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WHAT IS THE AIM OF GpELas

» GPELab (Gross-Pitaevskii Equation Laboratory) is a Matlab toolbox
developed for computing the stationary states and dynamics
of large classes of GPEs which are time-dependent PDEs that
model the evolution of Bose-Einstein Condensates (BECs)
(BECs can also be described by other models).
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DEscrIPTION OF A BEC BY THE GPE

Obtained by Gross & Pitaevskii (1961), the GPE is a nonlinear
Schrédinger equation modeling the real-time dynamics of the wave
function 1 of the BEC

The "basic" Gross-Pitaevskii equation

{ 00(@,0) = —5 AU, 0) + V(@)b(a, 1) + B (a,0), >0,
w(m’ 0) = 1/10(93)’ T < Rdv

where
» 1 is a (confining) potential corresponding to the trapping device,

» f(¢) = |¢|? is a nonlinear term corresponding to the interaction
between the particles in the BEC.
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SOME CONSERVED PHYSICAL QUANTITIES

» The mass
N = [l Pds = [ oe)Pde = 1ol = 1.

» The energy

B = [ | |3I96F + VIt + 5ol de
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ADDITIONAL MODELS: ROTATING CONDENSATE

The Gross-Pitaevskii equation with a rotation term

00 (2, 1) = =3 A(, 1) + V(@)h(e,1) + Bl(a, 0P e, 1)
—Q- Lw(mvt)v t > 07
¥(x,0) = Yo(z), x € RY,

where
» the vector € corresponds to the axis of rotation (direction) and its speed
(modulus),
» the operator L = (pg, py,p=)" = A P is the angular momentum operator with
P = —iV the impulsion,

» here, we consider a rotation along the z- axis with aspeed Q (i.e. Q= (0,0,9Q)).
This gives: Q-L = QL. := —iQ(x0y

100

Figure: Vortex nucleation by rotating a Bose-Einstein condensate.
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ADDITIONAL MODELS: RANDOM FLUCTUATIONS

The Gross-Pitaevskii equation with a stochastic potential

i00(@,1) = =3 A(@, 1) + V (@)@, O (1 +in)
+Blu (2, "¢ (@, 1), ¢ >0,
¢(w70) = ¢0($)7 T € Rd7

where the white noise (¢ ),cp+ corresponds to the formal derivative of the brownian
motion (wt);cp+ -

Figure: Evolution of the density of a 1D BEC with random fluctuations in
the trapping device.
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ADDITIONAL MODELS: SPINOR BEC

A system of Gross-Pitaevskii equations with spin-orbit

coupling

101 (x,t) = (5 + Bily1* + /512|¢2\2) P1(x,t) + S1¢2(x, t), t >0,

2 (w,t) = (L + B2lval® + Br2lv1]?) v(x, 1) + Sevpi (=, 1), t >0,
1 (z,0) = ¥1,0(x) and o (x,0) = P2 o(z), = € RY,

where

> L= (—%A + V(a:)) , B12 = intensity of interaction between the two-components.

» S1 = k(—10z + 0y) and Sz = k(—i0; — 0y) are the spin-coupling operators

Figure: Density of each (3) component of the spinor BEC: (a) initial state
and (b) after applying a magnetic field gradient. 8 /43
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ABOUT THE NUMERICAL SIMULATION: MOTIVATIONS

Motivations

» Since the system is quantum, it is technically extremely complex and expen-
sive to perform an experiment and to observe the physical phenomena: the
numerical simulation can be a cheap way for experimenting complex configu-
rations

» Many complex BECs models exist and so the numerical simulation can help
in understanding the validity of these models and how to improve them

» Managing BECs is crucial for future highly technological applications (quan-
tum computer, GPS,...)
References.

[1] W. Bao and Y. Cai, Mathematical Theory and Numerical Methods for Bose-Einstein
Condensation, Kinet. Relat. Mod., Vol. 6, pp. 1-135, 2013 (An Invited Review Paper).

[2] X.A. and R. Duboscq, Modeling and Computation of Bose-Einstein Condensates: Stationary
States, Nucleation, Dynamics, Stochasticity, in Nonlinear Optical and Atomic Systems: at the
Interface of Mathematics and Physics, Lecture Notes in Mathematics, 2146, pp. 49-145, Springer.
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ABOUT THE NUMERICAL SIMULATION: DIFFICULTIES

Difficulties for the numerical simulation

» The system of GPEs is a 3D nonlinear system.

