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Splitting for NLS

1
iOru + §Au =f (|u|2) u, t>0, xeRY,

with u: [0, T] x RY = C, and f : R, — R.
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Splitting for NLS

1
iOru + §Au =f (|u|2) u, t>0, xeRY,

with u: [0, T] x RY = C, and f : R, — R.
Splitting: solve successively two parts of the equation.
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O ODE:
iOru —{—;A/u: f (\u\z) u.
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with u: [0, T] x RY = C, and f : R, — R.
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O ODE:
iOru —{—;A/u: f (\u\z) u.

@ Linear PDE: 1
i@tu + EAU =f u 0.
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Splitting for NLS

1
iOru + §Au =f (|u|2) u, t>0, xeRY,

with u: [0, T] x RY = C, and f : R, — R.
Splitting: solve successively two parts of the equation.

O ODE:
iOru —{—;A/u: f (\u\z) u.

1
i@tu + EAU =f u 0.

@ Linear PDE:

Interest: two equations which are easy to solve.
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Solving the equations

) 1
iOru + EAU =f (|u|2) u.

O ODE:
iOru = f (|u|2) u.
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Solving the equations

) 1
iOru + EAU =f (|u|2) u.

O ODE:
iOru = f (|u|2) u.

It is a linear equation! Indeed, 0; (|u|?) = 0 since f : R} — R.
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Solving the equations

) 1
iOru + EAU =f (|u|2) u

O ODE:
iOru = f (|u|2) u

It is a linear equation! Indeed, 0; (|u|?) = 0 since f : R} — R.
@ Linear PDE: 1
iatu + EAU =0.

Same thing, thanks to Fourier (in space):

2
o 6P

ltu—— =0.
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Solving the equations

) 1
iOru + EAU =f (|u|2) u

O ODE:
iOru = f (|u|2) u

It is a linear equation! Indeed, 0; (|u|?) = 0 since f : R} — R.
@ Linear PDE: 1
iatu + EAU =0.

Same thing, thanks to Fourier (in space):

2
iatu—ﬁ =0.

~> explicit formula for the ODE, and FFT for the PDE.
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Splitting scheme(s)

Denote by X! the linear flow: Xfuy = u(t), where
. 1
iOsu + EAU =0 ; Uj=o = o,

and by Y the “nonlinear” flow: Y*uy = u(t), where

ioru=f (Juf)u ; Ujg— = Up-
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Splitting scheme(s)

Denote by X! the linear flow: Xfuy = u(t), where
. 1
iOsu + EAU =0 ; Uj=o = o,

and by Y the “nonlinear” flow: Y*uy = u(t), where

ioru=f (Juf)u ; Ujg— = Up-

o Lie-Trotter: ZAt = YAt o XAt or ZAt = XAt o YAL,
o Strang: Z&t = XAt/20 YAt o XA2 or (...).

o Higher order. . .
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Convergence of the approximation

1
iOpu + EAU = ]u]2u ;U= = Uo-

Theorem (Besse-Bidégaray-Descombes 02; Lubich 08)

Case d < 2: for ug € H?>(R?) and all T >0, 3C, hy such as if At €]0, hg],
Vn € N with nAt € [0, T],

H (ZL“)H up — u(nAt)HL2 < C(my, T)At,

with mj =  max_ |u(t)||iqray- 1fd =3 and ug € H*(RY),

|(22)" 0 - uions)] , < c(m Dy (80"
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Semiclassical regime

2
iedru® + %Au‘g =f (|u€|2) us,

and ¢ — 0.
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Semiclassical regime

2
iedru® + %Au‘g =f (|u€|2) u®

and & — 0. Initial datum of WKB type: u5(0, x) = ag(x)e/®(*x)/=,
Conserved quantities:

d
Mass: a”ug(t)H%2 =0.
d
Energy: — <||6Vu ()12 + /d F (|u6(t,x)|2) dx> =0.
R

~ ||| gn & €71, More generally, m; = O(s7/) (sharp).
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Semiclassical regime

2
iedru® + %Au‘g =f (|u€|2) u®

and & — 0. Initial datum of WKB type: u5(0, x) = ag(x)e/®(*x)/=,
Conserved quantities:

d 2
Mass: EHUE(t)HLz =0.

