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Bose-Einstein condensation

Dilute gaz of Bosons, cooled to temperature close to absolute zero
~» macroscopic part of atoms in lowest quantum state

Predictions : S.N. Bose, 1924 (photons), A. Einstein, 1925 (atoms)
First experiments : 1995 : Cornell, Wieman, 87Rb : Ketterle, 23Na

Wave function :

lZ(t,Xl, e )XN) = I_I_]N:lw(tvxj)

then if only two-body interactions and N large, 1 satisfies the
Gross-Pitaevskii equation :

Arh?a

h
ihoe)(t, x) = f%AU) + V(x)Y + IR

V : confining potential



Aim : take into account stochastic aspects (fluctuations) in the
dynamics

FIGURE: False-color plots of 87 Rb atoms undergoing Bose-Einstein condensation in a combined magnetic and
optical potential. By Danny McCarron, Daniel Jenkin, Hung Wen Cho and Simon Cornish.

Mainly two sources of fluctuations in physics literature :

> Fluctuations of the laser parameters (optical confinement)

» Non zero temperature (e.g. Weiler et al. Nature, 2008)



RANDOM VARIATIONS OF THE CONFINING
POTENTIAL



Random variations of the confining potential :
Gross-Pitaevskii with stochastic potential :

f/2
ihdp) = le—m/) F V(00 + glo2y
m

Abdullaev, Baizakov, Konotop, Nonlinearity and Disorder, 2001,
Garnier, Abdullaev, Baizakov, Phys. Rev. A, 2004

V : confining potential (laser) harmonic, with random fluctuations
in time

muwo
V(t,r) = T"’F(l +¢(1))
with w3 = al/(2mé2), depends on laser intensity /

&(t) : fluctuations of parameters

Assumptions : £(t) is d-correlated and with zero mean : (£(t)) =0,

(E(1)8(t) = oot — t')



Remark : The “white noise” assumption may be relaxed : £(t)
stationary, (£(t)¢(t')) = c(t — t'), with ¢ sufficiently decaying;
Savard, O'Hara, Thomas, Phys. Rev. A, 1997

However, white noise is natural under some scaling.

Model studied in the attractive case (g < 0) by :

» Moments methods : (Abdullaev, Baizakov, Konotop, 2001)
~> qualitative considerations about collapse

» “Variational” methods (Gaussian profile + asymptotic
analysis) and simulations (Garnier, Abdullaev, Baizakov, 2004)
~> density of collapse time 7 and mean of 7 as a function of
the power P (or the number of atoms N)



Numerical simulations from Garnier et al. 2004
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FIG. 3. Histograms of the collapse time obtained from series of
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FIG. 7. Mean collapse time is calculated from stochastic PDE
simulations (solid squares) and compared with the corresponding
stochastic ODE simulations (open circles). Each mean is computed
by averaging over a series of 100 simulations. (a) Mean collapse
time as a function of P for a white noise strength o-=0.3. (b) Mean
collapse time as a function of o for a nonlinear parameter P
=0.44 close to the critical value P,=0.459.



Mathematical results :

AdB, R. Fukuizumi, Nonlinearity 2012

1
id + 5 (A = V(x)p — 2|0 ) dt = % V(x)$ o dW

. x2
Gauge transformation : ¥(t,x) = e_’%("ow(t)“)u(t,x) leads
to 1
iOru = —E(Vu — ix(ooW(t) + t))u + g|ulu

Schrédinger equation with (random) magnetic field

» d =1 and 1)y square integrable (in x) : existence of a unique
adapted global square integrable solution 1) ; conservation of
the number of atoms; preservation of regularity.

» Y9 €L, and d =2 or 3 : existence of a stopping time T*
and of a unique adapted solution 1 a.s. in C([0, T*); X).



Global existence, or not :

Energy :

H) = 3 [ (907 + VOQIE + glufdx

For the stochastic evolution : if 7 < T* a.s.
HOT) = HOo) +03 [ [ IxPliGo Pt

—oplm /OT /Rdx Vi (x)(x)dxdW, a.s;

and

xth(7)2 = Ixtbol 2 —I—Im/o /Rd x1 - Vipdxdt,

> If g > 0, the solution is global i.e. T = 400, a.s.
» If g <0, blow up occurs



Diffusion approximation :

Let d =1 and g € R. Let m(t) be e.g. stationary, ergodic, with
some mixing conditions.

