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Bose-Einstein condensation

Dilute gaz of Bosons, cooled to temperature close to absolute zero
 macroscopic part of atoms in lowest quantum state

Predictions : S.N. Bose, 1924 (photons), A. Einstein, 1925 (atoms)

First experiments : 1995 : Cornell, Wieman, 87Rb ; Ketterle, 23Na

Wave function :

ψ̃(t, x1, · · · , xN) = ΠN
j=1ψ(t, xj)

then if only two-body interactions and N large, ψ satisfies the
Gross-Pitaevskii equation :

i~∂tψ(t, x) = − ~
2m

∆ψ + V (x)ψ +
4π~2a

m
|ψ|2ψ

V : confining potential



Aim : take into account stochastic aspects (fluctuations) in the
dynamics

Figure: False-color plots of 87Rb atoms undergoing Bose-Einstein condensation in a combined magnetic and
optical potential. By Danny McCarron, Daniel Jenkin, Hung Wen Cho and Simon Cornish.

Mainly two sources of fluctuations in physics literature :

I Fluctuations of the laser parameters (optical confinement)

I Non zero temperature (e.g. Weiler et al. Nature, 2008)



Random variations of the confining

potential



Random variations of the confining potential :

Gross-Pitaevskii with stochastic potential :

i~∂tψ = − ~2

2m
∆ψ + V (t, r)ψ + g |ψ|2ψ

Abdullaev, Baizakov, Konotop, Nonlinearity and Disorder, 2001,
Garnier, Abdullaev, Baizakov, Phys. Rev. A, 2004

V : confining potential (laser) harmonic, with random fluctuations
in time

V (t, r) =
mω0

2
|r|2(1 + ξ(t))

with ω2
0 = αI/(2m`2

0), depends on laser intensity I

ξ(t) : fluctuations of parameters

Assumptions : ξ(t) is δ-correlated and with zero mean : 〈ξ(t)〉 = 0,
〈ξ(t)ξ(t ′)〉 = σ2

0δ(t − t ′)



Remark : The “white noise” assumption may be relaxed : ξ(t)
stationary, 〈ξ(t)ξ(t ′)〉 = c(t − t ′), with c sufficiently decaying ;
Savard, O’Hara, Thomas, Phys. Rev. A, 1997

However, white noise is natural under some scaling.

Model studied in the attractive case (g < 0) by :

I Moments methods : (Abdullaev, Baizakov, Konotop, 2001)
 qualitative considerations about collapse

I “Variational” methods (Gaussian profile + asymptotic
analysis) and simulations (Garnier, Abdullaev, Baizakov, 2004)
 density of collapse time τ and mean of τ as a function of
the power P (or the number of atoms N)



Numerical simulations from Garnier et al. 2004 :

where the dilogarithm function is the tabulated function de-
fined as follows:

dilog!x" = #
1

x ln!y"
1 ! y

dy .

Equations !17" and !18" are the most important results of this
paper. They show that the collapse time varies as $ln!P!2",
while the energy barrier is $P!2. In physical variables, the
expected collapse time is

E0%Tc& =
2

!0"
ln'1 + #$

24m!0as
2N2( ,

" = !0#
0

%

cos!2!0t"E%&!0"&!t"&dt .

Taking the experimental data !0=10 kHz, N)5'103, as
=!5 nm, and "=10!4–10!5, we obtain the expected col-
lapse time *!1–10" s.

C. Numerical simulations

We compare the theoretical predictions with numerical
simulations of the ODE (6). We use a fourth-order Runge-
Kutta method for the resolution of the ODE. The random
fluctuations are modeled by a stepwise constant random pro-
cess,

&!t" = (+
j
Xj1%jtc,!j+1"tc"!t" ,

where the Xj are independent and identically distributed ran-
dom variables with uniform distribution over !!1/2 ,1 /2"
and tc is the coherence time of the laser. The coefficient "c is
then given by

"c = (2
1 ! cos!2tc"

48tc
.