Energy: — q <||6Vu (t)]12 +/Rd F (|u5(t,x)|2) dx> =0.

~ ||| gn & €71, More generally, m; = O(s7/) (sharp).
The splitting error estimates become useless in the limit ¢ — 0.
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Hydrodynamics

2 .
ie0su® + %AUE = F(JuP) o u5(0,x) = an(x)e' T,

WKB type approximation: u(t,x) = a(t, x)e/®(tx)/=,
Position density: p°(t,x) = |u(t,x)|?.
Current density: J°(t,x) = elm (Z°(t,x)Vu©(t, x)) .
Formally (justifications exist), p° and J¢ converge to:

Oip+div) =0 ; p\t:o=!ao|27

JoJ
0¢J + div (f) +pVF(p) =0 ; J—o = a0/’ Vo.

Identifying terms: p = |a|?, J = |a|*V¢.

Rémi Carles (Montpellier) Splitting for semiclassical NLS



Splitting in the semiclassical limit

Idea: as long as the solution to the exact equation writes
uE(t, x)=a"(t, x)e'® (8= (a5 % uniformly bounded H%),

then so does the numerical solution obtained by splitting.
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Splitting in the semiclassical limit

Idea: as long as the solution to the exact equation writes
uE(t, x)=a"(t, x)e'® (8= (a5 % uniformly bounded H%),
then so does the numerical solution obtained by splitting.

ODE: iediuf = f(|uf|?)u?, “]Et:O = a5el®0/e.
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Splitting in the semiclassical limit

Idea: as long as the solution to the exact equation writes
uE(t, x)=a"(t, x)e'® (8= (a5 % uniformly bounded H%),
then so does the numerical solution obtained by splitting.

ODE: iediuf = f(|uf|?)u?, U = age'®/c.
s U (t, x) = a5(x) el ()/eitf (135 () ) /e

Rémi Carles (Montpellier) Splitting for semiclassical NLS



Splitting in the semiclassical limit

Idea: as long as the solution to the exact equation writes
uE(t, x)=a"(t, x)e'® (8= (a5 % uniformly bounded H%),
then so does the numerical solution obtained by splitting.

ODE: iediuf = f(|uf|?)u?, “]Et:O = a5el®0/e.
s U (t, x) = a5(x) el ()/eitf (135 () ) /e
Amounts to considering the system:

{atqﬁf——f(\afF) i =0 = 9

E __ . £ — A
da” =0 ; a_= -
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2
Linear PDE: ie0:u® + 8?AuE =0, uftzo = age’d)g/s.
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2
Linear PDE: ie0:u® + 8?AuE =0, uftzo = age’d)g/s.

The solution can be written as u® = asei¢€/5, with
1
0" +5IVE =0 5 dfeo = 5,

1
Ora” + Vo~ - Va® + EQEAQSE = i%AaE ; a|5t:0 = ag.
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2
Linear PDE: ie0:u® + 6EAUE =0, uftzo = age’d)g/s.

The solution can be written as v = ae’?"/¢, with
1
0" +5IVE =0 5 dfeo = 5,
1
Ora” + Vo~ - Va® + EaEAqSE = i%AaE ; a|5t:0 = ag.

~> The system is decoupled: V¢° solves Burgers.

