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What is the aim of GPELAB?

I GPELab (Gross-Pitaevskii Equation Laboratory) is a Matlab toolbox
developed for computing the stationary states and dynamics
of large classes of GPEs which are time-dependent PDEs that
model the evolution of Bose-Einstein Condensates (BECs)
(BECs can also be described by other models).

3 / 43



Introduction Stationary states Dynamics Conclusion

Description of a BEC by the GPE

Obtained by Gross & Pitaevskii (1961), the GPE is a nonlinear
Schrödinger equation modeling the real-time dynamics of the wave
function ψ of the BEC

The "basic" Gross-Pitaevskii equation{
i∂tψ(x, t) = −1

2∆ψ(x, t) + V (x)ψ(x, t) + βf(ψ)ψ(x, t), t > 0,
ψ(x, 0) = ψ0(x), x ∈ Rd,

where
I V is a (confining) potential corresponding to the trapping device,
I f(ψ) = |ψ|2 is a nonlinear term corresponding to the interaction

between the particles in the BEC.
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Some conserved physical quantities

I The mass

N(ψ) =
∫
Rd

|ψ(x, t)|2dx =
∫
Rd

|ψ0(x)|2dx = ||ψ0||2L2 = 1.

I The energy

E(ψ) =
∫
Rd

[
1
2 |∇ψ|

2 + V |ψ|2 + 1
2β|ψ|

4
]
dx.
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Additional models: rotating condensate
The Gross-Pitaevskii equation with a rotation term i∂tψ(x, t) = −

1
2

∆ψ(x, t) + V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t)
−Ω · Lψ(x, t), t > 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where
I the vector Ω corresponds to the axis of rotation (direction) and its speed

(modulus),
I the operator L = (px, py , pz)t = x ∧P is the angular momentum operator with

P = −i∇ the impulsion,
I here, we consider a rotation along the z-axis with a speed Ω (i.e. Ω = (0, 0,Ω)).

This gives: Ω · L = ΩLz := −iΩ(x∂y − y∂x)

Figure: Vortex nucleation by rotating a Bose-Einstein condensate. 6 / 43
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Additional models: random fluctuations
The Gross-Pitaevskii equation with a stochastic potential i∂tψ(x, t) = −

1
2

∆ψ(x, t) + V (x)ψ(x, t)(1 + ẇt)
+β|ψ(x, t)|2ψ(x, t), t > 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where the white noise (ẇt)t∈R+ corresponds to the formal derivative of the brownian
motion (wt)t∈R+ .

Figure: Evolution of the density of a 1D BEC with random fluctuations in
the trapping device.
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Additional models: spinor BEC
A system of Gross-Pitaevskii equations with spin-orbit
coupling

i∂tψ1(x, t) =
(
L+ β1|ψ1|2 + β12|ψ2|2

)
ψ1(x, t) + S1ψ2(x, t), t > 0,

i∂tψ2(x, t) =
(
L+ β2|ψ2|2 + β12|ψ1|2

)
ψ2(x, t) + S2ψ1(x, t), t > 0,

ψ1(x, 0) = ψ1,0(x) and ψ2(x, 0) = ψ2,0(x), x ∈ Rd,

where
I L =

(
− 1

2 ∆ + V (x)
)
, β12 = intensity of interaction between the two-components.

I S1 = κ(−i∂x + ∂y) and S2 = κ(−i∂x − ∂y) are the spin-coupling operators

Figure: Density of each (3) component of the spinor BEC: (a) initial state
and (b) after applying a magnetic field gradient. 8 / 43
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About the numerical simulation: motivations

Motivations
I Since the system is quantum, it is technically extremely complex and expen-

sive to perform an experiment and to observe the physical phenomena: the
numerical simulation can be a cheap way for experimenting complex configu-
rations

I Many complex BECs models exist and so the numerical simulation can help
in understanding the validity of these models and how to improve them

I Managing BECs is crucial for future highly technological applications (quan-
tum computer, GPS,...)

References.

[1] W. Bao and Y. Cai, Mathematical Theory and Numerical Methods for Bose-Einstein
Condensation, Kinet. Relat. Mod., Vol. 6, pp. 1-135, 2013 (An Invited Review Paper).