The first series of simulations were performed with the pa-
rameters (=0.3 and tc=0.5. We investigate different con-
figurations corresponding to different values of the param-
eter P starting from a!0"=1, at!0"=0, which is very close
to the ground state. We have carried 1000 simulations for
each configuration. The theoretical values for the ex-
pected value and standard deviation according to formulas
%Eqs. !17" and !18"& are reported in Table I and compared
with the values obtained from averaging of the results of
the numerical simulations.
Note that the statistical formulas are theoretically valid in

the asymptotic framework P)1. The numerical simulations
show that they are actually valid for P*0.2. More exactly,
the comparisons between the theoretical predictions and the
numerical simulations show excellent agreement for the
mean values, and very good agreement also for the standard
deviations. We also plot in Fig. 3 the histograms of the col-
lapse times for two series of simulations.
Finally, in Table II, we report results with a high level of

fluctuations (namely, (=2). The theoretical predictions are
still in agreement with the numerical simulations for P

*0.3 with an accuracy of 10% although the considered con-
figurations are at the boundary of the validity of the
asymptotic theory.

V. CRITICAL NONLINEARITY

A. Expansions of the action-angle variables for critical
nonlinearity

In this section we address the case where the nonlinear
parameter P is close to the critical value Pc=4/55/4. We do
so by setting P=Pc!+ and assuming +)1. Once again, all
quantities can be expanded in powers of +. After some alge-
bra, we get

aj = ag + 2!1/25!1/8ãj+1/2 + O!+" with ag = 5!1/4,

TABLE I. Comparisons between the averages and rms of the
collapse time obtained from numerical simulations and from theo-
retical formulas. Here (=0.3 and tc=0.5.

P

,,- rms!,"

Num Theor Error % Num Theor Error %

0.05 4112 4103 0.2 2241 2335 4
0.1 2585 2591 0.2 1718 1601 7
0.2 1257 1306 3.5 833 865 4
0.3 586 760 23 407 518 21
0.4 205 486 58 165 336 51

FIG. 3. Histograms of the collapse time obtained from series of
1000 simulations. (a) P=0.1; (b) P=0.05.
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the stationary state of the condensate. Figure 7(a) represents
the collapse time for different values of the parameter P
which are not too close to the critical value Pc. Comparison
with the results from numerical simulations of the ODE (5)
shows a very good agreement. This demonstrates that the
variational approach provides accurate predictions for the be-
havior of the BEC for small nonlinearity, and that the
asymptotic analysis carried out in Sec. IV holds true for the
randomly driven GP equation.
Finally, we have performed numerical simulations of the

GP equation (3) driven by a white noise ! with a nonlinear
parameter P very close to the critical value Pc=0.459. For
near-critical values of the parameter P, the Gaussian wave
form was found to be not enough accurate. In this case we
employed the exact solution of the GP equation to initiate
random simulations. The exact solution (ground state) of the
GP equation is found by imaginary time-evolution method as
described in Ref. [30]. It is plotted in Fig. 6(b). The results

are plotted in Fig. 7(b). We can see that collapse in the per-
turbed PDE occurs much earlier than in the ODE model.
This shows that the BEC in full GP equation is unstable
against collapse at near critical nonlinear parameter. A small
perturbation can drive the BEC to collapse through fluctua-
tions that are not captured by the variational approach. Ac-
cordingly, we can state that the variational approach provides
poor predictions for the behavior of the BEC for critical non-
linearity. Several reasons can explain the departure. (1) The
Gaussian ansatz is not correct [see Fig. 6(b)]. (2) The study
of the ODE model shows that the important parameter in the
near-critical case is not the value of P, but the value of the
difference between P and Pc. But the ODE does not capture
the correct value of Pc, so the error committed in the evalu-
ation of the difference P!Pc becomes very large when P
becomes close to Pc. (3) Radiation effects become very im-
portant, in the sense that the wave form is strongly affected,
even when the simulations are performed starting from the
exact numerical wave form plotted in Fig. 6(b), so that we
feel that it is useless to try to find a more suitable ansatz. In
this respect, one should add that this result is not surprising
because it is well known in nonlinear optics that the time-
dependent variational approach fails to describe the regime
near the collapse [31,32]. Finally, it is necessary to mention
that the behavior of the gas close to collapse can be affected
by mechanisms that are not included in the GP equation,
such as inelastic two- and three-body collisions [33,34].