Before singularity formation, solve the first equation (¢ uniformly
bounded H®), then the second is a linear PDE with bounded coefficients
(a® uniformly bounded H*~2).
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. . . . [AHE . .
The numerical solution is written as a%e’®"/¢, by solving successively

{f%f =—f (&%),

8ta€ =0.

and )
(9t<;5€ + §]V¢5]2 — 07

1
0 + Vo - Va© + 2a Ao = i%Aae.
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. . . . [AHE . .
The numerical solution is written as a%e’®"/¢, by solving successively

{at¢€ = —f(|aP),

8ta€ =0.

and )
(9t<;5€ + §]V¢5]2 — 07

1
0 + Vo - Va© + 2a Ao = i%Aae.
~> Amounts to do some splitting on
1
0" + 5V = —f (|a°)

1
O + Vo< Va© + A = igAaa.
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1
O* + 5|V = —F (|o°)

1
O + Vo - Va© + Za Ao = i%Aae.

~~ Without i§Aa°, for f(p) = +p7~1, symmetrised version of isentropic
Euler.
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Déja vu

£ 1 £ £
O* + 5|V = —F (|o°)
1
O + Vo - Va© + Za Ao = i%Aae.

~~ Without i§Aa°, for f(p) = +p7~1, symmetrised version of isentropic
Euler.
~ With i§Aa®, system introduced by Emmanuel Grenier (f' > 0).
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Déja vu

£ 1 £ £
O* + 5|V = —F (|o°)
1
O + Vo - Va© + Za Ao = i%Aae.

~~ Without i§Aa°, for f(p) = +p7~1, symmetrised version of isentropic

Euler.

~ With i§Aa®, system introduced by Emmanuel Grenier (f' > 0).
~ Generalizations: WKB regime for other equations (' > 0,
Schrodinger-Poisson, f(p) = Ap?).
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Propagating Sobolev regularity: linear PDE

1
0es" + 5|V =0,

1
O + Vo - Va© + 2a Ao = i%AaE.
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Propagating Sobolev regularity: linear PDE

1
0es" + 5|V =0,

1
O + Vo - Va© + 2a Ao = igAaE.

@ The linear PDE has been replaced by a nonlinear system.
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Propagating Sobolev regularity: linear PDE

1
0es" + 5|V =0,

1
O + Vo - Va© + 2a Ao = igAaE.

@ The linear PDE has been replaced by a nonlinear system.
e V¢© solves (multiD) Burgers:
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Propagating Sobolev regularity: linear PDE

1
a&+§N&F:Q

1
O + Vo - Va© + 2a Ao = igAaE.

@ The linear PDE has been replaced by a nonlinear system.

@ V¢© solves (multiD) Burgers: local resolution, propagation of H*®
regularity (s > d/2 + 1), tame estimates.
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Propagating Sobolev regularity: linear PDE

1
a&+§N&F:Q
1
O + Vo - Va© + 2a Ao = igAaE.

@ The linear PDE has been replaced by a nonlinear system.

@ V¢© solves (multiD) Burgers: local resolution, propagation of H*®
regularity (s > d/2 + 1), tame estimates.

o If V¢© € L*([0,7]; H®), s > d/2 + 1, one cannot hope better than
a® € L([0,7]; HS 1),
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Propagating Sobolev regularity: ODE

{aﬂpf = —f(|aP),

8ta€ =0.
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Propagating Sobolev regularity: ODE

{aﬂpf = —f(|aP),

8ta€ =0.

o If fis local (f(p) = p?~1), then for a° € L>([0, 7]; H?), o > d/2,
¢° € L*°([0,7]; H?) and not better:
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Propagating Sobolev regularity: ODE

{at¢€ = —f(|aP),

8ta5 =0.

o If fis local (f(p) = p?~1), then for a° € L>([0, 7]; H?), o > d/2,
¢° € L>([0,7]; H?) and not better: the numerical scheme does not
preserve the regularity.
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Propagating Sobolev regularity: ODE

{8tq5€ = —f(|aP),

atag =0.

o If fis local (f(p) = p?~1), then for a° € L>([0, 7]; H?), o > d/2,
¢° € L>([0,7]; H?) and not better: the numerical scheme does not
preserve the regularity.

@ The issue of loss of regularity vanishes if a Poisson type nonlinearity is
considered.
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Propagating Sobolev regularity: ODE

{8tq5€ = —f(|aP),

atag =0.

o If fis local (f(p) = p?~1), then for a° € L>([0, 7]; H?), o > d/2,
¢° € L>([0,7]; H?) and not better: the numerical scheme does not
preserve the regularity.