» One can be interested in computing the stationary (ground/excited) states or
the dynamics.

» It can couple some wave functions.
» The potential can be general, for example it can be nonlocal (convolution).

» The creation of vortices by the rotation term (or other gradient terms) is a
very difficult numerical challenge.

» Stochastic effects arise in the modeling...

10 /43
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ABOUT cpEL2s

>

vV vy vy VvYyy

Try to address these modeling questions from the numerical point of view.
For 1d, 2d and 3d computations.

The toolbox is based on recent numerical methods and some improvements.
It is written in Matlab.

Can be freely downloaded at http://gpelab.math.cnrs.fr/

There is a user guide with some extended examples.

References.

[1] X.A. and R. Duboscq, GPELab, a Matlab Toolbox to Solve Gross-Pitaevskii Equations I:
Computation of Stationary Solutions, Computer Physics Communications, 185 (11) (2014), pp.
2069-2991.

[2] X.A. and R. Duboscq, GPELab, a Matlab Toolbox to Solve Gross-Pitaevskii Equations II:

Dynamics and Stochastic Simulations, Computer Physics Communications 193 (2015), pp. 95-
117.
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STATIONARY STATES

Let H(q,p) be the hamiltonian operator of our quantum system.
The Schrodinger equation reads

(L, x) = H(x, —iV)(t, x). (2.1)

The stationary states

The stationary states are the eigenfunctions of the operator #.
That is, for each eigenfunction ¢, we have

H(x, —iV)P(x) = up(x),
where p is the associated eigenvalue.

> o(t,x) = ¢p(x)e " is a solution of (2.1).
» In order to be physically meaningful, ¢ must be normalized

162 = /}R () Pdz = 1.

13 /43
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STATIONARY STATES OF THE GPE WITH ROTATION:
NONLINEAR EIGENPROBLEM

A nonlinear eigenproblem

In the case of the Gross-Pitaevskii equation with rotation, a stationary
state is a solution to a constrained nonlinear eigenproblem

{ ~5A0(@) + V(@)9(2) + Blo(@) Fé(@) ~ OL.6(@) = po(@),
Illx = 1.

We remark that, being given ¢, we can directly compute the asso-
ciated eigenvalue, also called chemical potential,

H(o) = [ 51V + VGO + Blol* — R (6" L.o) do.
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STATIONARY STATES OF THE GPE WITH ROTATION:
MINIMIZATION UNDER CONSTRAINTS

Critical points of the energy

The stationary states are also constrained critical points of the
energy function Ejg o with

Baol@) = [ [5IV0P + VIR ~R(60L.0) + 3ol | da.

By introducing a Lagrange multiplier A\, we can see that critical points
are solutions of the equation

Dy Epa(¢) — ADy 4+ N(¢) =0,

where N (1) = |[¢||2.. This equation is equivalent to

*%Aaﬁ(w) +V(@)d(@) + Blo(x)*p(x) — QL.o(x) = Ad ().
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VARIOUS NUMERICAL METHODS CAN BE USED

We can either solve the nonlinear eigenproblem or search for
critical points of the energy

» Search for critical points by using a Lagrange multiplier [Bao &
Tang, 2003]

» Optimal damping algorithm [Dion & Cances, 2007]

» Continuation method on a Lagrange multiplier [Wang & Chien,
2011]

GPELab considers the imaginary time method

» Search for critical points by a Continuous Normalized Gradi-
ent Flow (CNGF).

W. Bao and Q. Du, Computing the Ground State Solution of Bose-Einstein Condensates by a

Normalized Gradient Flow, SIAM J. Sci. Comput., Vol. 25, No. 5. pp. 1674-1697, 2004.
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FORMULATION
The continuous normalized gradient flow consists in

» a gradient flow on a certain time interval (i.e. an energy-diminishing

step),

» then a projection on the constraint manifold (i.e. a normalization
step).

Let t9g < ... < t, < ... be a uniform time discretization with 6t =
tni1 — tn.

Continuous Normalized Gradient Flow (CNGF)

016 = ~Dy-Ega(6) = 550 ~ Vo - lol%6
—f—Qqub, te [tnytn-i-l]a

(@, i) =
tng1) = B, ) = o s
@ tn) = 6 tert) = 0=

B(x,0) = ¢o(x), x € RY, with ||¢||z2 = 1.