VII. CONCLUSION

We have considered in this paper a condensate trapped by
an external potential generated by a system of laser beams in
the case of a negative scattering length. We have studied the
stability of the metastable BEC against small fluctuations of
the laser intensity. We have shown that collapse of the BEC
occurs whatever the amplitude of the fluctuations after a time
which is inversely proportional to the integrated covariance
of the autocorrelation function of the fluctuations of the laser
intensity. The statistical distribution of the collapse time has
been computed. The dependence of the mean collapse time
with respect to the number atoms N has been thoroughly
analyzed. We have shown that, for N below the critical num-
ber of atoms Nc, the mean collapse time decreases logarith-
mically with increasing N. As a byproduct of the analysis we
have shown that the variational approach is very efficient for
the analysis of the BEC for a number of atoms N which is
not too close to Nc, but we have seen that it completely fails
for N close to Nc.
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FIG. 7. Mean collapse time is calculated from stochastic PDE
simulations (solid squares) and compared with the corresponding
stochastic ODE simulations (open circles). Each mean is computed
by averaging over a series of 100 simulations. (a) Mean collapse
time as a function of P for a white noise strength "=0.3. (b) Mean
collapse time as a function of " for a nonlinear parameter P
=0.44 close to the critical value Pc=0.459.
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Mathematical results :

AdB, R. Fukuizumi, Nonlinearity 2012

idψ +
1

2
(∆ψ − V (x)ψ − 2g |ψ|2ψ)dt =

σ0

2
V (x)ψ ◦ dW

Gauge transformation : ψ(t, x) = e−i
|x|2

2
(σ0W (t)+t)u(t, x) leads

to

i∂tu = −1

2
(∇u − ix(σ0W (t) + t))2u + g |u|2u

Schrödinger equation with (random) magnetic field

I d = 1 and ψ0 square integrable (in x) : existence of a unique
adapted global square integrable solution ψ ; conservation of
the number of atoms ; preservation of regularity.

I ψ0 ∈ Σ, and d = 2 or 3 : existence of a stopping time T ∗

and of a unique adapted solution ψ a.s. in C ([0,T ∗); Σ).



Global existence, or not :

Energy :

H(ψ) =
1

4

∫
Rd

(|∇ψ|2 + V (x)|ψ|2 + g |ψ|4)dx

For the stochastic evolution : if τ < T ∗ a.s.

H(ψ(τ)) = H(ψ0) + σ2
0

∫ τ

0

∫
Rd

|x |2|ψ(x)|2dxdt

−σ0Im

∫ τ

0

∫
Rd

x · ∇ψ(x)ψ̄(x)dxdW , a.s;

and

|xψ(τ)|2L2 = |xψ0|2L2 + Im

∫ τ

0

∫
Rd

xψ̄ · ∇ψdxdt,

I If g > 0, the solution is global i.e. T ∗ = +∞, a.s.

I If g < 0, blow up occurs



Diffusion approximation :

Let d = 1 and g ∈ R. Let m(t) be e.g. stationary, ergodic, with
some mixing conditions.

Then, for any ε > 0 and ψ0 ∈ L2(R) there exists a unique global
solution φε, with continuous paths in L2(R), of

i∂tφ =
1

2
(−∆φ+ V (x)φ) + g |φ|2φ+

1

2ε
m
( t

ε2

)
V (x)φ,

with φ(0) = ψ0.

Moreover the process φε converges in law in C ([0,T ], L2) as ε
tends to zero, to the solution ψ of

idψ =
1

2
(−∆ψ + V (x)ψ)dt + g |ψ|2ψdt +

σ0

2
V (x)ψ ◦ dW ,

with ψ(0) = ψ0.



Vortices of the deterministic GP equation

Assume g = 1 (repulsive condensate), V (x) = |x |2, σ0 = 0, and
d = 2
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Figure: Profil de ϕ en fonction de m (gauche) et projection pour m = 4Centered m-vortex : x = re iθ ∈ R2, and µ > λm = 2m + 2 ; then
ψµ,m nonnegative solution of (GP) with

ψµ,m(t, x) = e iµte imθϕµ,m(r)



Dynamics of the stochastic equation

Consider the stochastic equation with small noise :

idψ +
1

2
(∆ψ − |x |2ψ)dt − |ψ|2ψdt =

ε

2
|x |2ψ ◦ dW

with ψ(0, x) = ψµ,m(x) = e imθϕµ,m(r).