[2] X.A. and R. Duboscq, Modeling and Computation of Bose-Einstein Condensates: Stationary
States, Nucleation, Dynamics, Stochasticity, in Nonlinear Optical and Atomic Systems: at the
Interface of Mathematics and Physics, Lecture Notes in Mathematics, 2146, pp. 49-145, Springer.
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About the numerical simulation: difficulties

Difficulties for the numerical simulation
I The system of GPEs is a 3D nonlinear system.
I One can be interested in computing the stationary (ground/excited) states or

the dynamics.
I It can couple some wave functions.
I The potential can be general, for example it can be nonlocal (convolution).
I The creation of vortices by the rotation term (or other gradient terms) is a

very difficult numerical challenge.
I Stochastic effects arise in the modeling...
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About GPELAB

GPELab

I Try to address these modeling questions from the numerical point of view.
I For 1d, 2d and 3d computations.
I The toolbox is based on recent numerical methods and some improvements.
I It is written in Matlab.
I Can be freely downloaded at http://gpelab.math.cnrs.fr/

I There is a user guide with some extended examples.
References.

[1] X.A. and R. Duboscq, GPELab, a Matlab Toolbox to Solve Gross-Pitaevskii Equations I:
Computation of Stationary Solutions, Computer Physics Communications, 185 (11) (2014), pp.
2969-2991.

[2] X.A. and R. Duboscq, GPELab, a Matlab Toolbox to Solve Gross-Pitaevskii Equations II:
Dynamics and Stochastic Simulations, Computer Physics Communications 193 (2015), pp. 95-
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Stationary states
Let H(q,p) be the hamiltonian operator of our quantum system.
The Schrödinger equation reads

i∂tψ(t,x) = H(x,−i∇)ψ(t,x). (2.1)

The stationary states
The stationary states are the eigenfunctions of the operator H.
That is, for each eigenfunction φ, we have

H(x,−i∇)φ(x) = µφ(x),

where µ is the associated eigenvalue.

I ϕ(t,x) = φ(x)e−iµt is a solution of (2.1).
I In order to be physically meaningful, φ must be normalized

‖φ‖2L2 :=
∫
Rd

|φ(x)|2dx = 1.
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Stationary states of the GPE with rotation:
nonlinear eigenproblem

A nonlinear eigenproblem
In the case of the Gross-Pitaevskii equation with rotation, a stationary
state is a solution to a constrained nonlinear eigenproblem −

1
2∆φ(x) + V (x)φ(x) + β|φ(x)|2φ(x)− ΩLzφ(x) = µφ(x),

‖φ‖L2 = 1.

We remark that, being given φ, we can directly compute the asso-
ciated eigenvalue, also called chemical potential,

µ(φ) =
∫
Rd

1
2 |∇φ|

2 + V (x)|φ|2 + β|φ|4 − Ω< (φ∗Lzφ) dx.
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Stationary states of the GPE with rotation:
minimization under constraints

Critical points of the energy
The stationary states are also constrained critical points of the
energy function Eβ,Ω with

Eβ,Ω(φ) =
∫
Rd

[
1
2 |∇φ|

2 + V |φ|2 −< (φ∗ΩLzφ) + 1
2β|φ|

4
]
dx.

By introducing a Lagrange multiplier λ, we can see that critical points
are solutions of the equation

Dψ,ψ∗Eβ,Ω(φ)− λDψ,ψ∗N(φ) = 0,

where N(ψ) = ‖ψ‖2L2 . This equation is equivalent to

−1
2∆φ(x) + V (x)φ(x) + β|φ(x)|2φ(x)− ΩLzφ(x) = λφ(x).
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Various numerical methods can be used

We can either solve the nonlinear eigenproblem or search for
critical points of the energy

I Search for critical points by using a Lagrange multiplier [Bao &
Tang, 2003]

I Optimal damping algorithm [Dion & Cancès, 2007]
I Continuation method on a Lagrange multiplier [Wang & Chien,

2011]
GPELab considers the imaginary time method

I Search for critical points by a Continuous Normalized Gradi-
ent Flow (CNGF).
W. Bao and Q. Du, Computing the Ground State Solution of Bose-Einstein Condensates by a

Normalized Gradient Flow, SIAM J. Sci. Comput., Vol. 25, No. 5. pp. 1674-1697, 2004.
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Formulation
The continuous normalized gradient flow consists in

I a gradient flow on a certain time interval (i.e. an energy-diminishing
step),

I then a projection on the constraint manifold (i.e. a normalization
step).

