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Motivation: choices in modeling

• Differential equation −d2u
dx2

(x) = f (x), x ∈ R.

• Difference equation −D2
hu(x) = −u(x + h)− 2u(x) + u(x − h)

h2
= f (x).

... all models are wrong, but some are useful. However, the
approximate nature of the model must always be borne in mind ...
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An alternative (and more general) modeling choice

• Integral/nonlocal equation −Lδuδ(x) = f (x), x ∈ R, which uses, for a given

kernel ωδ and a nonlocal horizon δ, a nonlocal (integral) operator defined by

Lδu (x) =

ˆ δ

0

u(x + s)− 2u(x) + u(x − s)

s2
ωδ(s)ds.

• Long history (Rayleigh, van de Walls, Korteweg, and Leibniz, L′Hopital,...);

• Generic feature of model reduction (Mori-Zwanzig/Dyson/Durhamel, ...).

• Choices for δ, ωδ ⇒ local continuum (δ=0), discrete (ωδ=Dirac measure

at h ), global (δ=∞) and fractional (ω∞(s)=s1−2α, 0<α<1 ) interactions.

• Allowing singular solutions (to better represent reality, e.g. cracks/fractures) !
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Local/nonlocal modeling

I Motivated by applications such as studies of anomalous diffusion
processes and mechanics of fractures, our main interests in the
mathematical development of nonlocal models are mostly on:

• systems of nonlocal models with vector/tensor quantities of interest1;

• dependence of model properties on the range of nonlocal interactions2;

• localization of nonlocal models, coupling of nonlocal/local models3;

• effective and asymptotically compatible numerical discretization4, ...

1Du-Gunzburger-Lehoucq-Zhou, Nonlocal vector calculus, M3AS 2013
2D-G-L-Z SIAM Rev 2012; Mengesha-Du 2013, 2014, 2015, Tian-Du 2014, 2015
3Tian-Du 2016, Du-Tao-Tian 2016
4Du-Zhou 2011, Du-Ju-Tian-Zhou 2012, Tian-Du 2014, 2015, Du-Yang, 2016
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Connecting local and nonlocal models

• Nonlocal operator −Lδ is connected to various mathematical concepts, in

particular, the δ-dependence allows us to study the local limit δ → 0.

Formally, Lδu (x) =

ˆ δ

0

u(x + s)− 2u(x) + u(x − s)

s2
ωδ(s)ds

=
d2u
dx2

(x)

ˆ δ

0
ωδ(s)ds + c2δ2

d4u
dx4

(x) + · · · for u smooth.

• The operator Lδ is also associated with Sδ(Ω), the closure of C∞0 (Ω) wrt

|u|2Sδ(Ω) =

ˆ
Ω

ˆ
|s|<δ

ωδ(|s|) |u(x + s)− u(x)|2

|s|2 dsdx <∞ .

Bougain-Brezis-Mironescu 2001, Ponce 2004: as δ → 0, Sδ(Ω)→ H1
0 (Ω)

for L1 density ωδ(|s|) that approximates the Diract measure at the origin.

Nonlocal characterization of local spaces ⇒ localization of nonlocal spaces.

• More on localization: Mengesha-Du 2013, 2014, 2015, Tian-Du 2015, 2016.
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Coupling of local and nonlocal models

It may be effective to couple local/nonlocal models together in practice.

E.g. on Ω̂ a local 2nd order elliptic equation solutions in H1(Ω̂), and on Ω

a nonlocal model with less regular solutions, say, only in L2 inside Ω.

Interface Γ

Local Ω̂ Nonlocal Ω

H1 S ?

Question: can such a coupled local and nonlocal model be well-defined?
Particularly, is there an S with functions that allow possible discontinuities
anywhere in Ω, and have traces on Γ to match with their local counterparts?
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Motivation: peridynamics (PD) by Silling 2001

A nonlocal alternative to classical mechanics by Silling (2015 Belytschko prize),

replacing spatial derivatives in Newton’s law by nonlocal/integral operators:

Lu(x) =

ˆ {
T〈u(x), u(y), x, y〉 − T〈u(y), u(x), y, x〉

}
dy.

(Silling)

Motivation: classical/local continuum models are in question near materials
defects such as cracks; multiscale coupling of MD/CM remains challenging.

For recent reviews, see Handbook of Peridynamic Modeling, 2016, CRC Press.

