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Spin-orbit coupling

Interaction of a particle’s spin with its motion

fine structure of Hydrogen

Electron: orbital angular momentum (generates magnetic
field), interacts with the electron spin magnetic moment
(internal Zeeman effect)

Crucial for quantum-Hall effects, topological insulators
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Spin-orbit coupling in two component BEC

Major experimental breakthrough in 2011, Lin et al. have
created a SO coupled BEC, 85Rb: |↑〉 = |F = 1, mf = 0〉 and
|↓〉 = |F = 1, mf = −1〉.
SO coupling in cold atoms have been hot topics in recent years
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Mathematical Model for SO-coupled BEC

• Coupled Gross-Pitaevskii equations (re-scaled):
Ψ := (ψ1(x, t), ψ2(x, t))T , x ∈ Rd in d dimensional spaces

i∂tψ1 =

[
−1

2
∇2 + V1 + ik0∂x +

δ

2
+ (β11|ψ1|2 + β12|ψ2|2)

]
ψ1 +

Ω

2
ψ2,

i∂tψ2 =

[
−1

2
∇2 + V2 − ik0∂x −

δ

2
+ (β21|ψ1|2 + β22|ψ2|2)

]
ψ2 +

Ω

2
ψ1,

Trapping potential: Vj(x) = 1
2 (γ2

xx2 + γ2
yy 2 + γ2

z z2) (j = 1, 2)
for 3D case

Interaction constants: βjl between j-th and l-th component
(positive for repulsive and negative for attractive )

k0: wave number of Raman lasers

Ω: Rabi frequency (internal Josephson junction)

δ: detuning constant for Raman transition
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Conserved quantities

Mass:

N(t) := ‖Ψ(·, t)‖2 =

∫

Rd

[|ψ1(x, t)|2+|ψ2(x, t)|2]dx ≡ N(0) = 1,

Energy per particle

E (Ψ) =

∫

Rd

[ 2∑

j=1

(
1

2
|∇ψj |2 + Vj(x)|ψj |2

)
+
δ

2

(
|ψ1|2 − |ψ2|2

)

+ Ω Re(ψ1ψ2) + ik0

(
ψ1∂xψ1 − ψ2∂xψ2

)

+
β11

2
|ψ1|4 +

β22

2
|ψ2|4 + β12|ψ1|2|ψ2|2

]
dx.

Ground state patterns and dynamics properties
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An equivalent form of CGPEs

Introducing new variable

ψ1(x, t) = ψ̃1(x, t)e i(ωt+k0x), ψ2(x, t) = ψ̃2(x, t)e i(ωt−k0x),

with ω =
−k2

0
2

CGPEs II

i∂tψ̃1 =

[
−1

2
∇2 + V1 +

δ

2
+ β11|ψ̃1|2 + β12|ψ̃2|2

]
ψ̃1 +

Ω

2
e−i2k0x ψ̃2,

i∂tψ̃2 =

[
−1

2
∇2 + V2 −

δ

2
+ β21|ψ̃1|2 + β22|ψ̃2|2

]
ψ̃2 +

Ω

2
e i2k0x ψ̃1.

Advantage: better suited for |k0| � 1
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Conserved quantities for CGPE II

N(t) = ‖Ψ̃(·, t)‖2 ≡ ‖Ψ̃(x, 0)‖2 = 1

energy per particle

Ẽ (Ψ̃) =

∫

Rd

[ 2∑

j=1

(
1

2
|∇ψ̃j |2 + Vj(x)|ψ̃j |2

)
+
δ

2

(
|ψ̃1|2 − |ψ̃2|2

)

+Ω Re(e i2k0x ψ̃1ψ̃2) +
β11

2
|ψ̃1|4

+
β22

2
|ψ̃2|4 + β12|ψ̃1|2|ψ̃2|2

]
dx.
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Ground States

• Nonconvex minimization problem

Eg := E (Φg ) = min
Φ∈S

E (Φ) ,

and

S :=
{

Φ = (φ1, φ2)T ∈ H1(Rd)2 | ‖Φ‖2 = 1,E (Φ) <∞
}

• Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

µφ1 =

[
−1

2
∇2 + V1(x) + ik0∂x +

δ

2
+ (β11|φ1|2 + β12|φ2|2)