Question : how does the solution behaves asymptotically for small
ε, and for t not ”too large” ?

AdB, Fukuizumi, Poncet 2015

I The m-equivariance of the solution is preserved by the noise

I We may write the solution of the stochastic equation as

ψε(t, x) = e iξ
ε(t)e imθ[ϕµ,m(r) + v ε(t, r)]

as long as ‖v ε(t)‖Σ ≤ α, for some α > 0, sufficiently small.



Estimate on the exit time

Question : Can we estimate the time τ εα, with

τ εα = inf{t > 0, ‖v ε‖Σ ≥ α}?

exp(i t
0

){ }

Result : there is a C (α, µ) > 0, such that for all T > 0, and all
ε ≤ ε0,

P(τ εα ≤ T ) ≤ e−C/ε
2T

Remark : if τ is the exit time of the solution, then E(τ) < +∞.



Central limit Theorem

Let v ε(t, x) = εηε(t, x). Then, for any T > 0, the process
(ηε(t))t∈[0,T∧τεα] converges in probability, as ε goes to zero, to a
process η satisfying

dη = JLµ,mηdt − (I − Pµ,m)

(
0

|x |2ϕµ,m

)
dW ,

with η(0) = 0, where Pµ,m is the spectral projection onto the
generalized null space of JLµ,m. The convergence holds in
C ([0, τ εα ∧ T ], L2).

At first order in ε, the equations for the modulation parameter is
given by

dξε(t) = µdt − ε(|x |2ϕµ,m, ∂µϕµ,m)

(ϕµ,m, ∂µϕµ,m)
dW + o(ε)



Numerical results

idψ + (∆ψ − |x |2ψ)dt = |ψ|2ψdt + ε|x |2ψ ◦ dW
Use equivariance symmetry : ψ(t, x) = e−imθrmf (t, r)

Numerical scheme :

I Crank-Nicolson (mid-point) for the linear terms (derived from
Bao-Du, 2004)

I Relaxation for the nonlinear term (Besse, 1998) :

1

2
(Q

n+1/2
j + Q

n−1/2
j ) = |f nj |2σ

I Mid-point discretization of the noise (Stratonovich) :

εrm+2
j f (rj) ◦ dW ∼ εrm+2

j f
n+1/2
j

√
δtχn

where (χn) is a family of independent N (0, 1)
I Dirichlet boundary conditions



Initial data :

Profiles computed with shooting methods + 4th order RK

ψ(0, x) = e−imθrmfµ,m(r)



Modulation parameter and remainder :

ξε(t) = − arg(

∫ ∞
0

ψε(t)φµ0,mr dr), εηε = ψεe iξ
ε(t) − φµ0,m

Evolution of ξε(t)− µ0t and |εξε(t)|Σ for two different values of ε for the same

realization of the BM (m = 2, µ0 = 2m + 3)



Estimate on the exit probabilities (Monte Carlo method) :

P(τ εα ≤ t) ∼ Ŷ α,ε
∆r ,∆t,N =

1

N

N∑
k=1

Y
α,ε,(k)
∆r ,∆t

with
Y
α,ε,(k)
∆r ,∆t = 1{|(εηε∆r,∆t)

(k)|L∞((0,T );Σ)>α}



Trajectories of solutions : one realization of the noise

One realization of the solution for ε = 0.1,m = 0



Trajectories of solutions : one realization of the noise

One realization of the solution for ε = 0.1,m = 1



Trajectories of solutions : one realization of the noise

One realization of the solution for ε = 0.1,m = 2



Trajectories of solutions : deterministic solution with perturbed
initial data

One realization of the solution for ε = 0,m = 2



Trajectories of solutions : one realization of the noise

One realization of the solution for ε = 0.5,m = 2



Finite temperature model :

the projected stochastic GPE



Evaporative cooling

Weiler, Neely, Scherer, Bradley, Davis ; Nature, 2008

Experiment :

I 87Rb atoms in magnetic trap

I evaporative cooling  close to critical point

I relaxation of trap frequencies  phase transition

Simulations :

