Scaling limits of random planar maps towards the Brownian tree

Sigurður Örn Stefánsson, University of Iceland

> Joint work with Svante Janson, Uppsala University

Random Trees and Maps: Probabilistic and Combinatorial Aspects CIRM, June 10, 2016

Planar maps

A planar map is a finite, connected graph drawn on the two sphere such that edges do not cross. Viewed up to orientation preserving homeomorphisms of the sphere.

- ► The connected components of the complement of the edges are called faces. The degree of a face f is the number of edges adjacent to it (counted with multiplicity) and is denoted by deg(f).
- ► Single out a directed root edge and a marked point → rooted and pointed maps.

Random planar maps

- ▶ Let *M_n* be the set of rooted and pointed planar maps with *n* edges which are furthermore bipartite (equivalently all faces have even degrees).
- ▶ Let $(q_i)_{i \ge 1}$ be a sequence of non-negative numbers and define the weight of a map $m \in M_n$ as

$$W(m) = \prod_{f ext{ face in } m} q_{\deg(f)/2}$$

• Define the probability measure μ_n on \mathcal{M}_n by

$$\mu_n(m) = \mathcal{Z}_n^{-1} W(m)$$

 $\mathcal{Z}_n = \sum_{m' \in \mathcal{M}_n} W(m')$ = normalization a.k.a. partition function.

Let M_n be the random planar map distributed by μ_n. Want to obtain a 'continuum limit' of M_n and describe the different phases which appear by varying the parameters q_i.

Motivation

- ► For 'nice' weights the scaling limit is the Brownian map, e.g. $q_i = \delta_{i,p}$, $p \ge 2$ (Le Gall 2011), (p = 2: Miermont 2011).
- Scaling limits of random planar maps with large faces (Le Gall & Miermont '11).

Weights chosen such that the distribution of the degree of a typical face is in the d.o.a. of a stable distribution with index $\alpha \in (1, 2)$.

Is this the whole story?

Compact metric spaces and Gromov-Hausdorff metric

 \mathbb{M} = set of all compact metric spaces modulo isometries. Gromov–Hausdorff metric on \mathbb{M} defined as

 $d_{
m GH}(X_1,X_2) = \inf \left\{ d_{
m H}^Y(\phi_1(X_1),\phi_2(X_2)) ~:~ Y,\phi_1,\phi_2
ight\}$

- ► Infimum is over all metric spaces Y and all isometric embeddings φ₁, φ₂ of X₁, X₂ resp. into Y.
- ▶ $d_{\rm H}^Y$ is the Hausdorff metric on the set of compact subsets in Y

$$d_{\mathrm{H}}^{\mathrm{Y}}(U,V) = \inf\{\epsilon > 0 : V \subseteq U^{\epsilon} \text{ and } U \subseteq V^{\epsilon}\}.$$

▶ $U^{\epsilon} = \bigcup_{u \in U} B_{\epsilon}(u)$ is the ϵ neighbourhood of U.

Convergence of random planar maps - scaling limit

- Denote the graph metric on M_n by d_n $\rightarrow d_n(x, y) =$ smallest number of edges in a path connecting x and y.
- View $(M_n, n^{-a}d_n)$ as a random element in \mathbb{M} where a > 0.
- Question: For a given weight sequence (q_i)_i, does there exist an a > 0 such that (M_n, n^{-a}d_n) has an interesting limit in (M, d_{GH}) as n → ∞?

The phase diagram of the random planar maps

Aldous' Brownian tree

Let e be a standard Brownian excursion on [0, 1], i.e. a standard Brownian motion on [0, 1] conditioned on being nonnegative on (0, 1) and on taking the value 0 at 1.

For $s, t \in [0, 1]$, s < t, define

$$\delta_{\mathbf{e}}(s,t) = \mathbf{e}(s) + \mathbf{e}(t) - 2 \inf_{s < u < t} \mathbf{e}(u).$$

The Brownian tree is defined as $\mathcal{T}_{\mathbf{e}} = [0, 1] / \{\delta_{\mathbf{e}} = 0\}$ and we let δ_e be the induced distance on the quotient.

Aldous' Brownian tree

Let e be a standard Brownian excursion on [0, 1], i.e. a standard Brownian motion on [0, 1] conditioned on being nonnegative on (0, 1) and on taking the value 0 at 1.

