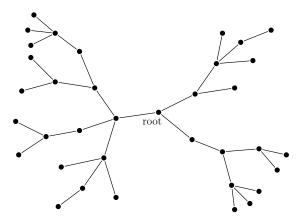
Harmonic measure of balls in critical Galton–Watson trees

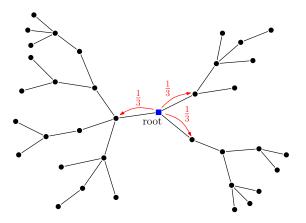
Shen LIN

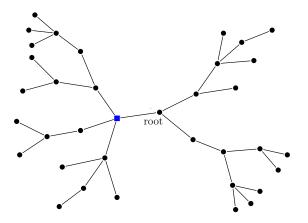
École Normale Supérieure, Paris

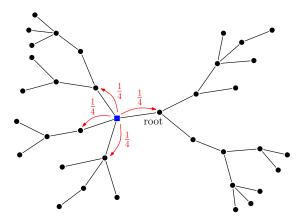
Random Trees and Maps: Probabilistic and Combinatorial Aspects CIRM, Marseille Luminy

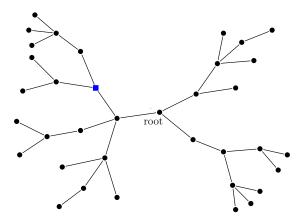
6 June 2016

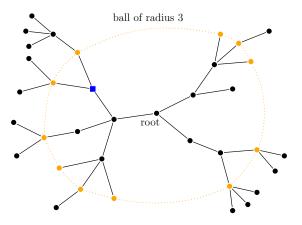


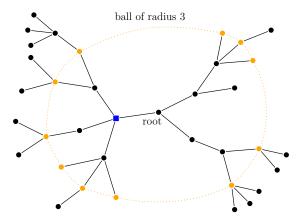


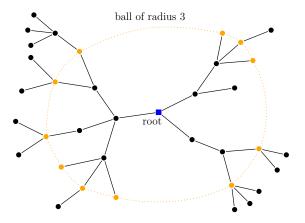


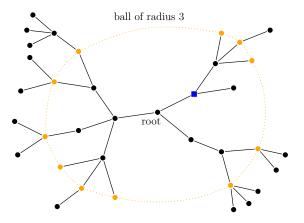


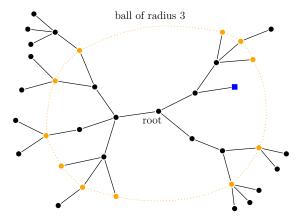


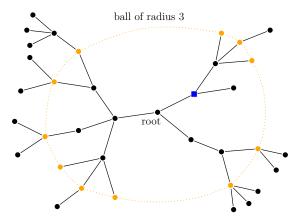


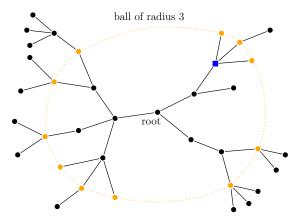


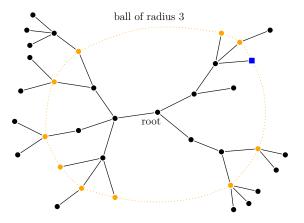




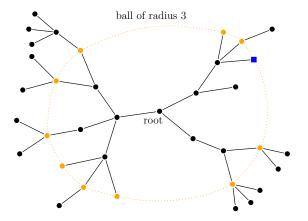








Consider a rooted discrete random tree \mathcal{T} , and a ball in \mathcal{T} centered at the root.



The harmonic measure of the ball is the distribution of the exit point from the ball for SRW started at the root.

Continuous analog in \mathbb{R}^d :

the harmonic measure on the boundary of a domain in \mathbb{R}^d is the exit distribution of Brownian motion started inside the domain.

Continuous analog in \mathbb{R}^d :

the harmonic measure on the boundary of a domain in \mathbb{R}^d is the exit distribution of Brownian motion started inside the domain.

In dimension 2, recall Makarov's theorem:

The harmonic measure on the boundary of a simply connected planar domain is always supported on a subset of Hausdorff dimension 1, regardless of the dimension of the boundary (which may be strictly larger than 1).

Continuous analog in \mathbb{R}^d :

the harmonic measure on the boundary of a domain in \mathbb{R}^d is the exit distribution of Brownian motion started inside the domain.

In dimension 2, recall Makarov's theorem:

The harmonic measure on the boundary of a simply connected planar domain is always supported on a subset of Hausdorff dimension 1, regardless of the dimension of the boundary (which may be strictly larger than 1).

Motivated by a question of T. Jonsson, N. Curien and J.-F. Le Gall (2013) have shown this "dimension drop" phenomenon in the context of discrete combinatorial trees.

Galton-Watson trees

Let θ be a probability measure on $\{0,1,2,\ldots\}$ such that $\theta(1)<1$ and

- $\sum_{k=0}^{\infty} k \, \theta(k) = 1$ (criticality),
- θ is in the domain of attraction of a stable distribution of index $\alpha \in (1,2]$, i.e.

$$\sum_{k>0} \theta(k) r^k = r + (1-r)^{\alpha} L(1-r) \qquad \forall r \in [0,1),$$

where the function L(x) is slowly varying as $x \to 0+$. (If θ has finite variance, then this condition holds with $\alpha = 2$.)

