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Planar maps

I A planar map is a finite, connected graph drawn on the two sphere such
that edges do not cross. Viewed up to orientation preserving
homeomorphisms of the sphere.

face

root edge

marked point

I The connected components of the complement of the edges are called
faces. The degree of a face f is the number of edges adjacent to it
(counted with multiplicity) and is denoted by deg(f).

I Single out a directed root edge and a marked point
! rooted and pointed maps. 2 / 23



Random planar maps

I Let Mn be the set of rooted and pointed planar maps with n edges which
are furthermore bipartite (equivalently all faces have even degrees).

I Let (qi)i�1 be a sequence of non–negative numbers and define the weight
of a map m 2Mn as

W (m) =
Y

f face in m

qdeg(f)=2

I Define the probability measure �n on Mn by

�n(m) = Z�1n W (m)

Zn =
P

m02Mn

W (m0) = normalization a.k.a. partition function.

I Let Mn be the random planar map distributed by �n. Want to obtain a
’continuum limit’ of Mn and describe the different phases which appear by
varying the parameters qi.

3 / 23



Motivation

I For ’nice’ weights the scaling limit is the Brownian map, e.g. qi = �i;p,
p � 2 (Le Gall 2011), (p = 2: Miermont 2011).

I Scaling limits of random planar maps with large faces
(Le Gall & Miermont ’11).
Weights chosen such that the distribution of the degree of a typical face is
in the d.o.a. of a stable distribution with index � 2 (1; 2).

I Is this the whole story?
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Compact metric spaces and Gromov–Hausdorff metric

M = set of all compact metric spaces modulo isometries.

Gromov–Hausdorff metric on M defined as

dGH(X1; X2) = inf
�
dYH(�1(X1); �2(X2)) : Y; �1; �2

	

I Infimum is over all metric spaces Y and all isometric embeddings �1; �2 of
X1; X2 resp. into Y .

I dYH is the Hausdorff metric on the set of compact subsets in Y

dYH(U; V ) = inff� > 0 : V � U � and U � V �g:

I U � =
S
u2U B�(u) is the � neighbourhood of U .
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Convergence of random planar maps - scaling limit

I Denote the graph metric on Mn by dn
! dn(x; y) = smallest number of edges in a path connecting x and y.

I View (Mn; n
�adn) as a random element in M where a > 0.

I Question: For a given weight sequence (qi)i, does there exist an a > 0
such that (Mn; n

�adn) has an interesting limit in (M; dGH) as n!1?
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The phase diagram of the random planar maps

(Marckert)
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Aldous’ Brownian tree

Let e be a standard Brownian excursion on [0; 1], i.e. a standard Brownian
motion on [0; 1] conditioned on being nonnegative on (0; 1) and on taking the
value 0 at 1.

1 1

For s; t 2 [0; 1], s < t, define

�e(s; t) = e(s) + e(t)� 2 inf
s<u<t

e(u):

The Brownian tree is defined as Te = [0; 1]�f�e = 0g and we let �e be the
induced distance on the quotient.
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Mobiles and the Bouttier-Di Francesco-Guitter bijection

I Consider a rooted plane tree Tn having n edges. (Tn 2 Treesn)

Colour the vertices of even generations white and the vertices of odd
generations black.
V �(Tn) set of white vertices.
V �(Tn) set of black vertices.

I Assign integer labels `n(v) to the
white vertices v 2 V �(Tn)

(1) The root has label 0.

(2) The labels of white vertices
neighbouring any given black
vertex can decrease at most
by one in clockwise order.

I Call these labelled trees mobiles. 1

2

3

21

22
23

31

211 212

231

2311

2312

2121 2122
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Mobiles and the Bouttier-Di Francesco-Guitter bijection

I Let Mobn be the set of mobiles having n edges.
I There is a bijection �n : Mobn � f�1; 1g !Mn (BDG 2004).

I

I

I
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Random mobiles

Image of �n by the BDG bijection:

1. Select a plane tree Tn having n edges with relative probability

~W (Tn) =
Y

v2V �(Tn)

�
2deg(v)� 1

deg(v)� 1

�

| {z }
] ways to assign valid labels to Tn

Y
v2V �(Tn)

qdeg(v) =
Y

v2V �(Tn)

wdeg(v)

where wi := qi
�
2i�1
i�1

�
.

2. Given Tn, select a labeling (`n(v))v2V �(Tn) with uniform probability.

3. Select an element � from f�1; 1g with uniform probability.

I Note:
�
(`n(v))v2V �(Tn) j Tn

�
and � do not depend on the wi’s.

I Therefore, the phase structure of the planar maps distributed by �n is
determined by the phase structure of trees distributed by

~�n(Tn) := 2Z�1n
~W (Tn):
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Another bijection

A bijection 	n : Treesn ! Treesn (Treesn = set of trees with n edges)

I Black vertices of degree k are mapped to black vertices of degree k + 1.