For $s, t \in [0, 1]$, s < t, define

$$\delta_{\mathbf{e}}(s,t) = \mathbf{e}(s) + \mathbf{e}(t) - 2 \inf_{s < u < t} \mathbf{e}(u).$$

The Brownian tree is defined as $\mathcal{T}_{\mathbf{e}} = [0, 1] / \{\delta_{\mathbf{e}} = 0\}$ and we let δ_e be the induced distance on the quotient.

▶ Consider a rooted plane tree T_n having n edges. $(T_n \in \text{Trees}_n)$

Colour the vertices of even generations white and the vertices of odd generations black.

 $V^{\circ}(T_n)$ set of white vertices. $V^{\bullet}(T_n)$ set of black vertices.

- ► Assign integer labels l_n(v) to the white vertices v ∈ V°(T_n)
 - (1) The root has label 0.
 - (2) The labels of white vertices neighbouring any given black vertex can decrease at most by one in clockwise order.
- Call these labelled trees mobiles.

► Consider a rooted plane tree T_n having n edges. $(T_n \in \text{Trees}_n)$

Colour the vertices of even generations white and the vertices of odd generations black.

 $V^{\circ}(T_n)$ set of white vertices. $V^{\bullet}(T_n)$ set of black vertices.

- ► Assign integer labels l_n(v) to the white vertices v ∈ V°(T_n)
 - (1) The root has label 0.
 - (2) The labels of white vertices neighbouring any given black vertex can decrease at most by one in clockwise order.
- Call these labelled trees mobiles.

▶ Consider a rooted plane tree T_n having n edges. $(T_n \in \text{Trees}_n)$

Colour the vertices of even generations white and the vertices of odd generations black.

 $V^{\circ}(T_n)$ set of white vertices. $V^{\bullet}(T_n)$ set of black vertices.

- ► Assign integer labels l_n(v) to the white vertices v ∈ V°(T_n)
 - (1) The root has label 0.
 - (2) The labels of white vertices neighbouring any given black vertex can decrease at most by one in clockwise order.
- Call these labelled trees mobiles.

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection Φ_n : $Mob_n \times \{-1, 1\} \rightarrow \mathcal{M}_n$ (BDG 2004).

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection Φ_n : $Mob_n \times \{-1, 1\} \rightarrow \mathcal{M}_n$ (BDG 2004).

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection Φ_n : $Mob_n \times \{-1, 1\} \rightarrow \mathcal{M}_n$ (BDG 2004).

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

• $d_n(\rho, v) = \ell_n(v) - \min_w \{\ell_n(w)\} + 1$ (0 - (-2) + 1 = 3)

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- $d_n(\rho, v) = \ell_n(v) \min_w \{\ell_n(w)\} + 1$ (0 (-2) + 1 = 3)
- ▶ Black vertices \leftrightarrow faces in map , deg(•) = deg(f/2).

- Let Mob_n be the set of mobiles having n edges.
- There is a bijection $\Phi_n : \operatorname{Mob}_n \times \{-1, 1\} \to \mathcal{M}_n \text{ (BDG 2004)}.$

- $d_n(\rho, v) = \ell_n(v) \min_w \{\ell_n(w)\} + 1$ (0 (-2) + 1 = 3)
- ▶ Black vertices \leftrightarrow faces in map , deg(•) = deg(f/2).
- ▶ White vertices ↔ vertices in map.

Random mobiles

Image of μ_n by the BDG bijection:

1. Select a plane tree T_n having n edges with relative probability

$$\tilde{W}(T_n) = \prod_{v \in V^{\bullet}(T_n)} \binom{2 \operatorname{deg}(v) - 1}{\operatorname{deg}(v) - 1} \prod_{v \in V^{\bullet}(T_n)} q_{\operatorname{deg}(v)} = \prod_{v \in V^{\bullet}(T_n)} w_{\operatorname{deg}(v)}$$