Let t0 < ... < tn < ... be a uniform time discretization with δt =
tn+1 − tn.

Continuous Normalized Gradient Flow (CNGF)



∂tφ = −Dφ∗Eβ,Ω(φ) = 1
2∆φ− V φ− β|φ|2φ

+ΩLzφ, t ∈ [tn, tn+1],

φ(x, tn+1) = φ(x, t+n+1) =
φ(x, t−n+1)

||φ(x, t−n+1)||L2
,

φ(x, 0) = φ0(x),x ∈ Rd, with ||φ||L2 = 1.

(2.2)

18 / 43



Introduction Stationary states Dynamics Conclusion

Suitable time discretization
Semi-implicit Backward Euler (BE) scheme
The Euler semi-implicit method leads to

ABE,nφ̃(x) = bBE,n(x),x ∈ Rd,

φn+1(x) = φ̃(x)
||φ̃||L2

,
(2.3)

where ABE and bBE are given by

ABE,n :=
(
I

δt
− 1

2∆ + V + β|φn|2 − ΩLz
)
,

bBE,n := φn

δt
.

(2.4)

The energy is diminishing without CFL on the time step and the non-
linearity is explicit.
W. Bao and Q. Du, Computing the Ground State Solution of Bose-Einstein Condensates by a Normal-

ized Gradient Flow, SIAM J. Sci. Comput., Vol. 25, No. 5. pp. 1674-1697, 2004.
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Suitable spatial discretization

BESP scheme
I The spatial derivative operators are efficiently and accurately

discretized thanks to the Fast Fourier Transform (FFT)
W. Bao and Q. Du, Computing the Ground State Solution of Bose-Einstein Condensates by a

Normalized Gradient Flow, SIAM J. Sci. Comput., Vol. 25, No. 5. pp. 1674-1697, 2004.

I In addition, a robust and efficient matrix-free solution of the
linear systems is obtained by using preconditioned Krylov subspace
solvers (BICGStab, GMRES)
X.A. and R. Duboscq, Robust and Efficient Preconditioned Krylov Spectral Solvers for Com-

puting the Ground States of Fast Rotating and Strongly Interacting Bose-Einstein Condensates,

Journal of Computational Physics, 258 (1) (2014), pp. 509-523.
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What GPELAB can solve

All along the talk but without being explicit, GPELab can
I Solve 1d-2d-3d cases
I Consider an arbitrary number of coupled equations (multi-

components)
I Integrate any GPEs with gradient terms
I Define general nonlinearities, user-defined potentials
I The user can define his own equations by simply calling built-in

functions
I And can compute and manipulate any physical quantity that he

defines

The same for the dynamics... + stochastic effects in time
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Example 1: double-well potential

2D case
I Double-well potential

V (x) = 1
2 ||x||

2 + 40e−||x||
2
.

I Cubic nonlinearity with β = 150.
I Computational domain ]− 20, 20[2.
I Discretization parameters

I δt = 0.5,
I 29 × 29 grid points for the FFT.
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Example 1: double-well potential

Figure: |ψ|2 (Ω = 0 (left) and Ω = 0.7 (right)).
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Example 2: quadratic-quartic potential

2D case
I Quadratic-quartic potential (α = 1.2 and κ = 0.3)

V (x) = (1− α) ‖x‖2 + κ ‖x‖4 .

I Cubic nonlinearity with β = 1000.
I Computational domain ]− 10, 10[2.
I Discretization parameters

I δt = 10−3,
I 28 × 28 grid points for the FFT.
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Example 2: quadratic-quartic potential

Figure: |ψ|2 (Ω = 0 (left) and Ω = 3.5 (right)).
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Example 3: multi-components BEC with
Rashba coupling [Aftalion & Mason, 2013]

2D case
System of two coupled GPEs

i∂tψ1(t,x) = −1
2∆ψ1(t,x)−κ

(
i
∂

∂x
+ ∂

∂y

)
ψ2(t,x)

+
(
|x|2

2 + g1|ψ1|2 + g12|ψ2|2
)
ψ1(t,x),

i∂tψ2(t,x) = −1
2∆ψ2(t,x)−κ

(
i
∂

∂x
− ∂

∂y

)
ψ1(t,x)

+
(
|x|2

2 + g2|ψ2|2 + g12|ψ1|2
)
ψ2(t,x).
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Example 3: multi-components BEC with
Rashba coupling [Aftalion & Mason, 2013]

2D case
I Coupled cubic nonlinearities g1 = 1000, g2 = 2000 and g12 = 500.
I Rashba coupling κ = 10.
I Computational domain ]− 10, 10[2.
I Discretization parameters

I δt = 10−2,
I 28 × 28 grid points for the FFT.
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Example 3: multi-components BEC with
Rashba coupling [Aftalion & Mason, 2013]

Figure: |ψj |2 (j = 1, 2).