(edited by Bobaru, Foster, Geubelle and Silling)
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PD based simulations of fracture and failure

There have been significant code development efforts (PDLAMMPS, PERIDIGM...)
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Peridynamics (PD) vs PDEs

• Peridynamics (PD) is formulated as a set of partial-integral equations

(Silling)

WIthout spatial derivatives, cracks (singularities) are part of the solution.
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A simple example: linear bond-based PD

Eg., force balance for a continuum of (linear/isotropic) Hookean springs:

Lδuδ(x) =

ˆ
Ω∪Ωδ

ωδ(|y − x|) y − x
|y − x|2

(
y − x
|y − x|2 ·

(
uδ(y)− uδ(x)

))
dy .

uδ(x): displacement at x;

linear spring ∀y ∈ Bδ(x);

y-x: bond direction;

δ: nonlocal horizon;

ωδ(|r|): nonlocal kernel,
with support in Bδ(0).

Ω

Ωδ

x
yδ

In Ω:

−Lδuδ = b

and on Ωδ:

uδ = 0

Nonlocal/volumetric constraint in Ωδ={x∈Ωc , d(x,∂Ω)<δ}, analog of local BC.
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Reformulation

Prob.: find uδ, −Lδuδ = b in Ω, uδ=0 in Ωδ.

Reformulation −D
(
ωδ D∗

)
uδ = b where

Ω

Ωδ

x yδ

D∗(u)(x, y) =
y − x
|y − x|2 ·

(
u(y)− u(x)

)
linear nonlocal volumetric strain.

D : dual/adjoint operator of D∗, < D(ϕ), u >=< ϕ,D∗(u) >, ∀ ϕ, u.

⇒ D
(
ωδ

(
D∗(u)

))
(x) =

ˆ
ωδ(|y−x|) y − x

|y − x|2 D∗(u)(x, y) dy .

Operators D∗, D , and integral identities: part of nonlocal vector calculus,

⇒ nonlocal calculus of variations, asymptotically compatible schemes:

Systematic/axiomatic framework, mimicing classical/local calculus/PDEs5.

5D-G-L-Z 2012, 2013; Mengesha-Du 2013, 2014, 2015, Tian-Du 2015, ...
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Nonlocal vector calculus

Inspired by earlier works on continuum mechanics (Silling), image/data analysis
(Gilboa-Osher, Smale et al), nonlocal space (Bougain-Brezis-Mironescu, Ponce)

Newton’s vector calculus ⇔ Nonlocal vector calculus

Local balance (PDE) ⇔ Nonlocal balance (PD)

Differential operators ⇔ Nonlocal operators

−∇ · (K∇u) = f ⇔ −D · (ωδD∗u) = f

Boundary conditions ⇔ Volumetric constraintsˆ
Ω

u∆v − v∆u =

ˆ
∂Ω

u∂nv − v∂nu ⇔
¨

uD(D∗v)− vD(D∗u) = 0

Main distinction: systems (vectors/tensors), δ-dependence, minimal regularity6

6D-G-L-Z 2012, 2013; Mengesha-Du 2013, 2014, 2015, 2016, Tian-Du 2015, 2016, ...
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Nonlocal models and local limits

Nonlocal problem uδ ∈ Sδ Local PDE limit u0 ∈ S0

Ω

Ωδ-Lδuδ= b

uδ=0

Well-posed with← →
a unique solution7

← Volumetric constraint

Boundary condition →

Ω

∂Ω
-L0u0= b

u0= 0

|u|2Sδ=
¨

ωδ(|x− y|)|D∗u(x, y)|2 |u|2S0=2|Sym∇u|2L2 + | div u|2L2

D∗u(x, y)=
u(y)− u(x)

|y − x| · y − x
|y − x| Sym∇u=

1
2

(
∇u + (∇u)T

)
Key: nonlocal Kohn’s inequality and nonlocal Poincare inequalities, ...

7D-G-L-Z 2013 J. Elasticity; Mengesha-Du 2013 J. Elasticity, 2015 Nonlinearity.
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Nonlocal models and local limits

Localization of bond-based linear peridynamics:

? As δ → 0, Sδ → H1
0 , e.g., for ωδ(r) = ω̂(r/δ)δ−d or more generally

a sequence of densities approaching the Dirac-measure8.

? uδ ∈ Sδ (a much larger space) L2
→ a more regular u0 ∈ S0 (=H1

0 ).

? L0: Navier operator of linear elasticity with a Poisson’s ratio 1/4.

⇒ consistency/compatibility of nonlocal/local models on the continuum level.

These results have been further extended9 to stated-based linear peridynamics

(for a general Poisson’s ratio), more general nonlocal volumetric constraints

(boundary conditions), and for certain nonlinear hyperelastic materials.