I White vertices are mapped to vertices of degree 1.

The measure ~�n on Treesn is carried to a new measure �n defined by

�n(Tn) = 2Z�1n

Y
v2V (Tn)

wdeg(v)�1

where w0 := 1. ! simply generated trees .
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Simply generated trees

Let g(x) =
P1

i=0wix
i with radius of convergence �.

For any � � �, define the sequence of probabilities

�i =
� iwi

g(� )
; i � 0 and let m = m(� ) =

X
i

i�i:

If � > 0, �i and wi define the same measures �n:Y
v2Tn

abdeg(v)�1 = an+1bn

The ’natural’ choice of � :

1. Let � be the unique number in [0; �] such that m = �g0(�)
g(�) = 1 (critical).

2. If no such solution exists let � = �, thus m < 1 (sub–critical).

If m > 0, �n is the distribution of a Galton-Watson tree with offspring prob. �i
conditioned on having n edges.
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Critical vs. sub–critical
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Condensation when m < 1

Let Tn = random tree distributed by �n.

Theorem (Jonsson and S, 2011)

If �i is sub–critical (0 < m < 1) and �i � Ci�� with � > 2 and C > 0 then
there is a unique vertex in Tn of maximum degree equal to (1 �m)n + op(n)
when n!1 .

I For large n the tree Tn can roughly be described as consisting of the large
vertex of degree approximately (1�m)n from which independent copies of
sub–critical �i–GW trees grow.

Theorem (Janson, Jonsson and S, 2011)

If � = m = 0 and wi = (n!)� then there is a unique vertex in Tn of maximum
degree equal to n+ op(n) when n!1.

I The tree Tn is now composed of a root of degree approximately n with
very few vertices in lower generations.

Developed further by Janson 2011, Kortchemski, 2012 and Abraham & Delmas, 2013.
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The phases of random planar maps

(1a) �i is critical and has finite variance.
I (Tn; n

�1=2dn) converges weakly in M towards Aldous’ Brownian tree
(Aldous, 1993).

I It is conjectured that (Mn; n
�1=4dn) converges weakly in M towards

the Brownian map. Proved in special (and related) cases (C. Abraham,
Addario-Berry, Albenque, Beltran, Bettinelli, Jacob, Le Gall, Miermont).

(1b) �i � ci���1, � 2 (1; 2), is critical and has infinite variance.
I (Tn; n

�(��1)=�dn) converges weakly in M towards the stable tree
with index � (Duquesne and Le Gall, 2002).

I (Mn; n
�1=2�dn) converges weakly in M (at least along a

subsequence) towards something different from the Brownian map (Le
Gall and Miermont, 2008).

(2a) �i � Ci�� , � > 2, is sub–critical.
I There is no interesting limit of Tn with rescaled dn in M (Kortchemski,

2012).
I What about Mn?

(2b) � = 0 and wi = n!�?
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Main results

Theorem (Janson and S, 2012)

If

�i � L(i)i�� ;

with � > 2 and L(i) slowly varying, is sub–critical (0 < m < 1), or

wi � (n!)�;

with � > 0, (thus m = � = 0) then

(Mn; (2(1�m)n)�1=2dn)) (Te; �e):

Recall that a black vertex of large degree corresponds to a face of large degree.
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A planar map with one large face (and a few small)

wi � ci�3 and m = 0:66.
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The phase diagram of the random planar maps

(Marckert)
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Remark

More examples of non-trees converging towards the Brownian tree:

I Stack triangulations Albenque and Marckert, 2008

I Random planar quadrangulations with a boundary Bettinelli, 2011

I Random dissections Curien, Haas and Kortchemski

I Uniform outerplanar maps Caraceni, 2014

I Random graphs from subcritical classes Panagiotou, Stufler and Weller, 2014

I Random enriched trees, outerplanar maps Stufler, 2015
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Idea of proof

Mobiles with a single black vertex of degree b(1�m)nc, yield planar maps with
b(1�m)nc edges which are trees:

0

1

0

1

-1
-2

0

0

1

0

1

-1
-2

0

0

1

0

1

-1

-2

0

When the mobile is fixed and the labels chosen uniformly at random from
allowed labelings the maps are distributed as the uniform tree.

Call this random map M?
n and the graph metric d?n. According to Aldous’

theorem
(M?

n; (2(1�m)n)�1=2d?n)! (Te; �e)

weakly in M.
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Since sub–critical GW processes die out fast the trees growing from the large
vertex will be small (they are even smaller when � = 0) and we can show that

dGH((Mn; dn); (M
?
n; d

?
n))! 0

in probability which along with the weak convergence of (M?
n; d

?
n) completes the

proof.

sub-critical 
GW
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Thank you!
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