@ The issue of loss of regularity vanishes if a Poisson type nonlinearity is
considered.

@ Other way to overcome the loss of regularity (linear equation): work
in time dependent analytic regularity (joint work with C. Gallo).
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Sobolev regularity

Hypothesis

f(p) = K * p, where the Fourier transform of K,

R(€) = ml)c,/z /R e EK (),

satisfies:

o Ifd <2, sup(1+ |¢P)K()] < oo ;
£eRd

o Ifd >3, sup |¢|K(E)] < .
£cRd

If d > 3, Schrédinger-Poisson: f(|u|?)u = V,u, where AV, = A|ul?,
AeR.
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The exact solution

If for s > d/2+ 1, ¢g € L™, (Veo,a0) € H*TL x H*, then there exists
T > 0 such that the system

1
0"+ SIVOP = —f (%) & 0f = oo,
1
8,:35 + v¢€ . Vas -+ 535A¢>€ = I'%Aas ; ag = ao,

has a unique solution (¢°, a%) € C([0, T]; L> x H?) such that
V¢ € C([0, T]; H**1). In addition, the bounds are uniform in ¢ €]0, 1].
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The exact solution

If for s > d/2+ 1, ¢g € L™, (Veo,a0) € H*TL x H*, then there exists
T > 0 such that the system

1
0"+ SIVOP = —f (%) & 0f = oo,
1
Ora” + V¢ -Va® + EaEAd)E = i%AaE ;ay = ao,
has a unique solution (¢°, a%) € C([0, T]; L> x H?) such that
V¢ € C([0, T]; H**1). In addition, the bounds are uniform in ¢ €]0, 1].

We can take T = Tax — 0, where T .« is the lifespan of the
Euler-Poisson system (if Tyax < 00).
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The exact solution

If for s > d/2+ 1, ¢g € L™, (Veo,a0) € H*TL x H*, then there exists
T > 0 such that the system

1
0"+ SIVOP = —f (%) & 0f = oo,
1
0:a® + Vo - Va® + EaEAd)E = i%AaE ;ay = ao,
has a unique solution (¢°, a%) € C([0, T]; L> x H?) such that
V¢ € C([0, T]; H**1). In addition, the bounds are uniform in ¢ €]0, 1].
We can take T = Tax — 0, where T .« is the lifespan of the

Euler-Poisson system (if Tyax < 00).
~» WKB form preserved for the exact solution, on [0, T].
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Main result

Theorem

There exist e9 > 0 and C, ¢y independent of £ €]0, eg| such that for all
At € (0, co], for all n € N such that t, = nAt € [0, T], we have:
1. There exist ¢¢ and a® with

sup_ (11a°(8)llpscrey + V0% ()| b oy + 1167(8) | Lorey ) < €
te[0,T]

such that u® = a®e’®"/¢ on [0, T] x R¥.
2. There exist ¢5, and a, with

a5l s (re) + [V ORIl ey + 1651l Loorey < C,

such that (ZAt)" (aoef¢°/5) = a%e'®/¢, and the following error estimate
holds:

lah — & (ta)ll o1 + V05 = V&« (ta)ll s + |65 — 97 (tn) |10 < CAL
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Back to initial unknowns

Corollary

Under the previous assumptions, with previous notations:

At
At\n, e th € j—
H(ZE ) Up —Sg Up L2(Rd) NS C - 0
Main quadratic observables:
H] (Z2% | — i (tn)[? < CAt,
L1(R)NL(RY)

Hlm (g(zm) EV(ZAmy ) JE ()

< CAt.
L1(RY)NL>(RY)

In agreement with numerical experiments by Bao-Jin-Markowich '03
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Scheme of the proof

@ Regularity estimates on the exact solution.
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Scheme of the proof

@ Regularity estimates on the exact solution.

o (Local) regularity estimates on the numerical scheme.
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Scheme of the proof

@ Regularity estimates on the exact solution.
o (Local) regularity estimates on the numerical scheme.