8Extending works of Bougain-Brezis-Mironescu, Ponce, ... to vector-fields/nonlocal-systems.
9Mengesha-Du, 2014 J. Elasticity, Proc. Roy Soc., 2015 Nonlinearity, 2016 Nonlinear Analysis....
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Nonlocal coupling

From MD to PD:

Parks-Lehoucq-Plimpton-Silling (2008),

Seleson-Parks-Gunzburger-Lehoucq (2009),

Rahman-Foster-Haque (2014), ...

From CE to PD:

Seleson-Beneddine-Prudhomme (2013),

Seleson-Gunzburger-Parks (2013),

DElia-Perego-Bochev-Littlewoood (2015),

Costa-Bond-Littlewoood (2016),...

Popular local/nonlocal coupling: sharp transition, blending, overlapping...

Tian-Du, Du-Tao-Tian: heterogeneously localized nonlocal interactions.
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Local/nonlocal coupling

Coupling a 2nd order elliptic equation on Ω̂ with a nonlocal model on Ω.

Interface Γ

Local Ω̂ Nonlocal Ω

H1 S ?

Goal: develop a nonlocal model allowing solutions with possible discontinuities
anywhere inside Ω but having traces on Γ matching with the local counterparts.
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Conventional nonlocal spaces

Recall the typical scalar nonlocal space on Ω ⊂ Rd ,

S(Ω) = {u : ‖u‖2S(Ω) = ‖u‖2L2(Ω) + |u|2S(Ω) <∞} where

|u|2S(Ω) =

ˆ
Ω

ˆ
|x−y|<δ

ωδ(|x− y|) |u(y)− u(x)|2 dydx,

ωδ(|z|) =
1

δ2+d ω̂(
|z|
δ

),

ˆ 1

0
ω̂(r)rd+1dr <∞,

supp ω̂ ⊂ [0, 1), ω̂ ≥ 0.

As δ → 0, S(Ω)→ H1(Ω) (BBM 2001) !

Ω

x
yδ

For finite δ, S(Ω) is a space between L2(Ω) and H1(Ω) depending on ω̂. It does
not meet our goal with the nonlocal interaction being spatially homogeneous.
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For finite δ, S(Ω) is a space between L2(Ω) and H1(Ω) depending on ω̂. It does
not meet our goal with the nonlocal interaction being spatially homogeneous.
But it natural leads to the idea of a spatially heterogenous nonlocal interaction.

17



New nonlocal function space

|u|2S(Ω)=
ˆ

Ω

ˆ
Ω∩{|y−x|<δx}

γ(x, y)(u(y)− u(x))2dydx, γ(x, y)=
1

|δx|2+d ω̂(
|y − x|
δx

)

where δx = min{δ, σ dist(x, Γ)}, σ ∈ (0, 1], i.e.,

a variable horizon (a concept that was studied

in Silling-Littlewood-Seleson previously). Key

to our work: by making δx → 0, we are able to

achieve heterogeneous localization.

E.g.: ω̂(r) = |r |−λχ{|r|≤1}, χ: characteristic function, λ∈[0, d+2).
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New trace theorem

Theorem ( Tian-Du 2016, Trace Theorem for a Nonlocal Space )
For d ≥ 2, Ω⊂Rd bounded, simply connected, Lipschitz, ∃C(Ω) > 0,

⇒ ‖u‖
H

1
2 (∂Ω)

≤ C(Ω)‖u‖S(Ω) , ∀u ∈ S(Ω) .

This extends a classical trace theorem for the Sobolev space H1(Ω). Indeed,

Proposition ( T-D, continuous imbedding of heterogeneous nonlocal space )
H1(Ω) ↪→ S(Ω) : ∃C(Ω) > 0, ⇒ ‖u‖S(Ω) ≤ C(Ω)‖u‖H1(Ω), ∀u ∈ H1(Ω).

The imbedding also extends a well-known result by BBM10 for constant horizon
to the case that allows variable horizon and heterogeneous localization.

10Bourgain-Brezis-Mironescu, Another look at Sobolev spaces, 2011
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New trace theorem

Theorem ( Tian-Du 2016, Trace Theorem for a Nonlocal Space )
For d ≥ 2, Ω⊂Rd bounded, simply connected, Lipschitz, ∃C(Ω) > 0,

⇒ ‖u‖
H

1
2 (∂Ω)

≤ C(Ω)‖u‖S(Ω) , ∀u ∈ S(Ω) .

Among extensions of Sobolev space: Morrey, Besov, Campanato, Triebel,
variable-order Sobolev, ..., none contains theorems of the type presented here.

The result was expected but its proof, as it turned out, is highly non-trivial,
relying on substantially more involved estimates than the local counterpart.

