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Planar maps

» A planar map is a finite, connected graph drawn on the two sphere such
that edges do not cross. Viewed up to orientation preserving
homeomorphisms of the sphere.

" marked point
e

fac

root edge

» The connected components of the complement of the edges are called
faces. The degree of a face f is the number of edges adjacent to it
(counted with multiplicity) and is denoted by deg(f).

> Single out a directed root edge and a marked point
— rooted and pointed maps. 2/23



Random planar maps

> Let M, be the set of rooted and pointed planar maps with n edges which
are furthermore bipartite (equivalently all faces have even degrees).

> Let (g;)s>1 be a sequence of non—negative numbers and define the weight
of a map m € M, as

Wim)= [ gaests)s

f faceinm
> Define the probability measure u,, on M, by
pin(m) = Z1W (m)

Zn =3 em, W(m') = normalization a.k.a. partition function.

» Let M,, be the random planar map distributed by w,. Want to obtain a
"continuum limit" of M, and describe the different phases which appear by
varying the parameters g;.
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Motivation

> For 'nice’ weights the scaling limit is the Brownian map, e.g. ¢; = d; p,
p > 2 (Le Gall 2011), (p = 2: Miermont 2011).

» Scaling limits of random planar maps with large faces
(Le Gall & Miermont '11).

Weights chosen such that the distribution of the degree of a typical face is
in the d.o.a. of a stable distribution with index o € (1,2).

» |s this the whole story?
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Compact metric spaces and Gromov—Hausdorff metric

M = set of all compact metric spaces modulo isometries.

Gromov—Hausdorff metric on M defined as
dou (X1, X2) = inf {dif (41(X1), $2(X2)) : Y, ¢1, 62}

= o

} //¢>2
P

» Infimum is over all metric spaces Y and all isometric embeddings ¢1, ¢o of
X1,X5 resp. into Y.

» dY is the Hausdorff metric on the set of compact subsets in ¥’

dy(U,V) =inf{e >0 : V CU®and U C V¢}.

» U¢ = J,cpy Be(u) is the € neighbourhood of U.
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Convergence of random planar maps - scaling limit

» Denote the graph metric on M, by d,

— dp(z,y) = smallest number of edges in a path connecting = and y.

> View (M,,n"%d,) as a random element in M where a > 0.

> Question: For a given weight sequence (g;);, does there exist an a > 0
such that (M,,n ?d,) has an interesting limit in (M, dgu) as n — co?
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The phase diagram of the random planar maps

Brownian map Critical line
dim =4

2 <dim <4

(Marckert)

Brownian tree
dim = 2

Y

(Qi)iZI
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Aldous’ Brownian tree

Let e be a standard Brownian excursion on [0, 1], i.e. a standard Brownian

motion on [0, 1] conditioned on being nonnegative on (0, 1) and on taking the
value 0 at 1.

—_— P
—_— P
—_— P

For s,t € [0,1], s < ¢, define

de(s,t) = e(s) +e(t) —2 s<i%f<t e(u).

The Brownian tree is defined as 7¢ = [0, 1] /{6 = 0} and we let &, be the
induced distance on the quotient.
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Mobiles and the Bouttier-Di Francesco-Guitter bijection

» Consider a rooted plane tree T, having n edges. (T}, € Trees,)

Colour the vertices of even generations white and the vertices of odd
generations black.

V°(T,) set of white vertices.
V*(T,) set of black vertices.

> Assign integer labels £,(v) to the
white vertices v € V°(Ty,)

(1) The root has label 0.

2121 2122

(2) The labels of white vertices
neighbouring any given black
vertex can decrease at most
by one in clockwise order.

» Call these labelled trees mobiles.
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Mobiles and the Bouttier-Di Francesco-Guitter bijection

» Let Mob,, be the set of mobiles having n edges.
> There is a bijection $,, : Mob,, x {-1,1} — M,, (BDG 2004).
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Mobiles and the Bouttier-Di Francesco-Guitter bijection

» Let Mob,, be the set of mobiles having n edges.
> There is a bijection $,, : Mob,, x {-1,1} — M,, (BDG 2004).

> dy(p,v) = £,(v) — min,{€,(w)} +1 (0—-(-2)4+1=3)
> Black vertices «+» faces in map , deg(e) = deg(f/2).

> White vertices +> vertices in map. 1o/



Random mobiles

Image of u, by the BDG bijection:

1. Select a plane tree T, having n edges with relative probability

~ deg(v) —
W(T,) = H (2de:((v))— 11) H Qdeg(v) = H Wdeg(v)

vEV*(T,) vEV*(T,) VeV (Ty)

f ways to assign valid labels to T,

where w; 1= g; (2;:11).
2. Given Ty, select a labeling (£, (v))veve(r,) with uniform probability.

3. Select an element € from {—1, 1} with uniform probability.
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Random mobiles

Image of u, by the BDG bijection:

1. Select a plane tree T, having n edges with relative probability

~ deg(v) —
W(T,) = H (Qde:(i))— 11) H Qdeg(v) = H Wdeg(v)

vEV*(T,) vEV*(T,) VeV (Ty)

f ways to assign valid labels to T,

2i—1) )

where w; 1= Qi(i,l

2. Given Ty, select a labeling (£, (v))veve(r,) with uniform probability.

3. Select an element € from {—1, 1} with uniform probability.

> Note: ((fn(’v))vevo(Tn) | Tn> and € do not depend on the w;'s.

» Therefore, the phase structure of the planar maps distributed by p,, is
determined by the phase structure of trees distributed by

D (Tp) = 22 W (Ty).
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Another bijection

A bijection ¥,, : Trees,, — Trees, (Trees,, = set of trees with n edges)

> Black vertices of degree k are mapped to black vertices of degree k + 1.