]
φ1 +

Ω

2
φ2,

µφ2 =

[
−1

2
∇2 + V2(x)− ik0∂x −

δ

2
+ (β12|φ1|2 + β22|φ2|2)

]
φ2 +

Ω

2
φ1,

• Chemical potential µ:

µ = µ = E (Φ) +

∫

Rd

(
β11

2
|φ1|4 +

β22

2
|φ2|4 + β12|φ1|2|φ2|2

)
dx.
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Ground sate k0 = 0

When k0 = 0, no SO coupling

Theorem

Under condition lim
|x |→∞

V (x) =∞,

(
β11 β12

β12 β22

)
is positive definite.

There exists minimizers, i.e., the ground state (ψg
1 , ψ

g
2 ) exists, and

(|ψg
1 |, |ψ

g
2 |) is unique. Moreover, (ψg

1 , ψ
g
2 ) = (e iθ1 |ψg

1 |, e iθ2|ψg
2 |),

where

if Ω > 0, θ1 − θ2 = ±π
if Ω < 0, θ1 − θ2 = 0
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Limiting behavior

Theorem

Let (φg1 , φ
g
2 ) be the ground state of CGPEs. As Ω→ −∞, we have

φg1 − φ
g
2 → 0, j = 1, 2.

Theorem

Let (φg1 , φ
g
2 ) be the ground state of CGPEs. As δ → −∞, we have

φg2 → 0.
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Phase separation

Property Let β12 → +∞, the phase of two components of the
ground state Φg = (φg1 , φ

g
2 )T will be segregated, i.e. Φg will

converge to a state such that φg1 · φ
g
2 = 0.
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Phase separation when k0,Ω, δ = 0

Repulsive interactions only:

E (φ1, φ2) =

∫
1

2
|∇φ1|2 +

1

2
|∇φ2|2 +

β11

2
|φ1|4

+
β22

2
|φ2|4 + β12|φ1|2|φ2|2

Homogeneous case: β11β22 ≥ β2
12 mixed; otherwise separated

Nonhomogeneous case?
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β11 = β22, box potential (width L)

mixing factor: η = 2
∫
φ1φ2

CONTROLLING PHASE SEPARATION OF A TWO- . . . PHYSICAL REVIEW A 85, 043602 (2012)
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FIG. 1. (Color online) (a) The overlap factor η as a function of the
reduced parameter β12 [see Eq. (6)] in different dimensions (infinitely
deep square well potential case g11 = g22 = 0). Note that for all values
of d there exists a critical value βc

12 �= 0, below which η attains its
maximal possible value 1. (b) A schematic plot of η vs the width of
the square well in different dimensions. Note the counterintuitive fact
that in the three-dimensional case (d = 3) the stronger we squeeze
the system (the smaller L is) the stronger phase separation is (the
smaller η is).

kinetic terms dominate and phase separation is suppressed
regardless of the condition (1). The two-dimensional case
is another story. The parameter L simply drops out in the
curly braces. It is no use to adjust the width of the well to
enhance the importance of the kinetic energy or the interaction
energy relatively. The kinetic and interaction energies should
be treated on an equal footing, which means the analysis
leading to criterion (1) may be invalid.

We have checked all these predictions numerically. Note
that on the problem of phase separation, the intracomponent
interactions are on the same side as the kinetic energy—they
both try to delocalize the condensates. Therefore, to highlight
the effect of kinetic energy, we shall set g11 = g22 = 0 (β11 =
β22 = 0) so that the kinetic energy is the only element acting
against phase separation. As we shall see below, this special
case also admits a simple analytical analysis.