 \sharp ways to assign valid labels to T_n

where
$$w_i:=q_iinom{2i-1}{i-1}.$$

- 2. Given T_n , select a labeling $(\ell_n(v))_{v \in V^{\circ}(T_n)}$ with uniform probability.
- 3. Select an element ϵ from $\{-1, 1\}$ with uniform probability.
- ▶ Note: $((\ell_n(v))_{v \in V^{\circ}(T_n)} | T_n)$ and ϵ do not depend on the w_i 's.
- Therefore, the phase structure of the planar maps distributed by μ_n is determined by the phase structure of trees distributed by

$$\tilde{\nu}_n(T_n) := 2\mathcal{Z}_n^{-1}\tilde{W}(T_n).$$

Random mobiles

Image of μ_n by the BDG bijection:

1. Select a plane tree T_n having n edges with relative probability

$$\tilde{W}(T_n) = \prod_{v \in V^{\bullet}(T_n)} \binom{2 \operatorname{deg}(v) - 1}{\operatorname{deg}(v) - 1} \prod_{v \in V^{\bullet}(T_n)} q_{\operatorname{deg}(v)} = \prod_{v \in V^{\bullet}(T_n)} w_{\operatorname{deg}(v)}$$

 \sharp ways to assign valid labels to T_n

where
$$w_i:=q_iinom{2i-1}{i-1}.$$

- 2. Given T_n , select a labeling $(\ell_n(v))_{v \in V^{\circ}(T_n)}$ with uniform probability.
- 3. Select an element ϵ from $\{-1, 1\}$ with uniform probability.
- ▶ Note: $((\ell_n(v))_{v \in V^{\circ}(T_n)} | T_n)$ and ϵ do not depend on the w_i 's.
- Therefore, the phase structure of the planar maps distributed by μ_n is determined by the phase structure of trees distributed by

$$\tilde{\nu}_n(T_n) := 2\mathcal{Z}_n^{-1}\tilde{W}(T_n).$$

- Black vertices of degree k are mapped to black vertices of degree k + 1.
- White vertices are mapped to vertices of degree 1.

- Black vertices of degree k are mapped to black vertices of degree k + 1.
- White vertices are mapped to vertices of degree 1.

- Black vertices of degree k are mapped to black vertices of degree k + 1.
- White vertices are mapped to vertices of degree 1.

- Black vertices of degree k are mapped to black vertices of degree k + 1.
- White vertices are mapped to vertices of degree 1.

- Black vertices of degree k are mapped to black vertices of degree k + 1.
- White vertices are mapped to vertices of degree 1.

- Black vertices of degree k are mapped to black vertices of degree k + 1.
- White vertices are mapped to vertices of degree 1.

A bijection Ψ_n : Trees_n \rightarrow Trees_n (Trees_n = set of trees with n edges)

- Black vertices of degree k are mapped to black vertices of degree k + 1.
- White vertices are mapped to vertices of degree 1.

The measure $\tilde{\nu}_n$ on Trees_n is carried to a new measure ν_n defined by

$$\nu_n(T_n) = 2\mathcal{Z}_n^{-1} \prod_{v \in V(T_n)} w_{\deg(v)-1}$$

where $w_0 := 1$. \rightarrow simply generated trees (Meir and Moon, 1978).

Simply generated trees

Let $g(x) = \sum_{i=0}^{\infty} w_i x^i$ with radius of convergence ho.

For any $au \leq
ho$, define the sequence of probabilities

$$\pi_i = rac{ au^i w_i}{g(au)}, \quad i \geq 0 \qquad ext{and let} \qquad m = m(au) = \sum_i i \pi_i.$$

If au > 0, π_i and w_i define the same measures u_n :

$$\prod_{v\in T_n}ab^{\deg(v)-1}=a^{n+1}b^n$$

The 'natural' choice of τ :

- 1. Let τ be the unique number in $[0, \rho]$ such that $m = \frac{\tau g'(\tau)}{q(\tau)} = 1$ (critical).
- 2. If no such solution exists let au =
 ho, thus m < 1 (sub-critical).

If m > 0, ν_n is the distribution of a Galton-Watson tree with offspring prob. π_i conditioned on having n edges.

Simply generated trees

Let $g(x) = \sum_{i=0}^{\infty} w_i x^i$ with radius of convergence ho.