These computations are obtained via the following GPELab script...
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Example 4: dipole-dipole interaction

3D case
I Quadratic potential
I Cubic nonlinearity with β = 2000 + nonlinear nonlocal interaction

d2
∫
Rd

1− 3 cos2(â, x̃)
‖x− x̃‖3 |ψ(t, x̃)|2dx̃.

with a = (0, 0, 1) and d = 0.5.
I Computational domain ]− 10, 10[3.
I Discretization parameters

I δt = 10−2,
I 26 × 26 × 26 grid points for the FFT.
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Example 4: dipole-dipole interaction

Figure: Isovalues(10−3) of |ψ|2.
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Discretization schemes

Time-Splitting SPectral (TSSP) schemes
I 1st, 2nd and 4th-order in time
I + FFT in space

Relaxation SPectral (ReSP) schemes
I 2nd-order Besse relaxation scheme
I + FFT in space + Krylov subspace solvers

References.

[1] W. Bao and Y. Cai, Mathematical Theory and Numerical Methods for Bose-Einstein Condensation,
Kinet. Relat. Mod., Vol. 6, pp. 1-135, 2013 (An Invited Review Paper).

[2] X.A., W. Bao and C. Besse, Computational Methods for the Dynamics of the Nonlinear Schrödinger/Gross-
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Discretization schemes

Stochastic effects in time in the potential
I Both TSSP and ReSP are adapted
I The orders in time of the schemes depend on the regularity of the

noise
References.
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Example 1: phase-imprinting of black solitons
Phase-imprinting
Being given the ground state φ, we set the initial data as

ψ0(x) = φ(x)e−iν tanh((x−x0)/d). (3.1)

This generates an impulsion inside the condensate in the x-direction
along the y-axis at the coordinate x = x0.

Figure: Physical experiment and numerical simulation of a phase-engineered
black-soliton [J. Denschlag & al., Science, 2000].
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Example 1: phase-imprinting of black solitons
The simulation uses the GPE
{

i∂tψ(t,x) = −1
2∆ψ(t,x) + 1

2 |x|
2ψ(t,x) + β|ψ|2ψ(t,x),

ψ(0,x) = φ1(x),
(3.2)

where φ1(x, y) = φ(x, y)e−iν tanh((x−x0)/d), with ν = −π/2 and
d = 0.4.
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Example 2: vortex nucleation induced by
stirring
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Example 2: vortex nucleation induced by
stirring
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Example 2: vortex nucleation induced by
stirring

The GPE with time-dependent potential
We simulate the following Gross-Pitaevskii equation{

i∂tψ(t,x) = −1
2∆ψ(t,x) + V (t,x)ψ(t,x) + β|ψ|2ψ(t,x),

ψ(0,x) = φ(x),
(3.3)

where V (t,x) = 1
2 |x|

2 + V0e
−|x−xs(t)|2/d2 , with V0 = 100, d = 0.3 and

xs(t) = (x0 cos(ηt)(1− sin(ηt)), y0 cos(ηt) sin(ηt)), η = 0.74.
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Example 2: vortex nucleation induced by
stirring
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Conclusion & Perspectives
GPElab: conclusion

I An easy-to-use open access Matlab toolbox that solves a large class
of 1d-2d-3d GPEs for modeling BECs

I Stationary states-Dynamics-Stochastic effects
I With some flexible, efficient, robust and accurate numerical meth-

ods

GPElab: perspectives
I BECASIM project (http://becasim.math.cnrs.fr/) funded by

the National Agency for Research (ANR) (2012-2017)
I Goal: develop HPC solvers with visualization features to model

high fidelity real physics experiments related to BECs
I A first version of the solver is being validated and includes the

methods developed in GPELab, see Ph. Parnaudeau’s talk this
morning
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