Then, for any € > 0 and 1y € L?(R) there exists a unique global
solution ¢, with continuous paths in L?(R), of

1 1 t
06 = 5 (=B + V(x)¢) + glo 6 + 2Hn(fz) V(x)é,
g g

with ¢(0) = to.

Moreover the process ¢. converges in law in C([0, T], L?) as ¢
tends to zero, to the solution v of

1
idy = 5(—Au§ + V(x))dt + gl[*dt + % V(x)p o dW,

with 1(0) = vg.



Vortices of the deterministic GP equation

Assume g = 1 (repulsive condensate), V(x) = |x|?, oo = 0, and
d=2

)r(u
° R N
—
—

X

0.

Centered m-vortex : x = re’’ € R?, and 1 > Ay = 2m + 2; then
¥u,m nonnegative solution of (GP) with

ﬂ)p,m(t-/x) _ emteimeiﬁy,m(r)



Dynamics of the stochastic equation

Consider the stochastic equation with small noise :
. 1 €
idy) + 5 (B = |x[*Y)dt = [p*pdt = S[x|*p o dW

with $(0,x) = thu,m(x) = eimasp,u,m(r)-

Question : how does the solution behaves asymptotically for small
g, and for t not "too large” ?

AdB, Fukuizumi, Poncet 2015

» The m-equivariance of the solution is preserved by the noise

» We may write the solution of the stochastic equation as
U (8, x) = € D™, () + v (2, 7)]

as long as ||ve(t)|lx < «, for some « > 0, sufficiently small.



Estimate on the exit time

Question : Can we estimate the time 7, with

1o = inf{t > 0,||v°||x > a}?

{exp(imt) @, }

Result : there is a C(c, ) > 0, such that for all T > 0, and all
e < ep, ,
P(r<T)< e C/eT

o —

Remark : if 7 is the exit time of the solution, then E(7) < +o0.



Central limit Theorem

Let ve(t,x) = en®(t,x). Then, for any T > 0, the process
(n°(t))ecfo, TArs] converges in probability, as € goes to zero, to a
process 7 satisfying

dn = JL, mndt — (I — Pum) ( 20 ) dw,
| X pm
with 7(0) = 0, where P, n, is the spectral projection onto the

generalized null space of JL,, ,,. The convergence holds in
C([0,75 A T], L?).

At first order in €, the equations for the modulation parameter is
given by

(‘X‘2%‘9;L,m7 O;LS‘Q;L,m)
(S«Q;J,,ms au,@u,,m)

d¢s(t) = pdt — ¢ dW + o(e)



Numerical results

id + (AY — |x[20)dt = |1 [2)dt + [x|?) o dW
Use equivariance symmetry : (t, x) = e "M rmf(t, r)
Numerical scheme :

» Crank-Nicolson (mid-point) for the linear terms (derived from
Bao-Du, 2004)
> Relaxation for the nonlinear term (Besse, 1998) :

1 n n— n|2o
§(Qj+1/2+ QJ 1/2) _ |fJ- |2

» Mid-point discretization of the noise (Stratonovich) :
2 _ m42n+1/2 /3
srj’”+ f(rj)odWNcrj’"+ fjn / Votxn

where (xn) is a family of independent A/(0, 1)
» Dirichlet boundary conditions



Initial data :

Profiles computed with shooting methods + 4" order RK

(0, x) = ef"m()r’"fmm(r)

18,07




Modulation parameter and remainder :

&(t) = — arg(/o V() pg.mr dr), enf =y —¢

e 0.2 0.4 0.0 05 o
time x10-!

Evolution of £2(t) — pot and |e€°(t)|x for two different values of € for the same
realization of the BM (m =2, uo = 2m + 3)



Estimate on the exit probabilities (Monte Carlo method) :

with

s <t])

log(Plr

N
P(rg < t) ~ ArAtN:NZ
k=1

k
YgrEA(t) =

y e (k)
Ar,At

1{\(aﬂir,m)(”|L°°<(O,T);2)>Oé}

e T=01m=0
oo I=01m=1
o T=0.1m=2

log(Plr;, <t])

e c=0.009 m=0

o c=0.009m=1

o e c=0.009m=2
-




Trajectories of solutions : one realization of the noise

One realization of the solution for e = 0.1,m =10



Trajectories of solutions : one realization of the noise

One realization of the solution fore =0.1,m=1



Trajectories of solutions : one realization of the noise

One realization of the solution for e = 0.1, m =2



Trajectories of solutions : deterministic solution with perturbed
initial data

One realization of the solution for e =0, m =2



Trajectories of solutions : one realization of the noise
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One realization of the solution for ¢ = 0.5, m =2