For any $au \leq
ho$, define the sequence of probabilities

$$\pi_i = rac{ au^i w_i}{g(au)}, \quad i \geq 0 \qquad ext{and let} \qquad m = m(au) = \sum_i i \pi_i.$$

If $\tau > 0$, π_i and w_i define the same measures ν_n :

$$\prod_{v\in T_n}ab^{\deg(v)-1}=a^{n+1}b^n$$

The 'natural' choice of τ :

- 1. Let τ be the unique number in $[0, \rho]$ such that $m = \frac{\tau g'(\tau)}{q(\tau)} = 1$ (critical).
- 2. If no such solution exists let $\tau = \rho$, thus m < 1 (sub-critical).

If m > 0, ν_n is the distribution of a Galton-Watson tree with offspring prob. π_i conditioned on having n edges.

Critical vs. sub-critical

Size conditioned critical GW tree with finite variance.

Size conditioned sub-critical GW tree

Condensation when m < 1

Let T_n = random tree distributed by ν_n .

Theorem (Jonsson and S, 2011)

If π_i is sub-critical (0 < m < 1) and $\pi_i \sim Ci^{-\beta}$ with $\beta > 2$ and C > 0 then there is a unique vertex in T_n of maximum degree equal to $(1 - m)n + o_p(n)$ when $n \to \infty$.

For large n the tree T_n can roughly be described as consisting of the large vertex of degree approximately (1 − m)n from which independent copies of sub-critical π_i-GW trees grow.

Theorem (Janson, Jonsson and S, 2011)

If $\rho = m = 0$ and $w_i = (n!)^{\alpha}$ then there is a unique vertex in T_n of maximum degree equal to $n + o_p(n)$ when $n \to \infty$.

▶ The tree *T_n* is now composed of a root of degree approximately *n* with very few vertices in lower generations.

Developed further by Janson 2011, Kortchemski, 2012 and Abraham & Delmas, 2013.

Condensation when m < 1

Let T_n = random tree distributed by ν_n .

Theorem (Jonsson and S, 2011)

If π_i is sub-critical (0 < m < 1) and $\pi_i \sim Ci^{-\beta}$ with $\beta > 2$ and C > 0 then there is a unique vertex in T_n of maximum degree equal to $(1 - m)n + o_p(n)$ when $n \to \infty$.

For large n the tree T_n can roughly be described as consisting of the large vertex of degree approximately (1 − m)n from which independent copies of sub-critical π_i-GW trees grow.

Theorem (Janson, Jonsson and S, 2011)

If $\rho = m = 0$ and $w_i = (n!)^{\alpha}$ then there is a unique vertex in T_n of maximum degree equal to $n + o_p(n)$ when $n \to \infty$.

▶ The tree *T_n* is now composed of a root of degree approximately *n* with very few vertices in lower generations.

Developed further by Janson 2011, Kortchemski, 2012 and Abraham & Delmas, 2013.

The phases of random planar maps

(1a) π_i is critical and has finite variance.

- (T_n, n^{-1/2}d_n) converges weakly in M towards Aldous' Brownian tree (Aldous, 1993).
- ► It is conjectured that (M_n, n^{-1/4}d_n) converges weakly in M towards the Brownian map. Proved in special (and related) cases (C. Abraham, Addario-Berry, Albenque, Beltran, Bettinelli, Jacob, Le Gall, Miermont).

(1b) $\pi_i \sim ci^{-\alpha-1}$, $\alpha \in (1,2)$, is critical and has infinite variance.

- $(T_n, n^{-(\alpha-1)/\alpha}d_n)$ converges weakly in \mathbb{M} towards the stable tree with index α (Duquesne and Le Gall, 2002).
- (M_n, n^{-1/2α}d_n) converges weakly in M (at least along a subsequence) towards something different from the Brownian map (Le Gall and Miermont, 2008).

(2a) $\pi_i \sim C i^{-\beta}$, $\beta > 2$, is sub-critical.

- ▶ There is no interesting limit of T_n with rescaled d_n in \mathbb{M} (Kortchemski, 2012).
- What about M_n ?

(2b) $\rho = 0$ and $w_i = n!^{\alpha}$?

The phases of random planar maps

(1a) π_i is critical and has finite variance.

- (T_n, n^{-1/2}d_n) converges weakly in M towards Aldous' Brownian tree (Aldous, 1993).
- ► It is conjectured that (M_n, n^{-1/4}d_n) converges weakly in M towards the Brownian map. Proved in special (and related) cases (C. Abraham, Addario-Berry, Albenque, Beltran, Bettinelli, Jacob, Le Gall, Miermont).