Some of the technical results used in the proof are of independent interests.
For examples, a new nonlocal Hardy type inequality has been established.
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Proving the trace theorem

A couple of key strategies/ingredients to make the proof more accessible:

1 first consider a strip, then more general domains via partition of unity;

2 use a simple (constant) kernel for ω̂ first, then generalize.

x1

r

Ω = (0, r)× Rd−1

Γ = {0} × Rd−1

x=(x1, x̄)

δx = |x1|, γ(x , y)=|x1|−2−dχ{|y−x|≤x1},

|u|2S(Ω)=
ˆ

Ω

ˆ
Ω∩{|y−x|<x1}

(u(y)− u(x))2

|x1|2+d dydx .

⇒ S(Ω) contains all functions in L2(Ω̃), ∀ Ω̃ b Ω.

In contrast |u|2Hα(Ω)=
ˆ

Ω

ˆ
Ω

(u(y)− u(x))2

|y − x |2α+d dydx .
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Special trace theorem

x1

r

Ω = (0, r)× Rd−1

Γ = {0} × Rd−1

x=(x1, x̄)

A more special but precise form of the trace theorem:

Theorem ( Tian-Du 2016 Special Case )
‖u‖L2(Γ) ≤ c(d) (r−1/2‖u‖L2(Ω) + r1/2|u|S(Ω)) (?)

|u|H1/2(Γ) ≤ c(d) (r−1‖u‖L2(Ω) + |u|S(Ω)) (??)

While one may use interior extensions to derive the desired
inequalities, there are a few unexpected complications.

Sketch of the proof:

Step 1 for (?), standard extension gives ‖u‖2L2(Γ) ≤ c(d) (r−1‖u‖L2(Ω)
2 + r |u|2w )

where |u|2w =

ˆ
Γ

ˆ r

0

|u(x1, x̄)− u(0, x̄)|2

|x1|2
dx1d x̄ .

⇒ a classical version of (?) follows via a Hardy’s inequality |u|2w≤C‖∂x1u‖2L2(Ω),

but, we need, for (?) and (??), a more refined version |u|2w≤C |u|2S(Ω) (#)
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Nonlocal Hardy’s

Step 2 To bound |u|w, we establish an extension of classical Hardy inequality:

Lemma ( Tian-Du 2016 A New Nonlocal Hardy Type Inequality )
ˆ
D

|u(x)|2

(dist(x , ∂D))2
dx ≤ C(D)|u|2S(D)

(
≤ C(D)‖∇u‖2L2(Ω)

)
, ∀u ∈ C 1

0 (D̄).

The 1d nonlocal Hardy is needed to derive a bound for |u|2w:
ˆ

Ω

|u(x1, x̄)− u(0, x̄)|2

|x1|2
dx ≤ C

ˆ
Ω

 bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|3
dy1dx ,

which leads to an object resembling a norm of normal derivative/difference.
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Nonlocal norms of directional derivatives/differences

Note: it is trivial that ‖∂x1u(x1, x̄)‖2L2 + ‖∂x̄u(x1, x̄)‖2L2 = ‖∂xu(x)‖2L2 .

Norms of directional differences may be defined as, for c∈(0, 1), 0≤a<b≤1,

|u|2n =

ˆ
Ω

 bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|2+1 dy1dx

(
≤ C‖∂x1u(x1, x̄)‖2L2(Ω)

)
,

|u|2t =

ˆ
Ω

 
Bcx1 (x̄)

|u(x1, ȳ)− u(x1, x̄)|2

|x1|2+d−1 d ȳdx

(
≤ C‖∂x̄u(x1, x̄)‖2L2(Ω)

)
.

(x1, x̄)
(y1, x̄)

(y1, ȳ) (x1, ȳ)

{x1}×Bcy1(x̄)

{y1}×Bcy1(x̄)

(ax1, bx1)

Γ={0}×Rd−1

Easy to see |u|n + |u|t ≤ C‖∂xu‖L2(Ω) , but we need its nonlocal version.
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Nonlocal norms of directional derivatives/differences

Step 3 a much more involved proof leads to:

Lemma ( Tian-Du 2016 )
For suitable a, b, c, ∃ C=C(a, b, c)> 0 ⇒

|u|n + |u|t ≤ C |u|S(Ω) , ∀u ∈ S(Ω).

This new nonlocal estimate is derived from

|u|n ≤ α|u|t + C |u|S(Ω) ,

|u|t ≤ β|u|n + C |u|S(Ω) .