We have solved the ground state of the system in all
dimensions for a given value of β12 [16]. The overlap factor
η is plotted versus β12 in Fig. 1(a). We observe that in
all dimensions there exists a critical value of β12 (denoted
as βc

12), below which the two condensates wave functions
are equal (η = 1). That is, for β12 � βc

12, phase separation
is completely suppressed. Above the critical value, phase
separation develops (η < 1) as β12 increases, but is still greatly
suppressed for a wide range of value of β12. It should be
stressed that though in Fig. 1(a) the curves of η − β12 are
qualitatively similar to each another for all values of d (the
plateau of η = 1 is always located in the direction of β12 → 0),
the curves of η − L will be quite different. The reason is that
β12 ∝ L2−d . Figure 1(b) is a schematic plot of η versus L in all
three cases. It shows that η as a function of L is monotonically
decreasing, constant, and monotonically increasing in one,
two, and three dimensions, respectively. This means that to
suppress phase separation, in one dimension we should tighten
the confinement, in three dimensions we should loosen the
confinement, while in two dimensions it is useless to change
the confinement. Overall, Fig. 1 confirms the initial conjecture
that kinetic energy can suppress phase separation.

In hindsight, we can actually understand why phase separa-
tion can be suppressed in the limits of L → 0 in one dimension
and L → ∞ in three dimensions. Consider two different
configurations. The first one is a phase-separated one—the two
condensates occupy the left and right halves of the container
separately. The second one is a phase-mixed one—the two
condensates both occupy the whole space available and thus
overlap significantly. Compared with the first configuration,
the second one costs more intercomponent interaction energy,
which is on the order of L−d , but saves more kinetic energy,
which is on the order of L−2. The second configuration (phase
mixed) is more economical in energy in the limit of L → 0
and L → ∞, in the cases of d = 1 and d = 3, respectively.
The case of d = 2 is more subtle and which configuration wins
depends on parameters other than L.

A remarkable fact revealed in Fig. 1, but not so obvious in
our arguments, is that in the symmetric case with β11 = β22 =
0, η = 1 for β12 � βc

12, which is on the order of unity. This is
a stronger fact than η → 1 as β12 → 0 as we argued. Actually,
the general observation is that for β11 = β22 > 0, η = 1 for
β12 smaller than its critical value βc

12, which is larger than β11.
This fact has rich meanings. On the one hand, it demonstrates
that the kinetic energy is very effective—phase separation can
be completely suppressed by it even if β12 > β11 = β22, that is,
when (1) is satisfied. On the other hand, it strongly indicates
that as β12 crosses the critical value, the system undergoes
a second-order phase transition which can fit in the Landau
formalism. The picture is that the exchange symmetry φ1 ↔ φ2

of the energy functional (5) is preserved for β12 < βc
12, but is

spontaneously broken as β12 surpasses βc
12.

We have been able to prove the first point rigorously on
the mathematical level (see Appendix A). However, it is also
desirable to develop a physical understanding of the two points.
This can be achieved by studying a two-component BEC in a
double-well potential (see Appendix B) or using a variational
approach [17]. We note that in the limit of β12 → 0, φ1,2

both converge to the (nondegenerate) ground state of a single
particle in the [−1/2, + 1/2]d infinitely deep square well.
As β12 is turned on, the two wave functions are deformed
and excited states mix in. Because the energies of the excited
states grow up quadratically, we cut off at the first excited
level and take the following ansatz for the two condensate
wave functions:

φ1 = c0ϕ0 + c1ϕ1, φ2 = c0ϕ0 − c1ϕ1. (7)

Here ϕ0 is the ground state, while ϕ1 is one of the possibly
degenerate first excited states. The coefficients c0,1 are real and
satisfy the normalization condition c2

0 + c2
1 = 1. Obviously,

complete phase mixing would correspond to c1 = 0, while
partial phase separation to c1 �= 0. Our numerical simulations
indicate that (this is also supported by the variational approach
itself, see Appendix C) in the two-dimensional case, when
phase separation occurs, the two condensates are shifted either
along x or y direction; in the three-dimensional case, when
phase separation occurs, the two condensates are shifted either
along x or y or z direction. This fact motivates us to choose
ϕ1 in the following form:

d = 1 : ϕ1 = w1(x), (8a)

d = 2 : ϕ1 = w0(x)w1(y) or w1(x)w0(y), (8b)

043602-3

Exist βc > β, when β12 ≤ βc , η = 1

proof by Fundamental gap+elliptic estimates
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Fundamental gap

consider linear case −∆ + V (x), x ∈ U ⊂ Rd (U compact
convex)1 with Dirichlet boundary conditions

eigenvalues λ0 < λ1 ≤ λ2 ≤ · · · , eigenfunctions {φk}∞k=0

∆φk − V (x)φk + λkφk = 0, φk |∂U = 0

fundamental gap := λ1 − λ0

Gap conjecture: Let U be a bounded convex domain with
diameter D, V (x) be convex, then the fundamental gap

λ1 − λ0 ≥
3π2

D2

1B. Andrews AND J. Clutterbuck, JAMS, 2011
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Ground state phases

If |Ω|/|k0|2 � 1, |Ω| → ∞, the ground state
Φg = (φg1 , φ

g
2 )T ≈ (|φg1 |, sgn(−Ω)|φg2 |)T (constant phase),

i.e. k0 effect will vanish.

If |Ω|/|k0| � 1, |k0| → ∞, the ground state
Φg = (φg1 , φ

g
2 )T ≈ (e−ik0x |φ̃g ,01 |, e ik0x |φ̃g ,02 |)T (plane wave

phase), i.e., Ω effect will vanish.

If |k0| � |Ω| � |k0|2 and |k0| → ∞, density modulation.
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Numerical examples

We consider d = 2 with box potential, δ = 0,
β11 : β12 : β22 = 1 : 0.9 : 0.9 with β11 = 10.

For Ω = 0, the first component φ1 = 0.
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Large k0 limit

14 Weizhu Bao and Yongyong Cai

Due to the confining potentials V1(x) and V2(x), the ground state Φg(x) decays
exponentially fast when |x| → ∞, thus in practical computations, the above GFDN
(3.1) is first truncated on a bounded large computational domain U , e.g. an interval
[a, b] in 1D, a rectangle [a, b]× [c, d] in 2D and a box [a, b]× [c, d]× [e, f ] in 3D, with
periodic boundary conditions. Then the GFDN on U can be further discretized in
space via the pseudospectral method with the Fourier basis or second-order central
finite difference method and in time via backward Euler scheme [6, 7, 8]. For details,
we refer to [5, 6, 7, 8] and references therein.
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Fig. 3.1. Ground states Φ̃g = (φ̃g
1 , φ̃

g
2)

T for a SO-coupled BEC in 2D with Ω = 50, δ = 0,
β11 = 10, β12 = β21 = β22 = 9 for: (a) k0 = 0, (b) k0 = 1, (c) k0 = 5, (d) k0 = 10, (e) k0 = 50,
and (f) k0 = 100. In each subplot, top panel shows densities and bottom panel shows phases of the
ground state φ̃g

1 (left column) and φ̃g
2 (right column).

Remark 3.1. If the box potential

(3.2) Vbox(x) =

{
0, x ∈ U,

+∞, otherwise,
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Large Ω limit
Ground states and dynamics of SO-coupled BEC 15
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Fig. 3.2. Ground states Φg = (φg
1 , φ

g
2)

T for a SO-coupled BEC in 2D with k0 = 10, δ = 0,
β11 = 10, β12 = β21 = β22 = 9 for: (a) Ω = 1, (b) Ω = 10, (c) Ω = 50, (d) Ω = 200, (e) Ω = 300,
and (f) Ω = 500. In each subplot, top panel shows densities and bottom panel shows phases of the
ground state φg

1 (left column) and φg
2 (right column).

is used in the CGPEs (1.8) instead of the harmonic potentials (1.9), due to the ap-
pearance of the SO coupling, in order to compute the ground state, it is better to
construct the GFDN based on (2.5) and then discretize it via the backward Euler sine
pseudospectral (BESP) method due to that the homogeneous Dirichlet boundary con-
dition on ∂U must be used in this case. Again, for details, we refer to [5, 6, 7, 8] and
references therein.

To test the efficiency and accuracy of the above numerical method for computing
the ground state of SO-coupled BECs, we take d = 2, δ = 0, β11 : β12 : β22 = 1 : 0.9 :
0.9 with β11 = 10 in (1.8). The potential Vj(x) (j = 1, 2) is taken as the box potential
given in (3.2) with U = [−1, 1]× [−1, 1]. We compute the ground state via the above
BESP method with mesh size h = 1

128 and time step τ = 0.01 (τ = 0.001 for large
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Dynamical properties
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Center-of-mass motion

Potentials V1 = V2 are harmonic potentials.
V1 = 1

2 (γ2
xx2 + γ2

yy 2 + γ2
z z2) in 3D; V1 = 1

2 (γ2
xx2 + γ2

yy 2) in

2D; V1 = 1
2γ

2
xx2 in 3D.

Center-of-mass (COM) of the BEC:

xc(t) =

∫

Rd

x
2∑

j=1

|ψj(x, t)|2 dx, t ≥ 0,

and the momentum as

P(t) =

∫

Rd

2∑

j=1

Im(ψj(x, t)∇ψj(x, t)) dx, t ≥ 0,

Mass difference between two components

δN(t) := N1(t)− N2(t) =

∫

Rd

[
|ψ1(x, t)|2 − |ψ2(x, t)|2

]
dx.
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Center-of-mass motion

For the x-component xc(t) of the center-of-mass xc(t) with
any initial data Ψ(x, 0) := Ψ0(x) satisfying ‖Ψ0‖ = 1, we have

xc(t) = x0 cos(γx t)+
Px

0

γx
sin(γx t)−k0

∫ t

0
cos(γx(t−s))δN(s) ds.

where x0 initial x-component of center-of-mass and Px
0 initial

x-component of momentum.

In 2D (3D), the y (y , z)-component of the center-of-mass is
periodic with period γy (γy , γz).
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General initial data

20 Weizhu Bao and Yongyong Cai

and the initial condition δ̇N (0) can be obtained via (4.8) with t = 0. Solving the
above ODE, we find

(4.13) δN (t) ≈ δN (0) cos(Ωt) +
δ̇N (0)

Ω
sin(Ωt).

Plugging (4.13) into (4.9), we obtain the approximate solution of xc(t).
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Fig. 4.1. Time evolution of the center-of-mass xc(t) for the CGPEs (1.8) obtained numerically
from its numerical solution (i.e. labeled by ’xc(t)’ with solid lines) and asymptotically as Eqs. (4.10)
and (4.11) in Theorem 4.2 (i.e. labeled by ’Eq.’ with ‘+ + +’) with Ω = 20 and k0 = 1 for different
γx: (a) γx = 1, (b) γx = 5, (c) γx = 3π, and (d) γx = 20.

To verify the asymptotic (or approximate) results for xc(t) in Theorem 4.2, we
numerically solve the CGPEs (1.8) with (1.9) in 2D (i.e. d = 2), take β11 = β12 =
β22 = 1, δ = 0 and choose the initial data as

(4.14) ψ1(x, 0) = π−1/2e−
|x−x0|2

2 , ψ2(x, 0) = 0, x ∈ R2,

where x0 = (1, 1)T . Figure 4.1 depicts time evolution of xc(t) obtained numerically
and asymptotically as in Theorem 4.2 with Ω = 20 and k0 = 1 for different γx. From
this figure, we see that: for short time t, the approximation given in Theorem 4.2
is very accurate; and when t ≫ 1, it becomes inaccurate, which is due to that the
assumption on δN (t) obeying (4.13) becomes inaccurate.

4.2. For ground state with a shift. Now, we consider a kind of special initial
data, i.e. shift of the ground state Φg = (φg1, φ

g
2)

T of (2.1) for the CGPEs (1.8), i.e.,
the initial condition for (1.8) is chosen as

(4.15) ψ1(x, 0) = φg1(x− x0), ψ2(x, 0) = φg2(x− x0), x ∈ Rd,

where x0 = x0 in 1D, x0 = (x0, y0)
T in 2D and x0 = (x0, y0, z0)

T in 3D. Then we
have the approximate dynamical law for the center-of-mass in x-direction xc(t).

Theorem 4.3. Suppose V1(x) = V2(x) for x ∈ Rd are harmonic potentials given
in (1.9), and the initial data for the CGPEs (1.8) is taken as (4.15), then we have

(i) when |k0|2
|Ω| ≫ 1, the dynamics of the center-of-mass xc(t) can be approximated

by the ODE

(4.16) ẍc(t) = −γ2xxc(t), xc(0) = x0, ẋc(0) = 0,
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Shift of ground state initial condition

Given the ground state Φg = (φg1 , φ
g
2 )T for the CGPEs , the

initial condition is chosen as

ψ1(x, 0) = φg1 (x− x0), ψ2(x, 0) = φg2 (x− x0), x ∈ Rd ,

where x0 = x0 in 1D, x0 = (x0, y0)T in 2D and
x0 = (x0, y0, z0)T in 3D.
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Shift of ground state initial data

Theorem

For the initial data chosen as the shift of ground state, we have

(i) when |k0|2
|Ω| � 1, the dynamics of the center-of-mass xc(t) can

be approximated by the ODE

ẍc(t) = −γ2
xxc(t), xc(0) = x0, ẋc(0) = 0,

i.e., xc(t) = x0 cos(γx t).

(ii) when |k0|2
|Ω| � 1, βjl ≈ β with β a fixed constant, the dynamics

of the center-of-mass xc(t) can be approximated by

ẋc(t) = Px(t)− k0[2k0Px(t)− δ]√
[2k0Px(t)− δ]2 + Ω2

, Ṗx(t) = −γ2
xxc(t),

with xc(0) = x0 and Px(0) = k0δN(0). In particular, the solution is
periodic, and, in general, its frequency is different with the
trapping frequency γx .
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Shift of ground state
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For the case with harmonic potentials V1(x) = V2(x), using LDA, we could get the
same relation between densities as (4.23) for each position x which leads to

(4.24) δN (t) = [4(λ+ χ)2 − Ω2]/[4(λ+ χ)2 +Ω2].

Plugging (4.24) into (4.5), noticing (4.7), we obtain the ODE system (4.17) approxi-
mating the dynamics of xc(t). Using the equation (4.17), it is easy to find that

(4.25)
d

dt

(
γ2xx

2
c(t) + (P x(t))2 −

√
[2k0P x(t)− δ]2 +Ω2

)
= 0,

which shows (xc(t), P
x(t))T is a closed curve and it is periodic.

Again, to verify the asymptotic (or approximate) results for xc(t) in Theorem
4.3, we numerically solve the CGPEs (1.8) with (1.9) in 2D (i.e. d = 2), take β11 =
β12 = β22 = 10, γx = γy = 2 and δ = 0, and choose the initial data as (4.15) with
x0 = (2, 2)T and the ground state computed numerically. Figure 4.2 depicts time
evolution of xc(t) obtained numerically and asymptotically as in Theorem 4.3 with
different Ω and k0.
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Fig. 4.2. Time evolution of the center-of-mass xc(t) for the CGPEs (1.8) obtained numerically
from its numerical solution (i.e. labeled as xc(t) with solid lines) and asymptotically as Eqs. (4.16)
and (4.17) in Theorem 4.3 (i.e. labeled as ’Eq.’ with ‘+ + +’) for different sets of parameters: (a)
(Ω, k0) = (50, 20), (b) and (c) (Ω, k0) = (2, 2), and (d) (Ω, k0) = (50, 2).

From Figure 4.2 and numerous tests we have done (not shown here for brevity),
we find that for the very special initial data (4.15), Eq. (4.17) provides a very good
approximation for the dynamics of the center-of-mass over a long time when |Ω| ≫ γx
and |Ω| ≫ |k0|; when 0 < γx ≪ |Ω| and |k0|2 ≫ |Ω|, Eq. (4.16) fits the center-of-
mass xc(t) very well; for |Ω| being comparable to γx, xc(t) is damped in time and
non-periodic.

Remark 4.1. Theorem 4.3 does not contradict with Theorem 4.2, because Theo-
rem 4.2 holds for small k0, where the Ω frequency contribution is very small and xc(t)
is almost periodic there.

5. Semi-classical scaling and limits. For strong interaction βjl ≫ 1, we
could rescale (1.8) by choosing x → xε−1/2 , ψj → ψε

jε
d/4, ε = 1/β2/(d+2), β =
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conclusion

SO-coupled BEC described by Coupled Gross-Pitaevskii
equations

Ground state properties: competition between SO coupling
and Raman transition

Center-of-mass dynamics: periodic v.s. non-periodic in
different cases

Future: SO coupling effects in other systems (nonlocal
interaction, rotating frame), phase separation, domain wall,
mass transfer,...
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THANK YOU!
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