@ Local error estimate (after Descombes-Thalhammer).
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Scheme of the proof

Regularity estimates on the exact solution.
(Local) regularity estimates on the numerical scheme.

Local error estimate (after Descombes-Thalhammer).

From local to global: Lady Windermere's fan and induction (after
Holden-Lubich-Risebro).

Working in phase/amplitude representation yields L> bounds independent
of € €]0, 1], which were not known.
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Analytic regularity

The phase ¢° and the amplitude a® belong to H!, ¢ > d/2 + 1, where

Il = | (€ 1) s

with a time dependent weight p.
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Analytic regularity

The phase ¢° and the amplitude a® belong to H!, ¢ > d/2 + 1, where

Il = | (€ 1) s

with a time dependent weight p.
Inspired by the analysis of Ginibre & Velo '01.
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Analytic regularity

The phase ¢° and the amplitude a® belong to H!, ¢ > d/2 + 1, where

Il = | (€ 1) s

with a time dependent weight p.
Inspired by the analysis of Ginibre & Velo '01. Requirements:

e p(t)=>0>00n |0, T],
o —p(t) > 1.
For instance, p(t) = My — Mt, with My, M > 1.
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Analytic regularity

The phase ¢° and the amplitude a® belong to H!, ¢ > d/2 + 1, where

Il = | (€ 1) s

with a time dependent weight p.
Inspired by the analysis of Ginibre & Velo '01. Requirements:

e p(t)=6>00n][0,T],
o —p(t) > 1.
For instance, p(t) = My — Mt, with My, M > 1. Advantages:
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Analytic regularity

The phase ¢° and the amplitude a® belong to H!, ¢ > d/2 + 1, where

Il = | (€ 1) s

with a time dependent weight p.
Inspired by the analysis of Ginibre & Velo '01. Requirements:

e p(t)=>0>00n |0, T],
o —p(t) > 1.

For instance, p(t) = My — Mt, with My, M > 1. Advantages:
@ The previous loss of regularity issue disappears,
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Analytic regularity

The phase ¢° and the amplitude a® belong to H!, ¢ > d/2 + 1, where

Il = | (€ 1) s

with a time dependent weight p.
Inspired by the analysis of Ginibre & Velo '01. Requirements:

e p(t)=6>00n][0,T],
o —p(t) > 1.

For instance, p(t) = My — Mt, with My, M > 1. Advantages:
@ The previous loss of regularity issue disappears,

@ No symmetry needed in the hydrodynamical form (unlike in Grenier's
approach).
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Analytic regularity

The phase ¢° and the amplitude a® belong to H!, ¢ > d/2 + 1, where

Il = | (€ 1) s

with a time dependent weight p.
Inspired by the analysis of Ginibre & Velo '01. Requirements:

e p(t)=6>00n][0,T],
o —p(t) > 1.

For instance, p(t) = My — Mt, with My, M > 1. Advantages:
@ The previous loss of regularity issue disappears,

@ No symmetry needed in the hydrodynamical form (unlike in Grenier's
approach).

Typically, we can consider f(|u|?)u = Au|[*?u, 0 €N, A € R,
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Parabolization of the Euler system

The time dependent analytic norm
¢
iy = [ (€ )

implies the general property

d .
E‘WH%{% =2 <8t¢7¢>7¢£ + 2PH¢H§_[/€+1/2-

Last term: as if a parabolic term (of order 1) had been added (p < 0).
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Parabolization of the Euler system

The time dependent analytic norm

Wl = [, (© e e
? R4
implies the general property
d 2 2
EWH% =2 <at¢7¢>yg + 2PH¢HHﬁ+1/z-
Last term: as if a parabolic term (of order 1) had been added (p < 0).