(x1, x̄)
(y1, x̄)

(y1, ȳ) (x1, ȳ)

{x1}×Bcy1(x̄)

{y1}×Bcy1(x̄)

(ax1, bx1)

Γ={0}×Rd−1

Careful estimate leads to αβ < 1 (a small miracle, with suitable a, b, c).

Putting together, we get (#), and then (?) of the special trace theorem.
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Proving the trace theorem

Step 4 showing (??) is more delicate; separate far-away interactions (easy) from

nearby interactions in Γ2
r = Γ2 ∩ {ȳ -x̄=h̄, |h̄|≤r/2} (more challenging).

Constructing suitable extension of boundary

points x̄ , ȳ on Γ2
r to Ω along the normal

direction, i.e., x1, y1∈Iα,βx̄,ȳ ={α|h̄|≤z≤β|h̄|}

for 1<α<β≤2, averaging overIα,βx̄,ȳ , we get

(0, x̄)

(0, ȳ)

|h̄|

β|h̄|

α|h̄|
(y1, ȳ)

(x1, x̄)

Γ

|u(0, ȳ)− u(0, x̄)|2 ≤ 3
(β − α)|h̄|

ˆ
Iα,βx̄,ȳ

|u(0, ȳ)− u(y1, ȳ)|2dy1

+
3

(β − α)|h̄|

ˆ
Iα,βx̄,ȳ

|u(x1, x̄)− u(0, x̄)|2dx1

+
3

(β − α)2|h̄|2

¨
Iα,βx̄,ȳ ×Iα,βx̄,ȳ

|u(y1, ȳ)− u(x1, x̄)|2dy1dx1 .
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Proving the trace theorem

Integrating over Γ ⇒ an estimate on the near-by boundary norm:

¨
Γ2
r

|u(0, ȳ)− u(0, x̄)|2

|ȳ − x̄ |d d ȳd x̄ ≤ 6
β − α

¨
Γ2
r

ˆ
Iα,βx̄,ȳ

|u(x1, x̄)− u(0, x̄)|2

|ȳ − x̄ |d+1 dx1d ȳd x̄

+
3

(β − α)2

¨
Γ2
r

¨
Iα,βx̄,ȳ ×Iα,βx̄,ȳ

|u(y1, ȳ)− u(x1, x̄)|2

|ȳ − x̄ |d+2 dy1dx1d ȳd x̄ = I + II

Step 5 Estimating II involves changes to variables/order-of-integration, but more

amendable; I requires different and more technical estimates in order to

yield a bound like C(r)|u|2w , which in combination with (#) gives (??).
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Local/nonlocal coupling

The trace theorem leads immediately to well-posed local/nonlocal coupling.

Local δ = 0
u− ∈ H1(Ω−)

Γ 0← δx

Nonlocal δ = δx

u+ ∈ S(Ω+)

With the change in scales, robust numerical scheme is important.

Wanted: a monolithic discretization that works for both nonlocal models (finite

δ > 0) and their localizations (δ = 0 limit).
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Asymptotically compatible discretization

• Asymptotically Compatible (Tian-Du): converging to nonlocal solution
with a fixed δ as h→ 0, and as δ → 0, h→ 0 to the correct local limit.

uh
δ uh

0

uδ u0

Discrete
Nonlocal

Continuum
Nonlocal h = 0

Discrete
Local δ = 0

Continuum
PDE δ = h = 0

δ → 0

h
→

0

δ → 0

h
→

0
δ →

0

h→
0

sparse

dense

AC scheme: monolithic discretization of heterogeneous (local/nonlocal) models
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AC: specialized to nonlocal problems

Tian-Du 201410 provided an abstract framework and specified conditions

for AC schemes. In particular, for nonlocal PD systems in multi-dimensions:

AC if containing C 0 pw linear. For pw constants, conditional AC if h/δ → 0.

uh
δ uh

0

uδ u0

AC with C0 pw linear

δ → 0

h
→

0

δ → 0

h
→

0δ →
0

h→
0

uh
δ uh

0

uδ u0

Discontinuous pw constant

!h
→

0

δ → 0

h
→

0

Q
S

h→
0, δ →

0

AC schemes are more robust (good for adaptive multiscale computation).

10Asymptotically compatible schemes and applications to robust discretization of nonlocal models
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Summary

An alternative view:

Nonlocal models may provide effective mathematical
descriptions of various phenomena, being Lévy flights
of bumblebees, crack paths in materials, ....

Systematic/axiomatic mathematical analysis of nonlocal models are not only
mathematically interesting but also important in various applications.

Heterogeneous localization and AC schemes may provide a possible path to a
seamless (robust and adaptive) coupling of local/nonlocal models.

(think nonlocal, act local)
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