» White vertices are mapped to vertices of degree 1.
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v

|
|
|
new root 1
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Another bijection

A bijection ¥,, : Trees,, — Trees, (Trees,, = set of trees with n edges)

new root

> Black vertices of degree k are mapped to black vertices of degree k + 1.

» White vertices are mapped to vertices of degree 1.

The measure 7, on Trees,, is carried to a new measure v, defined by

Un(Ty) = 2271 H Weeg(v
vEV (Ty)

where wg := 1. — simply generated trees (Meir and Moon, 1978).
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Simply generated trees

Let g(z) = Yoo wsa* with radius of convergence p.

For any 7 < p, define the sequence of probabilities

, 1>0 and let m=m(T) = im;.
g(r)”  ~ (") Z

If 7 >0, m; and w; define the same measures v,,:

H abdeg(v)—l _ an+1bn
veT,
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, 1>0 and let m=m(T) = im;.
g(r)”  ~ (") Z

If 7 >0, m; and w; define the same measures v,,:

H abdeg(v)—l _ an+1bn
veT,

The "natural’ choice of 7:

1. Let 7 be the unique number in [0, p] such that m = T:ES)') =1 (critical).

2. If no such solution exists let 7 = p, thus m < 1 (sub—critical).
If m > 0, v, is the distribution of a Galton-Watson tree with offspring prob. ;

conditioned on having n edges.
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Critical vs. sub—critical

i

oy

Size conditioned critical GW tree
with finite variance,

Size conditioned sub-critical GW tree

14 /23



Condensation when m < 1

Let T}, = random tree distributed by v,,.

Theorem (Jonsson and S, 2011)

If m; is sub—critical (0 < m < 1) and m; ~ Ci~® with 8 > 2 and C > 0 then
there is a unique vertex in T}, of maximum degree equal to (1 — m)n + o,(n)
when n — oo .

» For large n the tree T}, can roughly be described as consisting of the large
vertex of degree approximately (1 — m)n from which independent copies of
sub—critical m;—GW trees grow.
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Theorem (Jonsson and S, 2011)

If m; is sub—critical (0 < m < 1) and m; ~ Ci~® with 8 > 2 and C > 0 then
there is a unique vertex in T}, of maximum degree equal to (1 — m)n + o,(n)
when n — oo .

» For large n the tree T}, can roughly be described as consisting of the large
vertex of degree approximately (1 — m)n from which independent copies of
sub—critical m;—GW trees grow.

Theorem (Janson, Jonsson and S, 2011)

If p =m =0 and w; = (n!)® then there is a unique vertex in T}, of maximum
degree equal to n + o,(n) when n — oco.

» The tree T, is now composed of a root of degree approximately n with
very few vertices in lower generations.

Developed further by Janson 2011, Kortchemski, 2012 and Abraham & Delmas, 2013.
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The phases of random planar maps

(1a) m; is critical and has finite variance.
» (T, n Y/2d,) converges weakly in M towards Aldous’ Brownian tree
(Aldous, 1993).
> It is conjectured that (M,,n '/*d,) converges weakly in M towards
the Brownian map. Proved in special (and related) cases (C. Abraham,
Addario-Berry, Albenque, Beltran, Bettinelli, Jacob, Le Gall, Miermont).
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with index a (Duquesne and Le Gall, 2002).
» (M,,n=1/?2d,) converges weakly in M (at least along a
subsequence) towards something different from the Brownian map (Le
Gall and Miermont, 2008).
(2a) m; ~ Ci™P, B > 2, is sub—critical.
» There is no interesting limit of T}, with rescaled d,, in M (Kortchemski,
2012).
» What about M,?
(2b) p =0 and w; = n!*?
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Main results

Theorem (Janson and S, 2012)
If

Ty ~ L(’i)’iiﬁ,
with # > 2 and L(z) slowly varying, is sub—critical (0 < m < 1), or
w; ~ (nh)9,

with & > 0, (thus m = p = 0) then

Recall that a black vertex of large degree corresponds to a face of large degree.
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A planar map with one large face (and a few small)

w; ~ ¢t % and m = 0.66.
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The phase diagram of the random planar maps

Brownian map sy :
dim = 4 (1b) _Critical line

2 <dim <4

(la)

(Marckert)

Brownian tree
(2) (I;,m =2

Y

(Qi)z‘21
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Remark

More examples of non-trees converging towards the Brownian tree:
» Stack triangulations Albenque and Marckert, 2008
» Random planar quadrangulations with a boundary Bettinelli, 2011
» Random dissections Curien, Haas and Kortchemski
» Uniform outerplanar maps Caraceni, 2014
» Random graphs from subcritical classes Panagiotou, Stufler and Weller, 2014

» Random enriched trees, outerplanar maps Stufler, 2015
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Idea of proof

Mobiles with a single black vertex of degree |(1 — m)n|, yield planar maps with
(1 — m)n| edges which are trees:

When the mobile is fixed and the labels chosen uniformly at random from
allowed labelings the maps are distributed as the uniform tree.

Call this random map M and the graph metric d};. According to Aldous’
theorem

(M, (2(1 = m)n)~*/2d}) — (Te, be)
weakly in M.
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Since sub—critical GW processes die out fast the trees growing from the large
vertex will be small (they are even smaller when p = 0) and we can show that

dGH((Mn: dn)r (M:a d:z)) -0

in probability which along with the weak convergence of (M}, ds) completes the
proof.

Collapse with small error

sub-critical
GW
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Thank youl!