(1b)
$$\pi_i \sim c i^{-\alpha-1}$$
, $\alpha \in (1,2)$, is critical and has infinite variance.

- $(T_n, n^{-(\alpha-1)/\alpha}d_n)$ converges weakly in \mathbb{M} towards the stable tree with index α (Duquesne and Le Gall, 2002).
- (M_n, n^{-1/2α}d_n) converges weakly in M (at least along a subsequence) towards something different from the Brownian map (Le Gall and Miermont, 2008).

(2a) $\pi_i \sim C i^{-eta}$, eta > 2, is sub-critical.

- ▶ There is no interesting limit of T_n with rescaled d_n in \mathbb{M} (Kortchemski, 2012).
- What about M_n ?

(2b) $\rho = 0$ and $w_i = n!^{\alpha}$?

The phases of random planar maps

(1a) π_i is critical and has finite variance.

- (T_n, n^{-1/2}d_n) converges weakly in M towards Aldous' Brownian tree (Aldous, 1993).
- ► It is conjectured that (M_n, n^{-1/4}d_n) converges weakly in M towards the Brownian map. Proved in special (and related) cases (C. Abraham, Addario-Berry, Albenque, Beltran, Bettinelli, Jacob, Le Gall, Miermont).

(1b)
$$\pi_i \sim c i^{-\alpha-1}$$
, $\alpha \in (1,2)$, is critical and has infinite variance.

- $(T_n, n^{-(\alpha-1)/\alpha}d_n)$ converges weakly in \mathbb{M} towards the stable tree with index α (Duquesne and Le Gall, 2002).
- (M_n, n^{-1/2α}d_n) converges weakly in M (at least along a subsequence) towards something different from the Brownian map (Le Gall and Miermont, 2008).

(2a) $\pi_i \sim C i^{-\beta}$, $\beta > 2$, is sub-critical.

- There is no interesting limit of T_n with rescaled d_n in \mathbb{M} (Kortchemski, 2012).
- ▶ What about *M_n*?

(2b)
$$\rho = 0$$
 and $w_i = n!^{\alpha}$?

Main results

lf

Theorem (Janson and S, 2012)

$$\pi_i \sim L(i)i^{-\beta}$$

with $\beta > 2$ and L(i) slowly varying, is sub-critical (0 < m < 1), or

 $w_i \sim (n!)^{lpha},$

with $\alpha > 0$, (thus $m = \rho = 0$) then

$$(M_n,(2(1-m)n)^{-1/2}d_n)\Rightarrow(\mathcal{T}_{\mathbf{e}},\delta_{\mathbf{e}}).$$

Recall that a black vertex of large degree corresponds to a face of large degree.

A planar map with one large face (and a few small)

 $w_i \sim c i^{-3}$ and m = 0.66.

The phase diagram of the random planar maps

Remark

More examples of non-trees converging towards the Brownian tree:

- Stack triangulations Albenque and Marckert, 2008
- ► Random planar quadrangulations with a boundary Bettinelli, 2011
- Random dissections Curien, Haas and Kortchemski
- Uniform outerplanar maps Caraceni, 2014
- ► Random graphs from subcritical classes Panagiotou, Stufler and Weller, 2014
- ► Random enriched trees, outerplanar maps Stufler, 2015

Idea of proof

Mobiles with a single black vertex of degree $\lfloor (1-m)n \rfloor$, yield planar maps with $\lfloor (1-m)n \rfloor$ edges which are trees:

When the mobile is fixed and the labels chosen uniformly at random from allowed labelings the maps are distributed as the uniform tree.

Call this random map M_n^\star and the graph metric $d_n^\star.$ According to Aldous' theorem

$$(M_n^\star,(2(1-m)n)^{-1/2}d_n^\star) o (\mathcal{T}_{\mathbf{e}},\delta_{\mathbf{e}})$$

weakly in \mathbb{M} .

Since sub-critical GW processes die out fast the trees growing from the large vertex will be small (they are even smaller when $\rho = 0$) and we can show that

$$d_{\mathrm{GH}}((M_n,d_n),(M_n^\star,d_n^\star))
ightarrow 0$$

in probability which along with the weak convergence of $(M_n^{\star}, d_n^{\star})$ completes the proof.

Thank you!