18 /43
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SUITABLE TIME DISCRETIZATION

Semi-implicit Backward Euler (BE) scheme

The Euler semi-implicit method leads to

ABE,né(w) :~ bBE’n(:E), = Rd,

#H (@) = 22 (2:3)
¢l
where ABE and bP¥ are given by
aven (L1 +V +Blo"]2 - QL,
ot 2 ’

(2.4)
(z)n
bBE,n N,
ot
The energy is diminishing without CFL on the time step and the non-
linearity is explicit.
W. Bao and Q. Du, Computing the Ground State Solution of Bose-Einstein Condensates by a Normal-

ized Gradient Flow, SIAM J. Sci. Comput., Vol. 25, No. 5. pp. 1674-1697, 2004.
19 /43
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SUITABLE SPATIAL DISCRETIZATION

BESP scheme

» The spatial derivative operators are efficiently and accurately
discretized thanks to the Fast Fourier Transform (FFT)

W. Bao and Q. Du, Computing the Ground State Solution of Bose-Einstein Condensates by a
Normalized Gradient Flow, SIAM J. Sci. Comput., Vol. 25, No. 5. pp. 1674-1697, 2004.

» In addition, a robust and efficient matrix-free solution of the
linear systems is obtained by using preconditioned Krylov subspace
solvers (BICGStab, GMRES)

X.A. and R. Duboscq, Robust and Efficient Preconditioned Krylov Spectral Solvers for Com-

puting the Ground States of Fast Rotating and Strongly Interacting Bose-Einstein Condensates,

Journal of Computational Physics, 258 (1) (2014), pp. 509-523.
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WHAT cprraz CAN SOLVE

All along the talk but without being explicit, cpeLab can
» Solve 1d-2d-3d cases

» Consider an arbitrary number of coupled equations (multi-
components)

» Integrate any GPEs with gradient terms
» Define general nonlinearities, user-defined potentials

» The user can define his own equations by simply calling built-in
functions

» And can compute and manipulate any physical quantity that he
defines

The same for the dynamics... + stochastic effects in time

N
N}
IS
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EXAMPLE 1: DOUBLE-WELL POTENTIAL

2D case

» Double-well potential

1
V(@) = 5 |le||* + 40e~ I,

» Cubic nonlinearity with g = 150.
» Computational domain ] — 20, 20[2.
» Discretization parameters

» 5t =0.5,

» 29 x 29 grid points for the FFT.

23 /43
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EXAMPLE 1: DOUBLE-WELL POTENTIAL

Iphice.y)1” of com

Figure: [1]* (2 = 0 (left) and Q = 0.7 (right)).
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EXAMPLE 2: QUADRATIC-QUARTIC POTENTIAL

2D case

» Quadratic-quartic potential (a = 1.2 and k = 0.3)
2 4
Vi(x) = (1—a)Ix[I” + & lx]".

» Cubic nonlinearity with 5 = 1000.
» Computational domain | — 10, 10[2.
» Discretization parameters

> 0t =102,

» 28 x 28 grid points for the FFT.
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EXAMPLE 2: QUADRATIC-QUARTIC POTENTIAL

Iphitx.y)I” of component 1

0.025
0.02
0015
g do01
: 0,005
"o s 6 04 2 ;J 2 4 6 8 0 0

Figure: |¢]? (2 = 0 (left) and Q = 3.5 (right)).
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EXAMPLE 3: MULTI-COMPONENTS BEC wIiTH
RASHBA COUPLING [AFTALION & MASON, 2013]

2D case

System of two coupled GPEs

i

et (t, %) = _%Awl (t,x)—r ( ‘0

+(5

i@twg(t,x) = 7%A’L/)2(t, X)*H, (

8 &
ox

0
— t
2 - ‘()y>¢2( )

X . .