FINITE TEMPERATURE MODEL :
THE PROJECTED STOCHASTIC GPE



Evaporative cooling

Weiler, Neely, Scherer, Bradley, Davis; Nature, 2008

Experiment :
» 87Rb atoms in magnetic trap
> evaporative cooling ~~ close to critical point

» relaxation of trap frequencies ~~ phase transition

Simulations :
> Use of stochastic projected GP equation

> Start with temperature T; = 45nK > T, chemical potential
i ~> reach equilibrium state

> Change temperature to Tr = 34nK, and larger pur
~> spontaneous vortex formation



Stochastic projected GPE
1) : wave function for the condensed atoms

h2
Lop =~ A+ V(x) + glu(t )

where m is the atomic mass, g = 4”h a

s-wave scattering length. Then

and a the (positive)

dy = Pc[ LGpg)dt + 7( — LGP)/I/)dt + dWA’,(l}X)}

h ke T

where i is the chemical potential, and P, is a cut-off (low energy
modes)

(dW (£, x)dW, (t', ")) = 27d(t — t')0(x — x")dt

Additional terms : interaction thermal cloud—condensate



Equilibrium state :

Energy : 1 projected wave function (d.-dimensional)

h2
H("/’C) = %‘Vwcm + ‘V(X)wC‘iz - H"‘/JC@ +g”¢6‘i4
with

V(x) = —wx”.

Ground state (T=0) : Symmetry breaking at p = hw
Gibbs measure (T > 0) :

H(wc)
kg T

mr(de) = acexp ( — )d'(/)c

Convergence to equilibrium with geometric rate Roberts, Tweedie,
1996
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Sections of coefficients of H

Numerical experiment
» Initial state distributed according to 71, with T; above T, and
wi small; then dynamical simulations with T¢ below T, and
larger ur
» plot of isovalues of |1c(t, x)[?
» Euler + spectral + Hermite transform; 35 to 40 modes



Infinite dimensional model

dip = (i +7) |[AY — x4+ uap — |2 | dt + /ydW

W(t, x) is the wave function; v > 0; W is a cylindrical Wiener
process : (hp)nen real valued c.o.s. of L2(R) s.t.

(=A +x*)h, = X2h,, N2 =2n+4+1, neN
then W may be written as

W(t,x) =) Bi(t)hi(x)

keN

with (Bk)k sequence of independent complex valued BM

» 0 < pu< A =1 (take u = 0 for simplicity)

» Only dimension one in x is allowed



Invariant measure : Burqg, Thomann, Tzvetkov, 2013
Let

+o0o
o(x,w) = Z V2

~—&n(w)hn(x),
n:O)\ng() (x)

with (gn)nen independent C-valued N(0,1) ~~ law of ¢ is a
Gaussian measure p with p(A) = P(¢(-,w) € A). Then

P(¢ € LP(R)) = p(LP(R)) = { 10 I;Zit

The Gibbs measure 7 is then defined on L*(R) :

1
m(du) =T Lexp ( - Z|u|i4>p(du)

and is abs. continuous with respect to p.

Note : Solutions are locally in time well defined in L*(R).



Global (a.s.) well posedness and convergence result :
dB, Debussche, Fukuizumi, 2016

» There exists a measurable set O € L*(R) s.t. 7(0) =1, and

for any ¢y € O, there is a unique solution 1 which is a.s.
continuous with values in L*(R)).

» For any F continuous and bounded in L*(R), define
U(t,100) = E(F(1(t,10))) with 9 sol. of (CGL) with initial
state g ; then U(t,-) converges exponentially to

F= ’/H(R) F(u)m(du)

in L2(L*, d7) that is for some positive a,

/ \U(t, u) — F>r(du) < Ce ™t
Jiar)



Conclusion and open problems

» Improve numerical methods for finite dimensional simulations
(MC and statistics) ; in particular simulations of 7, phase
transition, ...

> Finite dimensional dynamics : slow-fast dynamics?

> Infinite dimensional dynamics : what about chemical potential
1 larger than one?

» More realistic space dimensions (x € RY, d = 2 or 3) ~ needs
refined methods
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