~ Implicit dependence of M = —p in the computations: assume that the
initial data ap and ¢ satisfy

45 [ A
[, (18€)? + 16o©) ) d < o,
for some 6 > 0 (e.g.: Gaussian data, or compact support on Fourier side).
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Parabolization of the Euler system

The time dependent analytic norm

iy = [ (€ )

implies the general property

d .
EM’H%{% =2 <8t¢7¢>7¢£ + 2PH¢H§{/€+1/2-

Last term: as if a parabolic term (of order 1) had been added (p < 0).

~ Implicit dependence of M = —p in the computations: assume that the
initial data ap and ¢ satisfy

/Rd e<§>1+5 <‘§0(5)|2 + |¢’§0(§)|2> dé < oo,

for some 6 > 0 (e.g.: Gaussian data, or compact support on Fourier side).
~> Same error estimate as before (in all H®, with T > 0 independent of ¢).
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Theorem
Suppose that d,oc € N, d,oc > 1, and A € R. Let ¢q, ag such that

/ SO <‘(§0(5)‘2 + ]§O(§)|2) d¢ < oo, for some & > 0.
Rd

HT ,€0,¢0 > 0 and (Cy)ken s. t. Ve € (0,e0], the following holds:
. = Stug € C([0, T],NsH®). Moreover, there exist ¢° and a® with

sup_(J1a°(O)ll ey + 19°(8) l ey ) < s Yk €N,
tel0,T]

such that u(t,x) = a(t, x)e'?" (tX)/e for all (t,x) € [0, T] x RY.
2. There exist ¢5, and a, with

a7l ey + 105l HrRey < Ck, VK EN

such that (ZAt)" (ape™®/€) = a%e'#n/¢, and:

13 — & (tn)ll g + 95 — ¢°(ta)ll e < CiAt.
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Local error estimate

Let A an operator, and &4 its propagator:

0t€a(t,v) = A(€a(t,v)); Ea(0,v)=v.

Theorem (Descombes-Thalhammer)
Suppose that F(u) = A(u) + B(u), and denote

S'(u) = EF (t,u) and Z'(u) = Eg (t, Ea(t, u))

the exact and numerical flows, respectively. The exact formula holds

2t (u) - S(u) = // DoEr (£ — 1, 27 (1) DoEs (11 — 72, EnlT1, 1))
x [B, Al (g (12,Ea (11, u))) dTadTy.

NB: 0,€ = linearized flow.
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Standard framework for NLS:
A= igA; B(v) = —éf (VA vi F(v) = A(v) + B(v).
Linearized exact flow: 0-EF(t, u)wp = w, where
2
iedew + %AW =f ([uP)w+f(@w + uW) u;  W—o = wo.

Drawback: does not preserve the (monokinetic) WKB structure. If
u = ae'®/¢, then

2 . . .
0w + %AW =f(la)w+f <5e_’¢/sw + ae"z’/EW) ae'?/z,

For wg = boe"“’o/s, in general, there does not hold

w = bPel?/e, b®, ©° uniformly bounded in H*.

More simply, a5e®n/¢ — a%e/®"/¢ has no reason to be factored of e’/
(with uniform bounds).
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That is another reason to work on systems:

{@wzmwm,

3ta€ =0.

and )
&&+§W&F=Q

1
&f+v&-Vf+§fA&eﬂgAf
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Precised framework

()= Cooor? Tl s
a ~V¢-Va—3al¢+i50a)’

2(0)-("5")
a 0
Both operators are nonlinear. I

¢\  (Vo-Vf(|a]?) —divf (|a|*°V¢) — ediv f (Im(aVa))
81 (5) - ( Va- Vf ([al) + 1af (|aP) )
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Local error

Theorem (Local error estimate for WKB states)

Let s> d/2+1 and u > 0. Suppose that
IVO©|lpsia < g (|8 1s < o
There exist C,co > 0 (depending on 1) independent of € € (0, 1] such that
DN Lo (OF) o (07 _ V(1)
L (t? <as T Za 3 SE a° - Ae(t) ’

where A® and V¢ satisfy

VW)l + 1A ()l < G, 0 E< co.
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