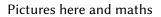
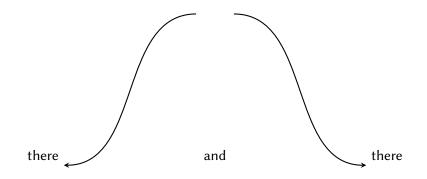
Geometry of large random non-crossing trees

Cyril Marzouk (joint work with Igor Kortchemski)

Universités Paris 6 & Paris 7

9 June 2016





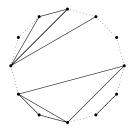


Figure: A non-crossing graph of size 12.

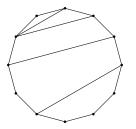


Figure: A dissection

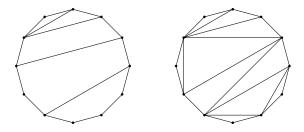


Figure: A dissection, a triangulation

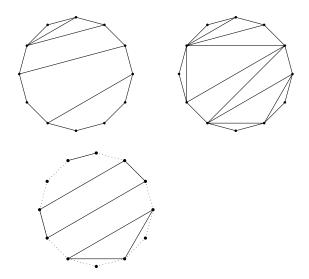


Figure: A dissection, a triangulation, a NC partition

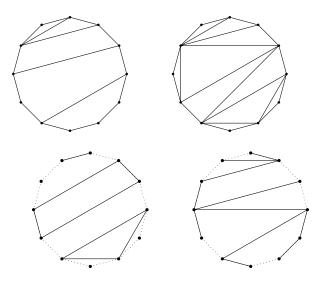


Figure: A dissection, a triangulation, a NC partition and a NC tree of size 12

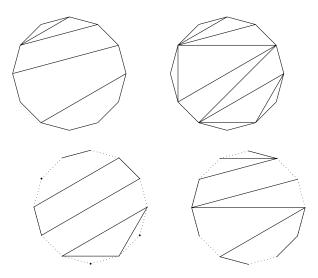


Figure: A dissection, a triangulation, a NC partition and a NC tree of size 12 seen as laminations.

The Brownian triangulation (Aldous '94, Le Gall & Paulin '08)

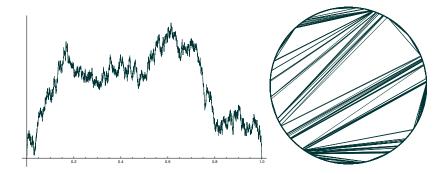


Figure: The Brownian tree & its associated triangulation.

The Brownian triangulation (Aldous '94, Le Gall & Paulin '08)

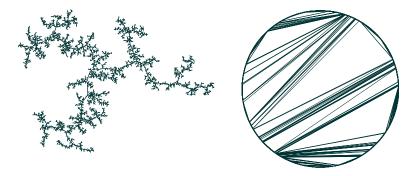


Figure: The Brownian tree & the Brownian triangulation.

Theorem (Kortchemski & \bigcirc '16). Fix $\alpha \in (1, 2]$. There exists a random triangulation of $\overline{\mathbf{D}}$, denoted by Θ_{α} , with Hausdorff dimension $1 + \frac{1}{\alpha}$, such that the following holds. For every sequence w for which there exists a, b > 0 such that the sequence

$$\mu(k) = a \cdot (k+1) \cdot w(k+1) \cdot b^k \qquad (k \ge 0)$$

is a probability measure, with expectation 1 and in the domain of attraction of a stable law with index α , if θ_n is sampled according to \mathbf{P}_n^w , then the convergence in distribution

$$\theta_n \xrightarrow[n \to \infty]{(d)} \Theta_\alpha$$

holds for the Hausdorff distance.

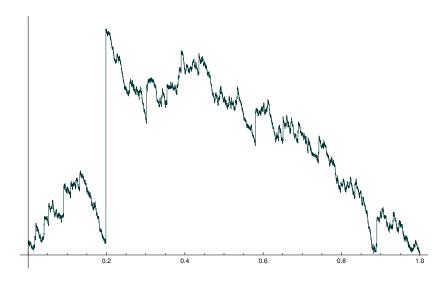


Figure: Simulation of X_{α} for $\alpha = 1.2$.

The stable laminations (Kortchemski '14)



Figure: Simulations of X_{α} and L_{α} for $\alpha = 1,3$.

$$L_{\alpha} = \bigcup_{s,t} \left[e^{-2i\pi s}, e^{-2i\pi t} \right], \quad t = \inf\{u > s : X_{\alpha}(u) \le X_{\alpha}(s-)\}.$$

Triangulating stable laminations (Kortchemski & © '16)

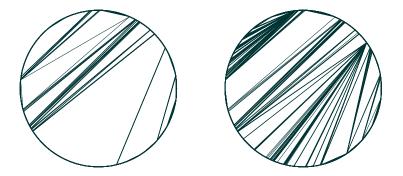


Figure: The lamination L_{α} and the associated triangulation Θ_{α} for $\alpha = 1,2$.

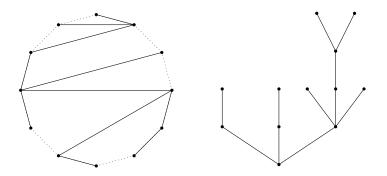


Figure: A NC tree θ and its underlying plane tree $T = S(\theta)$.

