\Omega} oldsymbol{e}_{arepsilon}(u) - oldsymbol{C}(arepsilon, oldsymbol{n}, \Omega)$$

for $C(\varepsilon, n, \Omega) = \pi L[n|\log \varepsilon| + n(n-1)|\log h_{\varepsilon}| + c(n, R)]$, and

$$G_0(f) := \frac{\pi}{2} \sum_{j=1}^n \int_0^L |\partial_z f_j|^2 - \pi \sum_{k \neq j} \int_0^L \log |f_j - f_k| \, dz .$$

- first term: linearization of arclength
- second term: interaction between filaments

results 1: static nearly-parallel filaments

Theorem (Contreras - J, 2016)

For suitable boundary conditions, there exist sequences $(u_{\varepsilon})_{\varepsilon \in (0,1]} \subset H^1(\Omega; \mathbb{C})$ of stationary solutions of $(GP)_{\varepsilon}$ such that, if we rescale by settling

$$v_{\varepsilon}(x,z)=u_{\varepsilon}(h_{\varepsilon}x,z),$$

then

$$\det \nabla_X v_\varepsilon = J_X v_\varepsilon \to \pi \sum_{j=1}^n \delta_{f_j(z)} \otimes dz \qquad \qquad \text{in $W_{loc}^{-1,1}(\mathbb{R}^2 \times (0,L))$}$$

for some $f:(0,L)\to (\mathbb{R}^2)^n$ which is a minimizer or local minimizer of G_0 subject to appropriate boundary conditions. Moreover

$$G_{\varepsilon}(u_{\varepsilon}) \to G_0(f)$$
.

The proof yields much more information about the solutions u_{ε} .

related results:

- in 2d:
 - Bethuel Brezs Hélein
 - many others
- in 3d and higher:
 - Bethuel Rivière
 - Lin Rivière
 - Sandier
 - Bethuel Brezis Orlandi
 - Bethuel Bourgain Brezis Orlandi
 - Bourgain Brezis Mironescu
 - J Soner
 - Alberti Baldo Orandi
 - Montero Sternberg Ziemer
 - Bethuel Orlandi Smets
 - . . .

results 2: dynamics of nearly-parallel filaments

To see the vortex structure, it is convenient to rescale as above. Thus we will consider $v_{\varepsilon}(x, z, t)$ solving

$$\boxed{i\partial_t v_{\varepsilon} - \Delta_X v_{\varepsilon} + \frac{1}{|\log \varepsilon|} \partial_{zz} v_{\varepsilon} + \frac{1}{\varepsilon^2 |\log \varepsilon|} (|v_{\varepsilon}|^2 - 1) v_{\varepsilon} = 0}$$

on $B(R|\log \varepsilon|^{1/2}) \times (0, L)$, with

$$\nu \cdot \nabla v_{\varepsilon} = 0$$
 for $x \in \partial B(R|\log \varepsilon|^{1/2})$

and periodic boundary conditions with respect to z.

We seek to relate this to a solution $f(z,t):(0,L)\times(0,T)\to\mathbb{C}^n$ of the vortex filament system

$$i\partial_t f_j - \partial_{zz} f_j - \sum_{k \neq j} \frac{f_j - f_k}{|f_j - f_k|^2} = 0, \qquad j = 1, \dots, n$$

for periodic boundary conditions with respect to z.

Theorem (J - Smets, 2016)

Let $f = (f_1, \dots, f_n) : (0, L) \times (0, T) \to \mathbb{C}^n$ be a smooth solution of the vortex filament system (in particular, with no collisions) with initial data f^0 .

Let v_{ε} solve the rescaled Gross-Pitaevskii equations for initial data such that

$$J_X V_{arepsilon} o \pi \sum_{j=1}^n \delta_{f_j^0(Z)} \otimes dZ$$
 in $W_{loc}^{-1,1}(\mathbb{R}^2 imes (0,L))$

and

$$G_{\varepsilon}(u_{\varepsilon}^0) \to G_0(f^0)$$
 for $u_{\varepsilon}^0(x,z) := v_{\varepsilon}^0(x/h_{\varepsilon},z)$.

Then

$$J_{x}v_{arepsilon}(t)
ightarrow\pi\sum_{j=1}^{n}\delta_{f_{j}^{0}(z,t)}\otimes dz$$
 in $W_{loc}^{-1,1}(\mathbb{R}^{2} imes(0,L))$

and more

related results:

- Gross-Pitaevskii vortices in 2d:
 - Colliander J
 - Lin Xin
 - Spirn
 - J Spirn
 - Bethuel J Smets
- related equatons (eg micromagnetics)
 - Miot
 - Kurzke Melcher Moser Spirn (and subsets)
 - Serfaty Tice
- vortex rings:
 - J Smets
- results about the vortex filament system
 - formal derivation (in framework of classical fluids) Klein Majda -Damodaran
 - Kenig Ponce Vega
 - Banica Miot, Banica Faou Miot
 - Craig Garcia-Azpeitia, Garcia-Azpietia Ize

Numerical challenges

1. Steady-state

- cylindrical doman $B(R) \times (0, L)$ with suitable Dirichlet data at top and bottom minimizers (for R > 2L) and local minimizers
- local minimizers in domain as pictured:

2. Dynamics

- a single nearly-straight filament: centerline should follow linear Schrödinger equation
- $n \ge 2$ nearly parallel filament full coupled nonlinear dynamics

Thank you!