L + g1l > + 912|’U2|2)¢1(ta X),

0 0
— — — t

}(‘);(f f)y)wl( )
x|2 o o

7‘ 2‘ +92‘1€1’2|2 +g12|U1|2)¢2(t,X)-

27 /43
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EXAMPLE 3: MULTI-COMPONENTS BEC WITH
RASHBA COUPLING [AFTALION & MASON, 2013]

» Coupled cubic nonlinearities g; = 1000, go = 2000 and g15 = 500.
» Rashba coupling x = 10.
» Computational domain | — 10, 10[2.
» Discretization parameters
> 0t =102,
» 28 x 28 grid points for the FFT.
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EXAMPLE 3: MULTI-COMPONENTS BEC WITH
RASHBA COUPLING [AFTALION & MASON, 2013]

Iphicey)I? of component 2

Iphipey)I? of component 1

10

0.008

0.008

0.004

0.002

Figure: [1);]% ( = 1,2).

These computations are obtained via the following GPELab script...
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< | » | lhExample_Rashba-2.m:1:1 %
%4k This file is an example of how to use GPELab (FFT version)

%% GROUND STATE COMPUTATION WITH A ROTATING TERM AND COUPLED NONLINEARITIES

% Setting the data

% Setting the metmd and geometry
Computation = 'Gro

Ncomponents = 2;

Type = 'BESP
Deltat = 1e-2
Stop_time = [I;

Stop_crit = {'MaxNorm',1e-6};

Methad = Method varzd(:wmnutanun. Ncomponents, Type, Deltat, Stop_time, Step_crit);
Method.Precond = 'Flaplace’

xmin = -10

Ny =
Geometry2D = Geometry2D_Var2d(xmin,xmax,ymin,ymax,Nx,Ny);

5% Setting the physical problem

Delta = 8.5

Beta

Beta, :nupled [1,0.5;0.5,2];
Kappa = 10;

Physics2D = Physics2D_Var2d(Method, Delta, Beta);
RashbaBispersion{1,1} = @(FFTX,FFTY) Deltax{FFTX."2+FFTY."2);
RashbaDispersion{1,2} = @(FFTX,FFTY) KappasFFTX - li#Kappa+FFTY;
Rashbabispersion{2, @(FFTX,FFTY) Kappa+FFTX + lixKappa+FFTY;
RashbaDispersion{2,2} = @(FFTX,FFTY) Deltat{FFTX,“2+FFTY."2);
Physics2D = Dispersion_Var2d(Method, Physics2D,RashbaDispersion);
Physics2D = Potential Var2d(Methed, Physics2D
Physics2D = Nonlinearity Var2d(Method, Physics20,Coupled_Cubic2d(Beta_coupled),
(1, Coupled_Cubic_energy2d(Beta_coupled) };

%% Setting the mxnal data
InitialData_Choice =
Phi_® = InitialData, Vaer(MEthnd Geometry2D, Physics2D, InitialData_Choice);

%% Setting informatiens and eutputs

Save = B;

Outputs = DutputsINI_Var2d(Method, Save);
Printing

1
Print = Print_Var2d(Printing,Evo,Draw);

% Launching sinulation

[Phi. Outouts] = GPELab2d(Phi B.Method.Geometrv2D.Phvsics2D.0utouts. [1.Print):

30 /43
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EXAMPLE 4: DIPOLE-DIPOLE INTERACTION

3D case

» Quadratic potential
» Cubic nonlinearity with 8 = 2000 + nonlinear nonlocal interaction

—

1 —3cos’(a,x)
dz/ — (%) [Pdx.
re  flx—x|?
with a = (0,0, 1) and d = 0.5.
» Computational domain | — 10, 10[3.

» Discretization parameters
> 0t =102,
» 25 x 25 x 25 grid points for the FFT.
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EXAMPLE 4: DIPOLE-DIPOLE INTERACTION

Iphi(xy 217 of component 1

Figure: Isovalues(10™%) of |¢|*.
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DISCRETIZATION SCHEMES

Time-Splitting SPectral (TSSP) schemes

» 15t 224 and 4*-order in time

» + FFT in space

Relaxation SPectral (ReSP) schemes

» 27d_order Besse relaxation scheme

» + FFT in space + Krylov subspace solvers

References.

[1] W. Bao and Y. Cai, Mathematical Theory and Numerical Methods for Bose-Einstein Condensation,
Kinet. Relat. Mod., Vol. 6, pp. 1-135, 2013 (An Invited Review Paper).