I Use of stochastic projected GP equation

I Start with temperature Ti = 45nK > Tc , chemical potential
µi  reach equilibrium state

I Change temperature to Tf = 34nK , and larger µf
 spontaneous vortex formation



Stochastic projected GPE

ψ : wave function for the condensed atoms

LGP = − ~2

2m
∆ + V (x) + g |ψ(t, x)|2

where m is the atomic mass, g = 4π~2a
m and a the (positive)

s-wave scattering length. Then

dψ = Pc
[
− i

~
LGPψdt +

γ

kBT
(µ− LGP)ψdt + dWγ(t, x)

]
where µ is the chemical potential, and Pc is a cut-off (low energy

modes)

〈dW ∗
γ (t, x)dWγ(t ′, x ′)〉 = 2γδ(t − t ′)δ(x − x ′)dt

Additional terms : interaction thermal cloud–condensate



Equilibrium state :

Energy : ψc projected wave function (dc -dimensional)

H(ψc) =
~2

2m
|∇ψc |2L2 + |V (x)ψc |2L2 − µ|ψc |2L2 + g |ψc |4L4

with
V (x) =

m

2
ω2x2.

Ground state (T=0) : Symmetry breaking at µ = ~ω

Gibbs measure (T > 0) :

πT (dψc) = αc exp
(
− H(ψc)

kBT

)
dψc

Convergence to equilibrium with geometric rate Roberts, Tweedie,
1996



Sections of coefficients of H

Numerical experiment
I Initial state distributed according to πTi

with Ti above Tc and
µi small ; then dynamical simulations with Tf below Tc and
larger µf

I plot of isovalues of |ψc(t, x)|2
I Euler + spectral + Hermite transform ; 35 to 40 modes



Infinite dimensional model

dψ = (i + γ)
[
∆ψ − x2ψ + µψ − |ψ|2ψ

]
dt +

√
γdW

ψ(t, x) is the wave function ; γ > 0 ; W is a cylindrical Wiener
process : (hn)n∈N real valued c.o.s. of L2(R) s.t.

(−∆ + x2)hn = λ2
nhn, λ2

n = 2n + 1, n ∈ N

then W may be written as

W (t, x) =
∑
k∈N

βk(t)hk(x)

with (βk)k sequence of independent complex valued BM

I 0 ≤ µ < λ1 = 1 (take µ = 0 for simplicity)

I Only dimension one in x is allowed



Invariant measure : Burq, Thomann, Tzvetkov, 2013

Let

φ(x , ω) =
+∞∑
n=0

√
2

λn
gn(ω)hn(x),

with (gn)n∈N independent C-valued N (0, 1)  law of φ is a
Gaussian measure ρ with ρ(A) = P(φ(·, ω) ∈ A). Then

P(φ ∈ Lp(R)) = ρ(Lp(R)) =

{
0 if p < 4
1 if p ≥ 4

The Gibbs measure π is then defined on L4(R) :

π(du) = Γ−1 exp
(
− 1

4
|u|4L4

)
ρ(du)

and is abs. continuous with respect to ρ.

Note : Solutions are locally in time well defined in L4(R).



Global (a.s.) well posedness and convergence result :
dB, Debussche, Fukuizumi, 2016

I There exists a measurable set O ∈ L4(R) s.t. π(O) = 1, and
for any ψ0 ∈ O, there is a unique solution ψ which is a.s.
continuous with values in L4(R)).

I For any F continuous and bounded in L4(R), define
U(t, ψ0) = E(F (ψ(t, ψ0))) with ψ sol. of (CGL) with initial
state ψ0 ; then U(t, ·) converges exponentially to

F̄ =

∫
L4(R)

F (u)π(du)

in L2(L4, dπ) that is for some positive α,∫
L4(R)

|U(t, u)− F̄ |2π(du) ≤ Ce−αt



Conclusion and open problems

I Improve numerical methods for finite dimensional simulations
(MC and statistics) ; in particular simulations of π, phase
transition,...

I Finite dimensional dynamics : slow-fast dynamics ?

I Infinite dimensional dynamics : what about chemical potential
µ larger than one ?

I More realistic space dimensions (x ∈ Rd , d = 2 or 3)  needs
refined methods
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