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Motivation

• Formation of coherent BEC from a thermal Bose gas

• Experiments on thermally quenched fluids, Kibble-Zurek
mechanism, topological defects (solitons, quantum vortices)
(Bäuerle & al 1996, Weiler & al 2008, Chomaz & al 2015,
Lamporesi & al 2014)

• Paradigm: evolution of homogeneous weakly interacting
Bose gas from non-equilibrium initial condition to a state of

quantum turbulence
to a final vortex-free state (Berloff & Svistunov 2002)

• Question: is the quantum turbulence which follows
a thermal quench similar to ordinary turbulence ?

(a natural question, given the observed similarities between
quantum turbulence in superfluid helium and classical turbulence
in ordinary fluids, see CFB, Skrbek & Sreenivasan PNAS 2014)
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Gross-Pitaevskii equation
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• GPE usually models a T = 0 condensate, but also models a
finite-temperature gas, provided modes are highly occupied

• Highly nonequilibrium initial condition ψ(r, 0) =
∑

k ake
ik·r

(uniform nk = |ak|
2, random phases)

• Number density N/D3, energy density 〈H〉/D3

• Condensate fraction ρ0/ρ (where ρ0 = quasi-condensate density)
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The quasi-condensate

Evolution of occupation
numbers nk and of
integral distributions
Fk =

∑
k ′<k nk′

• Growth of occupation of low-k modes associated with
condensate. High-k modes associated with thermal excitations.

• Quasi-condensate ψ′ (containing the long-wavelength part
of the classical field) defined by cutoff kc = 10(2π/D) and
a′k = ak max{1− k2/k2

c , 0}.
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Evolution of quantum turbulence

Evolution of vortex tangle (here for ρ0/ρ = 0.22)

Question:
How does this turbulence compare with ordinary turbulence ?
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The Kolmogorov spectrum in classical turbulence

Energy spectrum E (k) describes the distribution of kinetic energy
over the length scales 2π/k (where k= wavenumber)

E =
1

V

∫
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v2

2
dV =

∫ ∞
0

E (k)dk

Forward energy cascade: large eddies break up into smaller eddies

E (k) ∼ k−5/3

Kolmogorov’s 5/3 law

D = system size
d = dissipation length scale
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The Kolmogorov spectrum in turbulent superfluid helium

Maurer & Tabeling 1998 Salort &al 2012

SHREK, Grenoble
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The Kolmogorov spectrum in turbulent superfluid helium

The Kolmogorov spectrum is associated with (metastable)
coherent bundles of vortex lines.

Decompose the vortex lines (according to locally coarse-grained
vorticity) into polarized lines (yellow) containing most of energy
and causing the k−5/3 law, and unpolarized lines (red).

(Baggaley, Laurie & CFB 2012)
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Energy spectrum following thermal quench

• No pile-up of energy at largest length scales (k ≈ 1/D),
no Kolmogorov k−5/3 law

• Expected k−3 behavior at k ≈ 1/ξ,
hint of (expected) k−1 behaviour at k ≈ 1/`
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Decay of turbulence following thermal quench

• Vortex line density decays as L ∼ t−1

• (Kolmogorov turbulence would decay as L ∼ t−3/2

as observed in superfluid helium by Walmsley & Golov 2008)
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Correlation function following thermal quench

Velocity correlation function f (r , t) and integral length scale I (t):

f (r , t) =
vx(r, t)vx(r + r êx , t)

〈vx(r, t)2〉
, I (t) =

∫ ∞
0

f (r)dr

No correlation at distances
larger than `,
and I (t) < `/2 at all t
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Quasi-classical vs ultra-quantum

Turbulence generated in 4He by injecting vortex rings
(Walmsley & Golov 2008)

Depending on the injection rate, they found two turbulence states:

(1) quasi-classical (Kolmogorov) turbulence: decays as L ∼ t−3/2

(2) ultra-quantum (Vinen) turbulence: decays as L ∼ t−1

quasi-classical
(Kolmogorov)

ultra-quantum
(Vinen)

(Volovik 2003)
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Quasi-classical vs ultra-quantum

Walmsley & Golov’s experiment is reproduced by numerical
simulations (Baggaley, Sergeev & CFB 2012)

ultra-quantum (Vinen) quasi-classical (Kolmogorov)

The inverse 3D energy cascade which creates ultra-quantum
turbulence depends crucially on vortex reconnections ”from
behind” (left) rather than ”head on” (right).
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Another ultra-quantum regime: thermal counterflow

Heat transfer turbulence in 4He (thermal counterflow), first studied
by Vinen:

Sherwin, Baggaley, Sergeev, CFB 2012: As the ultra-quantum
regime, counterlow turbulence lacks pile-up of energy at the
smallest k and the k−5/3 law
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Conclusions

Quantum turbulence induced by thermal quench = prototype
ultra-quantum (Vinen) turbulence:

• Energy concentrated at intermediate scales,
not at the largest length scales

• No k−5/3 energy spectrum, no energy cascade

• Decay as L ∼ t−1, not as L ∼ t−3/2

• Spatially random and homogeneous, without coherent structures.
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