[2] X.A., W. Bao and C. Besse, Computational Methods for the Dynamics of the Nonlinear Schrédinger/Gross-
Pitaevskii Equations, (A Feature Article) Computer Physics Communications 184 (12), (2013), pp.2621-
2633.
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DISCRETIZATION SCHEMES

Stochastic effects in time in the potential
» Both TSSP and ReSP are adapted

» The orders in time of the schemes depend on the regularity of the
noise

References.

[1] R. Duboscq and R. Marty, Analysis of a time-splitting scheme for a class of random noise partial
differential equations, submitted, 2014.

[2] X.A. and R. Duboscq, Modeling and Computation of Bose-Einstein Condensates: Stationary States,
Nucleation, Dynamics, Stochasticity, in Nonlinear Optical and Atomic Systems: at the Interface of
Mathematics and Physics, Lecture Notes in Mathematics, 2146, pp. 49-145, Springer.

35 /43



INTRODUCTION STATIONARY STATES DyNAMICS CONCLUSION

INTRODUCTION

COMPUTATION OF STATIONARY STATES WITH GPELAB

COMPUTATION OF THE DYNAMICS WITH GPELAB

Numerical examples with GPELab

CONCLUSION AND PERSPECTIVES

36 /43



INTRODUCTION STATIONARY STATES DyNAMICS CONCLUSION

EXAMPLE 1: PHASE-IMPRINTING OF BLACK SOLITONS

Phase-imprinting

Being given the ground state ¢, we set the initial data as
Yo(@) = g(a)e™ ™ nb((e=w0)/d), (3.1)

This generates an impulsion inside the condensate in the z-direction
along the y-axis at the coordinate x = xg.

Figure: Physical experiment and numerical simulation of a phase-engineered
black-soliton [J. Denschlag & al., Science, 2000].
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EXAMPLE 1: PHASE-IMPRINTING OF BLACK SOLITONS

The simulation uses the GPE

{ 0 (t, ) = —%Aw(t,w) + %|w|2w(t,w) +BWIPY(E ), (59
1/)(07.’13) = ¢1(m)7

where ¢1(x,y) = d(z,y)e” ¥ tanb((@=20)/d) 'with y = —7/2 and
d=04.
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EXAMPLE 2: VORTEX NUCLEATION INDUCED BY
STIRRING

Vortex Nucleation in a Stirred Bose-Einstein Condensate

C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,
MIT, Cambridge, MA 02139
(February 1, 2008)

‘We studied the nucleation of vortices in a Bose-Einstein condensate stirred by a laser beam. We
observed the vortex cores using time-of-flight absorption imaging. By varying the size of the stirrer,
we observed either discrete resonances or a broad response as a function of the frequency of the
stirrer’s motion. Stirring beams small compared to the condensate size generated vortices below
the critical rotation frequency for the nucleation of surface modes, suggesting a local mechanism of
generation. In addition, we observed the centrifugal distortion of the condensate due to the rotating
vortex lattice and found evidence for bent vortices.

PACS 03.75.Fi, 67.40.Vs, 32.80.Pj
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EXAMPLE 2: VORTEX NUCLEATION INDUCED BY
STIRRING
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EXAMPLE 2: VORTEX NUCLEATION INDUCED BY
STIRRING

The GPE with time-dependent potential

We simulate the following Gross-Pitaevskii equation

{ i00(t,2) = —5 AV(L @) + Vit )b(t,2) + BUPU(E D), (g
¥(0,2) = 9(@),

where V(t, @) = L|z|? + Voe === ®I"/¢* with V; = 100, d = 0.3 and
xs(t) = (2o cos(nt)(1 — sin(nt)), yo cos(nt) sin(nt)), n = 0.74.
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EXAMPLE 2: VORTEX NUCLEATION INDUCED BY
STIRRING
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CONCLUSION & PERSPECTIVES

GPElab: conclusion

» An easy-to-use open access Matlab toolbox that solves a large class
of 1d-2d-3d GPEs for modeling BECs

» Stationary states-Dynamics-Stochastic effects

» With some flexible, efficient, robust and accurate numerical meth-
ods

GPElab: perspectives

» BECASIM project (http://becasim.math.cnrs.fr/) funded by
the National Agency for Research (ANR) (2012-2017)

» Goal: develop HPC solvers with visualization features to model
high fidelity real physics experiments related to BECs

» A first version of the solver is being validated and includes the
methods developed in GPELab, see Ph. Parnaudeau’s talk this
morning
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