Classical and non-classical flows of superfluids

Carlo F Barenghi

George Stagg, Nick Parker, Andrew Baggaley, and Yuri Sergeev,

School of Mathematics & Statistics and Joint Quantum Centre Durham-Newcastle

- Formation of coherent BEC from a thermal Bose gas
- Experiments on thermally quenched fluids, Kibble-Zurek mechanism, topological defects (solitons, quantum vortices) (Bäuerle & al 1996, Weiler & al 2008, Chomaz & al 2015, Lamporesi & al 2014)
- Paradigm: evolution of homogeneous weakly interacting Bose gas from non-equilibrium initial condition to a state of **quantum turbulence**

to a final vortex-free state (Berloff & Svistunov 2002)

• Question: is the quantum turbulence which follows a thermal quench similar to ordinary turbulence ?

(a natural question, given the observed similarities between quantum turbulence in superfluid helium and classical turbulence in ordinary fluids, see CFB, Skrbek & Sreenivasan PNAS 2014)

Gross-Pitaevskii equation

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + g |\psi|^2 \psi$$

 $\mathcal{H} = \int \left(\frac{\hbar^2}{2m} |\nabla \psi|^2 + \frac{g}{2} |\psi|^4\right) dV$

• GPE usually models a T = 0 condensate, but also models a finite-temperature gas, provided modes are highly occupied

- Highly nonequilibrium initial condition $\psi(\mathbf{r}, 0) = \sum_{\mathbf{k}} a_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}}$ (uniform $n_{\mathbf{k}} = |a_{\mathbf{k}}|^2$, random phases)
- Number density N/D^3 , energy density $\langle H \rangle/D^3$
- Condensate fraction ρ_0/ρ (where $\rho_0 =$ quasi-condensate density)

Evolution of occupation numbers $n_{\mathbf{k}}$ and of integral distributions $F_k = \sum_{k' < k} n_{\mathbf{k}'}$

- Growth of occupation of low-k modes associated with condensate. High-k modes associated with thermal excitations.
- Quasi-condensate ψ' (containing the long-wavelength part of the classical field) defined by cutoff $k_c = 10(2\pi/D)$ and $a'_{\mathbf{k}} = a_{\mathbf{k}} \max\{1 - k^2/k_c^2, 0\}.$

Evolution of vortex tangle (here for $\rho_0/\rho = 0.22$)

Question:

How does this turbulence compare with ordinary turbulence ?

The Kolmogorov spectrum in classical turbulence

Energy spectrum E(k) describes the distribution of kinetic energy over the length scales $2\pi/k$ (where k= wavenumber)

$$E = \frac{1}{V} \int_{V} \frac{\mathbf{v}^2}{2} dV = \int_0^\infty E(k) dk$$

Forward energy cascade: large eddies break up into smaller eddies

The Kolmogorov spectrum in turbulent superfluid helium

Maurer & Tabeling 1998

Salort &al 2012

SHREK, Grenoble

The Kolmogorov spectrum in turbulent superfluid helium

The Kolmogorov spectrum is associated with (metastable) coherent bundles of vortex lines.

Decompose the vortex lines (according to locally coarse-grained vorticity) into **polarized lines** (yellow) containing most of energy and causing the $k^{-5/3}$ law, and **unpolarized lines** (red).

Energy spectrum following thermal quench

- No pile-up of energy at largest length scales ($k \approx 1/D$), no Kolmogorov $k^{-5/3}$ law
- Expected k^{-3} behavior at $k \approx 1/\xi$, hint of (expected) k^{-1} behaviour at $k \approx 1/\ell$

Decay of turbulence following thermal quench

- Vortex line density decays as $L \sim t^{-1}$
- (Kolmogorov turbulence would decay as $L \sim t^{-3/2}$ as observed in superfluid helium by Walmsley & Golov 2008)

Correlation function following thermal quench

Velocity correlation function f(r, t) and integral length scale I(t):

$$f(r,t) = \frac{v_x(\mathbf{r},t)v_x(\mathbf{r}+r\widehat{\mathbf{e}}_x,t)}{\langle v_x(\mathbf{r},t)^2 \rangle}, \qquad I(t) = \int_0^\infty f(r)dr$$

No correlation at distances larger than ℓ , and $I(t) < \ell/2$ at all t

Quasi-classical vs ultra-quantum

Depending on the injection rate, they found two turbulence states:

(1) quasi-classical (Kolmogorov) turbulence: decays as $L \sim t^{-3/2}$

(2) ultra-quantum (Vinen) turbulence: decays as $L \sim t^{-1}$

quasi-classical (Kolmogorov)

(Volovik 2003)

ultra-quantum (Vinen)

Quasi-classical vs ultra-quantum

Walmsley & Golov's experiment is reproduced by numerical simulations (Baggaley, Sergeev & CFB 2012)

The inverse 3D energy cascade which creates ultra-quantum turbulence depends crucially on vortex reconnections "from behind" (left) rather than "head on" (right).

Another ultra-quantum regime: thermal counterflow

Heat transfer turbulence in ⁴He (thermal counterflow), first studied by Vinen:

Sherwin, Baggaley, Sergeev, CFB 2012: As the ultra-quantum regime, counterlow turbulence lacks pile-up of energy at the smallest k and the $k^{-5/3}$ law

Quantum turbulence induced by thermal quench = prototype ultra-quantum (Vinen) turbulence:

- Energy concentrated at intermediate scales, not at the largest length scales
- No $k^{-5/3}$ energy spectrum, no energy cascade
- ullet Decay as $L\sim t^{-1}$, not as $L\sim t^{-3/2}$
- Spatially random and homogeneous, without coherent structures.