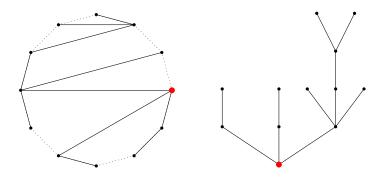


Figure: A NC tree θ and its underlying plane tree $T = S(\theta)$.

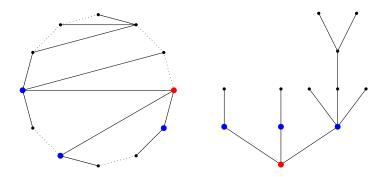


Figure: A NC tree θ and its underlying plane tree $T = S(\theta)$.

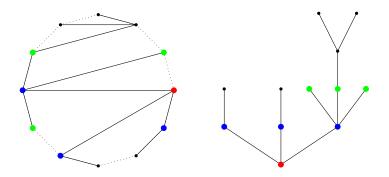


Figure: A NC tree θ and its underlying plane tree $T = S(\theta)$.

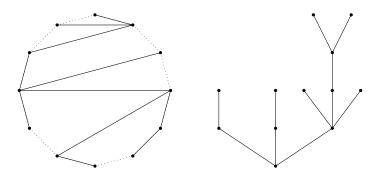


Figure: A NC tree θ and its underlying plane tree $T = S(\theta)$.

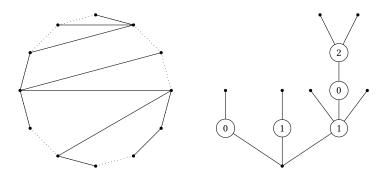


Figure: Bijection between NC trees and labelled plane trees.

Theorem. Assume that

$$\rho := \left(\limsup_{k \to \infty} w(k)^{1/k}\right)^{-1} > 0.$$

Fix $b \in (0, \rho)$ and define two probability measures

$$\begin{cases} \mu(k) = a \cdot (k+1) \cdot w(k+1) \cdot b^k & (k \ge 0), \\ \mu_{\emptyset}(k) = c \cdot w(k) \cdot b^k & (k \ge 1). \end{cases}$$

If θ_n is sampled according to \mathbf{P}_n^w , then $T_n = S(\theta_n)$ is distributed according to $\mathrm{BGW}_n^{\mu_{\emptyset},\mu}$. Moreover, conditional on $T_n = S(\theta_n)$, θ_n is uniformly distributed in the set $\{\theta : S(\theta) = T_n\}$.

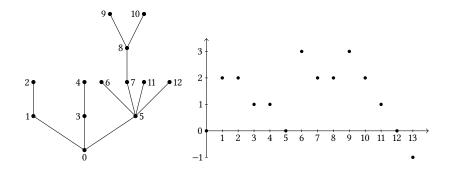


Figure: A plane tree T and its Łukasievicz path W(T).

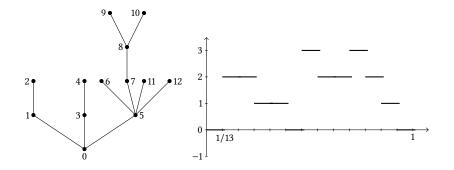


Figure: A plane tree T and its Łukasievicz path W(T).

Theorem. Let μ_{\emptyset} be a probability measure on N with finite mean and μ a probability measure on \mathbb{Z}_+ with mean 1 and in the domain of attraction of a stable law with index $\alpha \in (1, 2]$. For every $n \ge 1$, sample T_n according to BGW^{μ_{\emptyset}, μ_{0}}. We have

$$\frac{1}{B_n} \cdot W(T_n) \quad \xrightarrow[n \to \infty]{(d)} \quad X_{\alpha}$$

for some sequence $B_n \to \infty$ ($B_n \approx n^{1/\alpha}$). In fact,

$$\left(\frac{1}{B_n}W(T_n), \frac{B_n}{n}H(T_n), \frac{B_n}{n}C(T_n)\right) \xrightarrow[n\to\infty]{(d)} (X_\alpha, H_\alpha, H_\alpha).$$

Proposition. Fix $\alpha \in (1, 2]$ and assume that $(T_n; n \ge 1)$ are random plane trees satisfying:

1. there exists $B_n \to \infty$ such that $W(T_n)/B_n \to X_\alpha$ in distribution,

2.
$$\max_{u \in T_n} |u|/n \to 0$$
 in probability.

Given T_n , sample θ_n uniformly at random in $\{\theta : S(\theta) = T_n\}$, then $\theta_n \to \Theta_\alpha$ in distribution. In the case $\alpha = 2$, **all sequences** $(\theta_n; n \ge 1)$ with $S(\theta_n) = T_n$ converge towards $\Theta_2 = \mathfrak{B}$.

Iteration of stable laminations (Kortchemski & © '16)

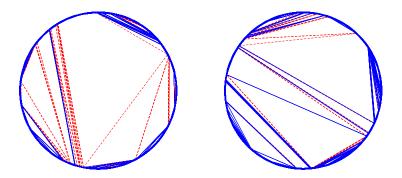


Figure: From left to right: $\beta = 1,4$ laminations iterated inside an $\alpha = 1,1$ lamination, and $\beta = 1,1$ laminations iterated inside an $\alpha = 1,4$ lamination. The chords of the β -stable laminations are in dashed red.