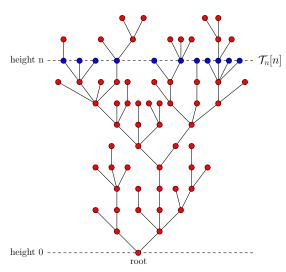
The Galton–Watson tree with offspring distribution θ (in short θ -GW tree) is the genealogical tree of a population starting with one ancestor, where each individual has k children with probability $\theta(k)$. This tree is finite a.s.

Let \mathcal{T}_n be a θ -GW tree conditioned to have height at least n, and

$$\mathcal{T}_n[n] := \{ \text{vertices of } \mathcal{T}_n \text{ at height } n \}.$$

Conditional Galton-Watson trees \mathcal{T}_n

 $T_n = \theta$ -Galton-Watson tree conditioned to have height at least n.

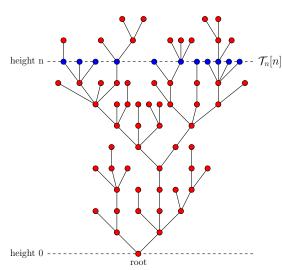


We know that $\#\mathcal{T}_n[n] \approx n^{\frac{1}{\alpha-1}}$. (When θ has finite variance,

$$\frac{1}{n} \# \mathcal{T}_n[n] \xrightarrow[n \to \infty]{\text{(d)}} \operatorname{Exp}(2/\operatorname{var} \theta)).$$

Conditional Galton–Watson trees \mathcal{T}_n

 $\mathcal{T}_n = \theta$ -Galton–Watson tree conditioned to have height at least n.



We know that $\#\mathcal{T}_n[n] \approx n^{\frac{1}{\alpha-1}}$. (When θ has finite variance, $\frac{1}{n}\#\mathcal{T}_n[n] \xrightarrow[n \to \infty]{(d)} \operatorname{Exp}(2/\operatorname{var}\theta)$).

 $\mu_n = \text{distribution of the first}$ hitting point of $\mathcal{T}_n[n]$ by SRW on \mathcal{T}_n started from the root.

Were the harmonic measure uniformly spread over the boundary of the ball of radius n, one would expect $\mu_n(v) \approx n^{-\frac{1}{\alpha-1}}$ for $v \in \mathcal{T}_n[n]$.

Were the harmonic measure uniformly spread over the boundary of the ball of radius n, one would expect $\mu_n(v) \approx n^{-\frac{1}{\alpha-1}}$ for $v \in \mathcal{T}_n[n]$.

Theorem (A)

There exists a constant $\beta_{\alpha} \in (0, \frac{1}{\alpha - 1})$, which only depends on α , such that, for every $\varepsilon > 0$,

$$\mu_n(\{v \in \mathcal{T}_n[n] \colon n^{-\beta_{\alpha}-\varepsilon} \leq \mu_n(v) \leq n^{-\beta_{\alpha}+\varepsilon}\}) \xrightarrow[n \to \infty]{(P)} 1.$$

Moreover, β_{α} remains bounded when $\alpha \downarrow 1$.

Were the harmonic measure uniformly spread over the boundary of the ball of radius n, one would expect $\mu_n(v) \approx n^{-\frac{1}{\alpha-1}}$ for $v \in \mathcal{T}_n[n]$.

Theorem (A)

There exists a constant $\beta_{\alpha} \in (0, \frac{1}{\alpha - 1})$, which only depends on α , such that, for every $\varepsilon > 0$,

$$\mu_n(\{v \in \mathcal{T}_n[n] \colon n^{-\beta_{\alpha}-\varepsilon} \leq \mu_n(v) \leq n^{-\beta_{\alpha}+\varepsilon}\}) \xrightarrow[n \to \infty]{(P)} 1.$$

Moreover, β_{α} remains bounded when $\alpha \downarrow 1$.

Consequences:

• For any $\delta > 0$, there exists with probability $\to 1$ a subset $A \subset \mathcal{T}_n[n]$ s.t.

$$\#A \le n^{\beta_{\alpha}+\varepsilon}$$
 and $\mu_n(A) \ge 1-\delta$.

Conversely,

$$\sup_{A: \#A \leq n^{\beta_{\alpha} - \varepsilon}} \mu_n(A) \xrightarrow[n \to \infty]{(P)} 0.$$

Theorem (A)

There exists a constant $\beta_{\alpha} \in (0, \frac{1}{\alpha - 1})$, which only depends on α , such that, for every $\varepsilon > 0$,

$$\mu_n(\{v \in \mathcal{T}_n[n] \colon n^{-\beta_{\alpha}-\varepsilon} \leq \mu_n(v) \leq n^{-\beta_{\alpha}+\varepsilon}\}) \xrightarrow[n \to \infty]{(P)} 1.$$

Moreover, β_{α} remains bounded when $\alpha \downarrow 1$.

Remarks:

- The preceding theorem was first shown by N. Curien and J.-F. Le Gall (2013) in the case where θ has finite variance.
- R. Lyons, R. Pemantle and Y. Peres (1995,1996): harmonic measure at infinity for supercritical GW trees.

Typical behavior of the harmonic measure μ_n

Let Ω_n be a random vertex uniformly chosen from $\mathcal{T}_n[n]$.

Typical behavior of the harmonic measure μ_n

Let Ω_n be a random vertex uniformly chosen from $\mathcal{T}_n[n]$.

Theorem (B)

There exists a constant $\lambda_{\alpha} > \frac{1}{\alpha-1}$, which only depends on α , such that, for every $\varepsilon > 0$,

$$P(n^{-\lambda_{\alpha}-\varepsilon} \leq \mu_n(\Omega_n) \leq n^{-\lambda_{\alpha}+\varepsilon}) \underset{n \to \infty}{\longrightarrow} 1.$$

Typical behavior of the harmonic measure μ_n

Let Ω_n be a random vertex uniformly chosen from $\mathcal{T}_n[n]$.

Theorem (B)

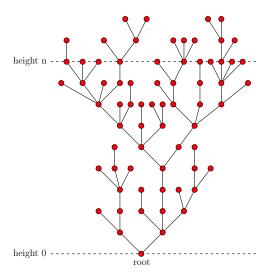
There exists a constant $\lambda_{\alpha} > \frac{1}{\alpha-1}$, which only depends on α , such that, for every $\varepsilon > 0$,

$$P(n^{-\lambda_{\alpha}-\varepsilon} \leq \mu_n(\Omega_n) \leq n^{-\lambda_{\alpha}+\varepsilon}) \underset{n \to \infty}{\longrightarrow} 1.$$

Moreover, λ_{α} is decreasing for all $\alpha \in (1,2]$, and we have

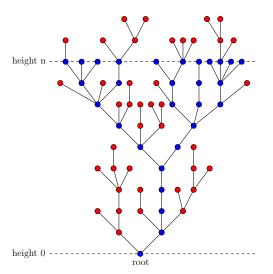
$$0< \liminf_{\alpha\downarrow 1}(\alpha-1)\lambda_{\alpha} \leq \limsup_{\alpha\downarrow 1}(\alpha-1)\lambda_{\alpha}<\infty.$$

Key idea: consider reduced trees.



 $T_n = GW$ tree conditioned to have height at least n

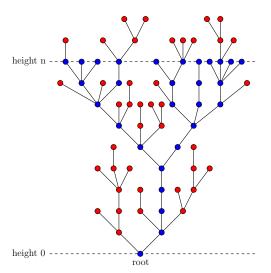
Key idea: consider reduced trees.



 $T_n = GW$ tree conditioned to have height at least n

 $\mathcal{T}_n^* = \{ \text{vertices of } \mathcal{T}_n \text{ having descendants at height } n \}$

Key idea: consider reduced trees.

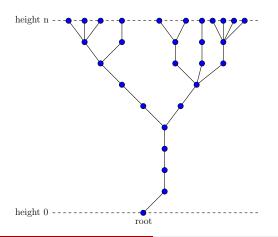


 $T_n = GW$ tree conditioned to have height at least n

 $\mathcal{T}_n^* = \{ \text{vertices of } \mathcal{T}_n \text{ having descendants at height } n \}$

The hitting distribution of $\mathcal{T}_n[n]$ is the same for SRW on \mathcal{T}_n^* as for SRW on \mathcal{T}_n .

Key idea: consider reduced trees.



 $T_n = GW$ tree conditioned to have height at least n

 $\mathcal{T}_n^* = \{ \text{vertices of } \mathcal{T}_n \text{ having descendants at height } n \}$

The hitting distribution of $\mathcal{T}_n[n]$ is the same for SRW on \mathcal{T}_n^* as for SRW on \mathcal{T}_n .

Notation:

 $d_{
m gr}$ graph distance on \mathcal{T}_n^*

Asymptotics for reduced critical GW trees: Zubkov (1975), Fleischmann & Siegmund-Schultze (1977), Vatutin (1977), Yakymiv (1980)

 $(\mathcal{T}_n^*, \frac{1}{n}d_{\mathrm{gr}}) \xrightarrow{\mathrm{(d)}} (\Delta^{(\alpha)}, \mathbf{d})$ in the Gromov–Hausdorff sense.

The compact \mathbb{R} -tree $(\Delta^{(\alpha)}, \mathbf{d})$ is called the reduced stable tree of index α .

Asymptotics for reduced critical GW trees: Zubkov (1975), Fleischmann & Siegmund-Schultze (1977), Vatutin (1977), Yakymiv (1980)

$$(\mathcal{T}_n^*, \tfrac{1}{n} d_{\operatorname{gr}}) \xrightarrow[n \to \infty]{\operatorname{(d)}} (\Delta^{(\alpha)}, \mathbf{d}) \text{ in the Gromov-Hausdorff sense.}$$

The compact \mathbb{R} -tree $(\Delta^{(\alpha)}, \mathbf{d})$ is called the reduced stable tree of index α .

to ρ_{α} , whose generating function is $\sum_{k\geq 0}\rho_{\alpha}(k)r^k=\frac{(1-r)^{\alpha}-1+\alpha r}{\alpha-1}.$ NB: $\rho_2=\delta_2$ (only binary branching !). height 0 -----

The offspring number is distributed according to ρ_{α} , whose generating function is

$$\sum_{k\geq 0} \rho_{\alpha}(k) r^{k} = \frac{(1-r)^{\alpha} - 1 + \alpha r}{\alpha - 1}$$

Asymptotics for reduced critical GW trees: Zubkov (1975), Fleischmann & Siegmund-Schultze (1977), Vatutin (1977), Yakymiv (1980)

$$(\mathcal{T}_n^*, \tfrac{1}{n} d_{\operatorname{gr}}) \xrightarrow[n \to \infty]{\operatorname{(d)}} (\Delta^{(\alpha)}, \operatorname{\mathbf{d}}) \text{ in the Gromov-Hausdorff sense.}$$
 The compact \mathbb{R} -tree $(\Delta^{(\alpha)}, \operatorname{\mathbf{d}})$ is called the reduced stable tree of index α .

to ρ_{α} , whose generating function ... $\sum_{k\geq 0} \rho_{\alpha}(k) r^k = \frac{(1-r)^{\alpha}-1+\alpha r}{\alpha-1}.$ $V_{11} \qquad V_{12} \qquad V_{21} \qquad V_{22} \qquad V_{23}$ $V_{21} \qquad V_{22} \qquad V_{23} \qquad V_{23} \qquad V_{24} \qquad V_{25} \qquad V_{25}$ height 0 - -

The offspring number is distributed according

$$\sum_{k\geq 0} \rho_{\alpha}(k) r^{k} = \frac{(1-r)^{\alpha} - 1 + \alpha r}{\alpha - 1}$$

 U_{11}, U_{12} uniform on $[0, 1 - U_{\varnothing} - U_{1}],$

 U_{21}, U_{22}, U_{23} uniform on $[0, 1 - U_{\varnothing} - U_{2}]$, etc.

Asymptotics for reduced critical GW trees: Zubkov (1975), Fleischmann & Siegmund-Schultze (1977), Vatutin (1977), Yakymiv (1980)

$$(\mathcal{T}_n^*, \frac{1}{n}d_{\operatorname{gr}}) \stackrel{\operatorname{(d)}}{\underset{n \to \infty}{\longrightarrow}} (\Delta^{(\alpha)}, \mathbf{d})$$
 in the Gromov–Hausdorff sense.

The compact \mathbb{R} -tree $(\Delta^{(\alpha)}, \mathbf{d})$ is called the reduced stable tree of index α .

to ρ_{α} , whose generating function \mathbb{R} $\sum_{k\geq 0} \rho_{\alpha}(k) r^k = \frac{(1-r)^{\alpha}-1+\alpha r}{\alpha-1}.$ $V_{11} \qquad V_{12} \qquad V_{22} \qquad V_{23}$ $V_{23} \qquad \text{NB: } \rho_2 = \delta_2 \text{ (only binary branching !)}.$ $V_{\varnothing} \text{ uniform on } [0,1],$ $V_{1}, V_{2} \text{ uniform on } [0,1-U_{\varnothing}],$ $V_{1} \qquad \text{uniform on } [0,1-U_{\varnothing}],$ $V_{2} \qquad \text{uniform on } [0,1-U_{\varnothing}],$ height 0 - -

The offspring number is distributed according

$$\sum_{k\geq 0} \rho_{\alpha}(k) r^{k} = \frac{(1-r)^{\alpha} - 1 + \alpha r}{\alpha - 1}$$

 U_{11}, U_{12} uniform on $[0, 1 - U_{\varnothing} - U_{1}],$

 U_{21}, U_{22}, U_{23} uniform on $[0, 1 - U_{\varnothing} - U_{2}]$, etc.

d is the natural tree metric.

$$\partial \Delta^{(\alpha)} := \{ x \in \Delta^{(\alpha)} : \mathbf{d}(\emptyset, x) = 1 \}.$$

Let $(B_t)_{t\geq 0}$ be Brownian motion on $\Delta^{(\alpha)}$, started from the root, defined up to the hitting time $T:=\inf\{t\geq 0\colon B_t\in\partial\Delta^{(\alpha)}\}.$

- B is reflected at the root of $\Delta^{(\alpha)}$;
- inside a line segment, B moves around as a standard linear Brownian motion;
- at each branching point, B picks one of the directions uniformly at random.

Let $(B_t)_{t\geq 0}$ be Brownian motion on $\Delta^{(\alpha)}$, started from the root, defined up to the hitting time $T:=\inf\{t\geq 0\colon B_t\in\partial\Delta^{(\alpha)}\}.$

- *B* is reflected at the root of $\Delta^{(\alpha)}$;
- inside a line segment, B moves around as a standard linear Brownian motion;
- at each branching point, B picks one of the directions uniformly at random.

Let μ_{α} be the law of B_{T-} (harmonic measure on $\partial \Delta^{(\alpha)}$).

Let $(B_t)_{t\geq 0}$ be Brownian motion on $\Delta^{(\alpha)}$, started from the root, defined up to the hitting time $T:=\inf\{t\geq 0\colon B_t\in\partial\Delta^{(\alpha)}\}.$

- *B* is reflected at the root of $\Delta^{(\alpha)}$;
- inside a line segment, B moves around as a standard linear Brownian motion;
- at each branching point, B picks one of the directions uniformly at random.

Let μ_{α} be the law of B_{T-} (harmonic measure on $\partial \Delta^{(\alpha)}$).

Let $(B_t)_{t\geq 0}$ be Brownian motion on $\Delta^{(\alpha)}$, started from the root, defined up to the hitting time $T:=\inf\{t\geq 0\colon B_t\in\partial\Delta^{(\alpha)}\}.$

- B is reflected at the root of $\Delta^{(\alpha)}$:
- ullet inside a line segment, B moves around as a standard linear Brownian motion;
- at each branching point, B picks one of the directions uniformly at random.

Let μ_{α} be the law of B_{T-} (harmonic measure on $\partial \Delta^{(\alpha)}$).

Theorem (C)

For every $\alpha \in (1,2]$, with the same constant β_{α} as in Theorem (A), we have a.s. $\mu_{\alpha}(\mathrm{d}x)$ -a.e.

$$\lim_{r\downarrow 0}\frac{\log \mu_{\alpha}(\mathcal{B}_{\mathbf{d}}(x,r))}{\log r}=\beta_{\alpha}.$$

In particular, the Hausdorff dimension of μ_{α} is a.s. equal to β_{α} .

Let $(B_t)_{t\geq 0}$ be Brownian motion on $\Delta^{(\alpha)}$, started from the root, defined up to the hitting time $T:=\inf\{t\geq 0\colon B_t\in\partial\Delta^{(\alpha)}\}.$

- B is reflected at the root of $\Delta^{(\alpha)}$:
- inside a line segment, B moves around as a standard linear Brownian motion;
- at each branching point, B picks one of the directions uniformly at random.

Let μ_{α} be the law of B_{T-} (harmonic measure on $\partial \Delta^{(\alpha)}$).

Theorem (C)

For every $\alpha \in (1,2]$, with the same constant β_{α} as in Theorem (A), we have a.s. $\mu_{\alpha}(\mathrm{d}x)$ -a.e.

$$\lim_{r\downarrow 0}\frac{\log \mu_{\alpha}(\mathcal{B}_{\mathbf{d}}(x,r))}{\log r}=\beta_{\alpha}.$$

In particular, the Hausdorff dimension of μ_{α} is a.s. equal to β_{α} .

Note: $\dim \partial \Delta^{(\alpha)} = \frac{1}{\alpha - 1}$ a.s. (dimension drop as in Makarov's theorem)

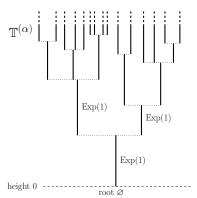
Continuous-time Galton-Watson tree

Applying to the precompact tree $\Delta_0^{(lpha)}$ the height transform

$$\Psi(r) = -\log(1-r), \qquad r \in [0,1),$$

we get a continuous-time GW tree $\mathbb{T}^{(\alpha)}$ = genealogical tree of a population where

- independently of each other, every individual has a random lifetime $\operatorname{Exp}(1)$;
- every individual has k children with probability $\rho_{\alpha}(k)$.



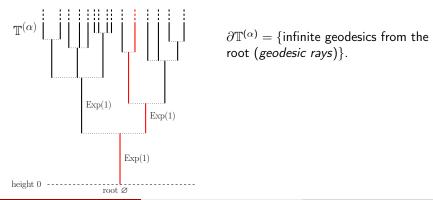
Continuous-time Galton-Watson tree

Applying to the precompact tree $\Delta_0^{(\alpha)}$ the height transform

$$\Psi(r) = -\log(1-r), \qquad r \in [0,1),$$

we get a continuous-time GW tree $\mathbb{T}^{(\alpha)}$ = genealogical tree of a population where

- independently of each other, every individual has a random lifetime Exp(1);
- every individual has k children with probability $\rho_{\alpha}(k)$.



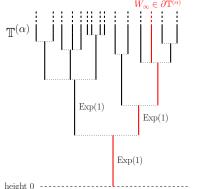
Continuous-time Galton-Watson tree

Applying to the precompact tree $\Delta_0^{(lpha)}$ the height transform

$$\Psi(r) = -\log(1-r), \qquad r \in [0,1),$$

we get a continuous-time GW tree $\mathbb{T}^{(\alpha)}=$ genealogical tree of a population where

- independently of each other, every individual has a random lifetime $\mathrm{Exp}(1)$;
- every individual has k children with probability $\rho_{\alpha}(k)$.



 $\partial \mathbb{T}^{(\alpha)} = \{ \text{infinite geodesics from the root } (\text{geodesic rays}) \}.$

B Brownian motion on $\Delta^{(\alpha)} \stackrel{\Psi}{\longrightarrow}$

W BM on $\mathbb{T}^{(\alpha)}$ with drift 1/2 upwards.

We define W_{∞} the exit ray of W as the unique ray visited by W at arbitrarily large times.

Asymptotics for the law of the exit ray

Write

$$\nu_{\alpha} = \text{ law of } W_{\infty} \text{ (probability measure on } \partial \mathbb{T}^{(\alpha)} \text{)}.$$

Fact: $\nu_{\alpha} = \mu_{\alpha}$ si we identify $\partial \mathbb{T}^{(\alpha)}$ and $\partial \Delta^{(\alpha)}$ via Ψ .

Asymptotics for the law of the exit ray

Write

$$\nu_{\alpha} = \text{ law of } W_{\infty} \text{ (probability measure on } \partial \mathbb{T}^{(\alpha)} \text{)}.$$

Fact: $\nu_{\alpha} = \mu_{\alpha}$ si we identify $\partial \mathbb{T}^{(\alpha)}$ and $\partial \Delta^{(\alpha)}$ via Ψ .

For
$$y \in \partial \mathbb{T}^{(\alpha)}$$
 and $r > 0$, let

$$\mathcal{B}(y,r) = \{\text{geodesic rays that coincide with } y \text{ up to height } r\}.$$

An equivalent form of Theorem (C) is

A.s.
$$\nu_{\alpha}(\mathrm{d}y)$$
-a.e. $\lim_{r \to \infty} \frac{1}{r} \log \nu_{\alpha}(\mathcal{B}(y,r)) = -\beta_{\alpha}$.

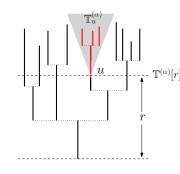
Uniform measures on $\partial \mathbb{T}^{(\alpha)}$ and $\partial \Delta^{(\alpha)}$

Notation:

For all
$$u \in \mathbb{T}^{(\alpha)}$$
, $H(u) = \text{height of } u$.
 $\forall r > 0$, $\mathbb{T}^{(\alpha)}[r] = \{u \in \mathbb{T}^{(\alpha)} : H(u) = r\}$.

The martingale limit

$$\mathcal{W}^{(\alpha)} := \lim_{r \to \infty} e^{-\frac{r}{\alpha - 1}} \# \mathbb{T}^{(\alpha)}[r] > 0$$
 a.s.



Uniform measures on $\partial \mathbb{T}^{(\alpha)}$ and $\partial \Delta^{(\alpha)}$

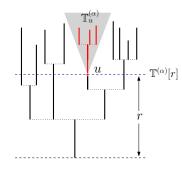
Notation:

For all
$$u \in \mathbb{T}^{(\alpha)}$$
, $H(u) = \text{height of } u$.
 $\forall r > 0$, $\mathbb{T}^{(\alpha)}[r] = \{u \in \mathbb{T}^{(\alpha)} : H(u) = r\}$.

The martingale limit

$$\mathcal{W}^{(\alpha)} := \lim_{r \to \infty} e^{-\frac{r}{\alpha - 1}} \# \mathbb{T}^{(\alpha)}[r] > 0 \text{ a.s.}$$

Let $\mathbb{T}_u^{(\alpha)}$ be the descendant tree of u. Also set $\mathcal{W}_u^{(\alpha)} := \lim_{n \to \infty} e^{-\frac{r}{\alpha-1}} \# \mathbb{T}_u^{(\alpha)}[r]$.



Uniform measures on $\partial \mathbb{T}^{(\alpha)}$ and $\partial \Delta^{(\alpha)}$

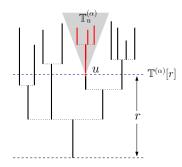
Notation:

For all
$$u \in \mathbb{T}^{(\alpha)}$$
, $H(u) = \text{height of } u$.
 $\forall r > 0$, $\mathbb{T}^{(\alpha)}[r] = \{u \in \mathbb{T}^{(\alpha)} : H(u) = r\}$.

The martingale limit

$$\mathcal{W}^{(\alpha)} := \lim_{r \to \infty} e^{-\frac{r}{\alpha - 1}} \# \mathbb{T}^{(\alpha)}[r] > 0 \text{ a.s.}$$

Let $\mathbb{T}_u^{(\alpha)}$ be the descendant tree of u. Also set $\mathcal{W}_u^{(\alpha)} := \lim_{n \to \infty} e^{-\frac{r}{\alpha-1}} \# \mathbb{T}_u^{(\alpha)}[r]$.

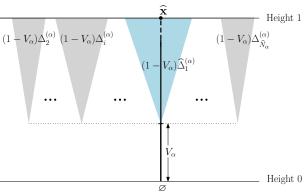


The uniform measure $\bar{\omega}_{\alpha}$ on $\partial \mathbb{T}^{(\alpha)}$ is the unique probability measure on $\partial \mathbb{T}^{(\alpha)}$ s.t. for every $u \in \mathbb{T}^{(\alpha)}$ and for every $y \in \partial \mathbb{T}^{(\alpha)}$ passing through u,

$$\bar{\omega}_{\alpha}(\mathcal{B}(y,H(u))) = e^{-\frac{H(u)}{\alpha-1}} \frac{\mathcal{W}_{u}^{(\alpha)}}{\mathcal{W}^{(\alpha)}}.$$

The uniform measure ω_{α} on $\partial \Delta^{(\alpha)}$ is the probability measure on $\partial \Delta^{(\alpha)}$ induced by $\bar{\omega}_{\alpha}$ via Ψ .

Size-biased reduced tree $\widehat{\Delta}^{(\alpha)}$



- V_{α} has density $\frac{\alpha}{\alpha-1}(1-x)^{\frac{1}{\alpha-1}}$ over [0,1],
- $\widehat{\Delta}_{1}^{(\alpha)}$ is an independent copy of $\widehat{\Delta}^{(\alpha)}$, $(\Delta_{i}^{(\alpha)})_{i\geq 2}$ are i.i.d. copies of $\Delta^{(\alpha)}$,
- \widehat{N}_{α} has the size-biased distribution of ρ_{α} .

 $\widehat{\Delta}^{(\alpha)}$ follows the law of $\Delta^{(\alpha)}$ biased by $\mathcal{W}^{(\alpha)}$, with $\widehat{\mathbf{x}}$ distributed according to ω_{α} .

Typical behavior of the harmonic measure μ_{α}

Theorem (D)

For every $\alpha \in (1,2]$, with the same constant λ_{α} as in Theorem (B), we have a.s. $\omega_{\alpha}(\mathrm{d}x)$ -a.e.

$$\begin{split} &\lim_{r\downarrow 0} \frac{\log \mu_{\alpha}(\mathcal{B}_{\mathbf{d}}(\mathbf{x},r))}{\log r} = \lambda_{\alpha}, \\ &\lim_{r\downarrow 0} \frac{\log \omega_{\alpha}(\mathcal{B}_{\mathbf{d}}(\mathbf{x},r))}{\log r} = \frac{1}{\alpha-1}. \end{split}$$

Typical behavior of the harmonic measure μ_{α}

Theorem (D)

For every $\alpha \in (1,2]$, with the same constant λ_{α} as in Theorem (B), we have a.s. $\omega_{\alpha}(\mathrm{d}x)$ -a.e.

$$\begin{split} & \lim_{r \downarrow 0} \frac{\log \mu_{\alpha}(\mathcal{B}_{\mathbf{d}}(\mathbf{x},r))}{\log r} = \lambda_{\alpha}, \\ & \lim_{r \downarrow 0} \frac{\log \omega_{\alpha}(\mathcal{B}_{\mathbf{d}}(\mathbf{x},r))}{\log r} = \frac{1}{\alpha - 1}. \end{split}$$

End of the talk: give explicit formulae for β_{α} and λ_{α} .

3. Conductance of random trees

View $\Delta^{(\alpha)}$ as an electric network of resistors with unit resistance per unit length. Let $\mathcal{C}^{(\alpha)} \in [1, \infty)$ be the effective conductance between the root and $\partial \Delta^{(\alpha)}$.

3. Conductance of random trees

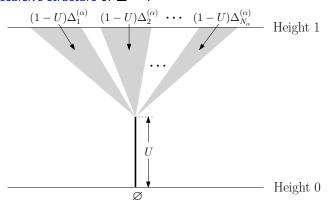
View $\Delta^{(\alpha)}$ as an electric network of resistors with unit resistance per unit length. Let $\mathcal{C}^{(\alpha)} \in [1, \infty)$ be the effective conductance between the root and $\partial \Delta^{(\alpha)}$. Similarly, let $\widehat{\mathcal{C}}^{(\alpha)} \in [1, \infty)$ be the effective conductance of $\widehat{\Delta}^{(\alpha)}$ between its root and height 1. (**NB**: $\widehat{C}^{(\alpha)}$ follows the law of $C^{(\alpha)}$ biased by $W^{(\alpha)}$.)

3. Conductance of random trees

View $\Delta^{(\alpha)}$ as an electric network of resistors with unit resistance per unit length. Let $\mathcal{C}^{(\alpha)} \in [1, \infty)$ be the effective conductance between the root and $\partial \Delta^{(\alpha)}$.

Similarly, let $\widehat{\mathcal{C}}^{(\alpha)} \in [1, \infty)$ be the effective conductance of $\widehat{\Delta}^{(\alpha)}$ between its root and height 1. (**NB**: $\widehat{\mathcal{C}}^{(\alpha)}$ follows the law of $\mathcal{C}^{(\alpha)}$ biased by $\mathcal{W}^{(\alpha)}$.)

Recall the recursive structure of $\Delta^{(\alpha)}$:



The law of the conductances

The law of $\mathcal{C}^{(\alpha)}$ is characterized by the recursive equation in distribution

$$C^{(\alpha)} \stackrel{\text{(d)}}{=} \left(U + \frac{1 - U}{C_1^{(\alpha)} + C_2^{(\alpha)} + \dots + C_{N_{\alpha}}^{(\alpha)}} \right)^{-1},$$

where

- *U* is uniform over [0, 1],
- $(\mathcal{C}_i^{(\alpha)})_{i>1}$ are i.i.d. copies of $\mathcal{C}^{(\alpha)}$,
- N_{α} is distributed according to ρ_{α} ,
- $U, (C_i^{(\alpha)})_{i \geq 1}, N_{\alpha}$ are independent.

The law of the conductances

The law of $\mathcal{C}^{(\alpha)}$ is characterized by the recursive equation in distribution

$$C^{(\alpha)} \stackrel{\text{(d)}}{=} \left(U + \frac{1 - U}{C_1^{(\alpha)} + C_2^{(\alpha)} + \dots + C_{N_{\alpha}}^{(\alpha)}} \right)^{-1},$$

where

• *U* is uniform over [0, 1],

- N_{α} is distributed according to ρ_{α} ,
- $(\mathcal{C}_i^{(\alpha)})_{i>1}$ are i.i.d. copies of $\mathcal{C}^{(\alpha)}$, $U, (\mathcal{C}_i^{(\alpha)})_{i>1}, N_{\alpha}$ are independent.

Similarly, the law of $\widehat{\mathcal{C}}^{(\alpha)}$ is characterized by the recursive equation in distribution

$$\widehat{\mathcal{C}}^{(\alpha)} \stackrel{\text{(d)}}{=\!\!\!=} \left(V_{\alpha} + \frac{1 - V_{\alpha}}{\widehat{\mathcal{C}}^{(\alpha)} + \mathcal{C}_{2}^{(\alpha)} + \cdots + \mathcal{C}_{\widehat{N}}^{(\alpha)}} \right)^{-1},$$

- V_{α} has density $\frac{\alpha}{\alpha-1}(1-x)^{\frac{1}{\alpha-1}}$ over [0,1],
- \widehat{N}_{α} has the size-biased distribution of ρ_{α} .

Formulae for β_{α} and λ_{α}

Theorem (E)

• The constant $\beta_{\alpha} \in (0, \frac{1}{\alpha - 1})$ is given by

$$\beta_{\alpha} = \frac{1}{2} \left(\frac{E[\mathcal{C}_{1}^{(\alpha)}]^{2}}{E\left[\frac{\mathcal{C}_{1}^{(\alpha)}\mathcal{C}_{2}^{(\alpha)}}{\mathcal{C}_{1}^{(\alpha)} + \mathcal{C}_{2}^{(\alpha)} - 1}\right]} - 1 \right),$$

where $C_1^{(\alpha)}$ and $C_2^{(\alpha)}$ are two i.i.d. copies of $C^{(\alpha)}$.

Formulae for β_{α} and λ_{α}

Theorem (E)

• The constant $\beta_{\alpha} \in (0, \frac{1}{\alpha - 1})$ is given by

$$\beta_{\alpha} = \frac{1}{2} \left(\frac{E[\mathcal{C}_{\mathbf{1}}^{(\alpha)}]^2}{E\left[\frac{\mathcal{C}_{\mathbf{1}}^{(\alpha)}\mathcal{C}_{\mathbf{2}}^{(\alpha)}}{\mathcal{C}_{\mathbf{1}}^{(\alpha)} + \mathcal{C}_{\mathbf{2}}^{(\alpha)} - 1}\right]} - 1 \right),$$

where $C_1^{(\alpha)}$ and $C_2^{(\alpha)}$ are two i.i.d. copies of $C^{(\alpha)}$.

• The constant $\lambda_{\alpha} \in (\frac{1}{\alpha-1}, \infty)$ is given by

$$\lambda_{\alpha} = E[\widehat{C}^{(\alpha)}] - 1 = E[\mathcal{W}^{(\alpha)}C^{(\alpha)}] - 1.$$

4. Questions

State of art : $\exists\, 0<\beta_{\alpha}<\frac{1}{\alpha-1}<\lambda_{\alpha}$ satisfying that

$$\begin{split} \#\{v \in \mathcal{T}_n[n] \colon \mu_n(v) &\approx n^{-\beta_{\alpha}}\} \approx n^{\beta_{\alpha}} \,, \\ \#\{v \in \mathcal{T}_n[n] \colon \mu_n(v) &\approx n^{-\lambda_{\alpha}}\} \approx n^{1/(\alpha-1)} \,. \end{split}$$

4. Questions

State of art : $\exists \, 0 < \beta_{\alpha} < \frac{1}{\alpha - 1} < \lambda_{\alpha}$ satisfying that

$$\#\{v \in \mathcal{T}_n[n] \colon \mu_n(v) \approx n^{-\beta_{\alpha}}\} \approx n^{\beta_{\alpha}},$$

$$\#\{v \in \mathcal{T}_n[n] \colon \mu_n(v) \approx n^{-\lambda_{\alpha}}\} \approx n^{1/(\alpha-1)}.$$

Open problems:

• Full multifractal spectrum of harmonic measure ? For every $\eta > 0$, can we find $c_{\alpha}(\eta) \leq \frac{1}{\alpha-1} \wedge \eta$ such that

$$\#\{v\in\mathcal{T}_n[n]\colon \mu_n(v)\approx n^{-\eta}\}\approx n^{c_{\alpha}(\eta)}$$
?

4. Questions

State of art : $\exists 0 < \beta_{\alpha} < \frac{1}{\alpha - 1} < \lambda_{\alpha}$ satisfying that

$$\#\{v \in \mathcal{T}_n[n] \colon \mu_n(v) \approx n^{-\beta_{\alpha}}\} \approx n^{\beta_{\alpha}},$$

$$\#\{v \in \mathcal{T}_n[n] \colon \mu_n(v) \approx n^{-\lambda_{\alpha}}\} \approx n^{1/(\alpha-1)}.$$

Open problems :

• Full multifractal spectrum of harmonic measure ? For every $\eta > 0$, can we find $c_{\alpha}(\eta) \leq \frac{1}{\alpha - 1} \wedge \eta$ such that

$$\#\{v\in\mathcal{T}_n[n]\colon \mu_n(v)\approx n^{-\eta}\}\approx n^{c_\alpha(\eta)}$$
?

• