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Background Mathematical model

Spin-orbit coupling

@ Interaction of a particle's spin with its motion
@ fine structure of Hydrogen

o Electron: orbital angular momentum (generates magnetic
field), interacts with the electron spin magnetic moment
(internal Zeeman effect)

@ Crucial for quantum-Hall effects, topological insulators



Background Mathematical model

Spin-orbit coupling in two component BEC

@ Major experimental breakthrough in 2011, Lin et al. have
created a SO coupled BEC, 8Rb: |1) = |F = 1, mf = 0) and
) =|F =1, mf=-1).

@ SO coupling in cold atoms have been hot topics in recent years



Background Mathematical model

Mathematical Model for SO-coupled BEC

o Coupled Gross-Pitaevskii equations (re-scaled):
V= (Y1(x, t),92(x,t)) T, x € RY in d dimensional spaces

. 1 . 0 Q
1Otpy = [—§V2 + Vi + koD + 5 + (Bualva]* + ﬁlzlwz\z)] 1+ S,

. 1 . 0 Q
10¢n = [—§V2 + Vo — ikoOx — ot (Bar| 1) + ﬂ22|7112|2)] Wy + 57,!11,

e Trapping potential: Vj(x) = %(’yfxz —|—fy}2,y2 +722%) (j =1,2)
for 3D case

@ Interaction constants: [3; between j-th and /-th component
(positive for repulsive and negative for attractive )

@ kp: wave number of Raman lasers
e : Rabi frequency (internal Josephson junction)

@ J: detuning constant for Raman transition



Background Mathematical model

Conserved quantities

@ Mass:
N(t) = (-, 1)l = /Rd[lwl(x, £) P+ [iba(x, t)PJdx = N(0) = 1,

@ Energy per particle

2

e = [ |3 (GIVP + Vi) + 5 (al? = )

j=1

+ Q Re(¥115) + iko (1105101 — P0x102)
611 1|t + 522|¢2|4+ﬁ12|¢1| |¢2|2] dx.

@ Ground state patterns and dynamics properties



Background Mathematical model

An equivalent form of CGPEs

@ Introducing new variable
¢1(X, t) = 12}'1()(’ t-)el'(bl)t’-i-kOX)7 1[}2()(7 t) = 12}'2()(’ t)ei(wt—kox)’

. —k2
with w = TO

o CGPEs Il

] y 1 9 i 7 7 Q —i2kox, 7.
iOthy = [—§V2 + Vi + 5+ B |Pn)? + 512|1/12!2] Py + 5€ 2koxf,
Oy = |—Sv2 =0 T |2 A R L

10t = 2V + Vs > + Bo1 |1 |? 4 Bz |2 || Y2 + 5e 1.

@ Advantage: better suited for |kg| > 1



ackground Mathematical model

Conserved quantities for CGPE Il

o N(t) = [[¥(., )] = IW(x,0)]*> = 1
@ energy per particle

2

B = [ IS (FI907+ veldR) + 3 (14 - 172P)

=i
£ Re(e044y ) + P2 5l

ﬁ22 |1/12|4 + B2l |1/J2|2]



Ground States

Without SO coupling Phase separation without SO coupling

e Nonconvex minimization problem

Eg = E(®;) = 216'2 E(®),

and
5= {0 =(91,62)7 € KR | 0] = 1, E(®) < oo}

e Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

Ly = [_%Vz +VA(X) + ikoDy + g + (Bua|é1|* + ﬁ12|¢2|2)] ¢1+ %¢27

+ (Bi2|#1]? + ﬁ22|¢>2|2)] ¢ + 9¢1,

1, . 5
U = [—2V aF VQ(X) — ikgOx — 5 5

e Chemical potential p:

;L:;L:E(d>)+/]R (511|¢1|4 ﬂ22\¢2|4+512|¢1| |¢2|2>



Without SO coupling Phase separation without SO coupling C

Ground sate kg = 0

When kg = 0, no SO coupling

Theorem

Under condition lim V/(x) = oo, (ﬁll ”812) is positive definite.
x| =00 B2 B2z

There exists minimizers, i.e., the ground state (15 ,15) exists, and

(1%, [¢5]) is unique. Moreover, (V$,v§) = (e1|¢£], e®2ly5]),
where

o ifQ>0,91—92::|:7T
0 if2<0,60i—-6=0
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Without SO coupling Phas ar: vithout SO coupling

Limiting behavior

Let (¢F,#5) be the ground state of CGPEs. As Q — —oo, we have

o5 —¢5 =0, j=1,2.

v
Theorem

Let (¢5,¢5) be the ground state of CGPEs. As § — —oo, we have

¢5 — 0.

\
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Without SO coupling

- -4 -2
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Without SO coupling Phase separa out SO coupling C

Phase separation

Property Let 310 — +00, the phase of two components of the
ground state ®, = (¢, ¢5)T will be segregated, i.e. ®, will
converge to a state such that ¢f - ¢§ = 0.
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Without SO coupling Phase separation without SO coupling ¢

Phase separation when kg, €2, =0

@ Repulsive interactions only:

P11

E(é1,02) = [ 519012 + 5[VaaP + Lo

+ 2214, 1 Brafon Ploal

@ Homogeneous case: £11622 > ,8%2 mixed; otherwise separated

@ Nonhomogeneous case?
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@ (11 = 22, box potential (width L)
e mixing factor: n =2 [ ¢1¢
1
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@ Exist 8. > 8, when B12 < B, n=1
@ proof by Fundamental gap+-elliptic estimates

Without SO coupling Phase separation without SO coupling
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Without SO coupling Phase separation without SO coupling ¢

Fundamental gap

o consider linear case —A + V(x), x € U ¢ R? (U compact
convex)! with Dirichlet boundary conditions

@ eigenvalues Ao < A\; < Ay < ---, eigenfunctions {¢}2°

Apr — V(X)ok + Mok =0, dlou =0

o fundamental gap ;= A1 — A\g

@ Gap conjecture: Let U be a bounded convex domain with
diameter D, V/(x) be convex, then the fundamental gap

372

Al—Aozﬁ

1B. Andrews AND J. Clutterbuck, JAMS, 2011
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Without SO coupling Phase se out SO coupling

Ground state phases

o If |Q|/|ko|?> > 1, |Q| — oo, the ground state

dp = (65, 05)7 = (|6f],5en(—Q)[#5]) " (constant phase),
i.e. kg effect will vanish.

o If |Q|/|ko| < 1, |ko| — o0, the ground state
_ikox| 80| ikpx| T80
bg = (¢F,05)7 ~ (e ¥|¢f 7|, e"X|957|)T (plane wave
phase), i.e., Q effect will vanish.
o If |ko| < || < |ko|? and |ko| — oo, density modulation.
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Without SO coupling Phase separation without SO coupling C

Numerical examples

@ We consider d = 2 with box potential, 6 = 0,
811 : P12 : Pao =1:0.9: 0.9 with 511 = 10.
@ For Q =0, the first component ¢; = 0.
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Nithout SO coupling Ph i ithout SO couplin

Large ko limit
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ithout SO coupling

SO coupling Ph i s

Large Q limit
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Dynamical properties
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Center-of-mass motion

@ Potentials V; = V5, are harmonic potentials.
Vi = 3(2x% +92y? +722%) in 3D; Vi = 3(v2x% +12y?) in
2D; Vi = %%%X2 in 3D.

o Center-of-mass (COM) of the BEC:

2
xc(t):/ x3[gi(x, t)2dx,  t>0,
Rd j=1
and the momentum as
2 —
P(t):/ S im0 OV (x, D) dx, £ 0,
RY 2

@ Mass difference between two components

Gu(t) = Ma(6) = Ma(e) = | [loa(x ) = fax, )] .

22/29



Center-of-mass motion

@ For the x-component x.(t) of the center-of-mass x(t) with
any initial data W(x,0) := Wy(x) satisfying ||Wo|| = 1, we have
X

xc(t) = xo cos('yxl“)-i-'j—O sin(yxt)—ko /ot cos(Yx(t—s))on(s) ds.

X

where xp initial x-component of center-of-mass and Py initial
x-component of momentum.

e In 2D (3D), the y (y, z)-component of the center-of-mass is
periodic with period 7, (7y,7z).
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General initial data

Ea. 3.10)

Fic. 4.1. Time evolution of the center-of-mass xc(t) for the CGPEs (1.8) obtained numerically
from its numerical solution (i.e. labeled by ‘zc(t)’ with solid lines) and asymptotically as Egs. (4.10)
and (4.11) in Theorem 4.2 (i.e. labeled by Eq.” with ‘+ + +’) with Q = 20 and ko = 1 for different
Yoi (@) Yo =1, (b) Yo =5, (c) Yo = 37, and (d) 7o = 20.
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Shift of ground state initial condition

o Given the ground state ®, = (¢$,¢5)" for the CGPEs , the
initial condition is chosen as

Y1(x,0) = ¢F(x —x0),  ¥2(x,0) = ¢5(x — o), x € RY,

where xg = xg in 1D, xg = (xp,y0)” in 2D and
X = (Xo,yo,ZO)T in 3D.
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Shift of ground state initial data

For the /n/t/al data chosen as the shift of ground state, we have

(i) when 0 || > 1, the dynamics of the center-of-mass x.(t) can
be approximated by the ODE

%e(t) = =12xc(t), xc(0) =x0, %c(0) =0,

i.e., xc(t) = xo cos(xt).
(ii) when ‘fgh < 1, Bjy = 8 with § a fixed constant, the dynamics
of the center-of-mass x.(t) can be approximated by

k0[2k0PX(t) — 5]
VI2koPX(t) — 02 + Q2

Xe(t) = PX(t) — PX(t) = —v2xc(t),

with xc(0) = xo and P*(0) = kodn(0). In particular, the solution is
periodic, and, in general, its frequency is different with the
trapping frequency .

Y
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of ground state
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F1a. 4.2. Time evolution of the center-of-mass xc(t) for the CGPEs (1.8) obtained numerically
from its numerical solution (i.e. labeled as x(t) with solid lines) and asymptotically as Egs. (4.16)
and (4.17) in Theorem 4.3 (i.e. labeled as ’Eq.” with ‘+ + +’) for different sets of parameters: (a)
(82, ko) = (50,20), (b) and (c) (ko) = (2,2), and (d) (2, ko) = (50, 2).
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@ SO-coupled BEC described by Coupled Gross-Pitaevskii
equations

@ Ground state properties: competition between SO coupling
and Raman transition

@ Center-of-mass dynamics: periodic v.s. non-periodic in
different cases

@ Future: SO coupling effects in other systems (nonlocal
interaction, rotating frame), phase separation, domain wall,
mass transfer, ...
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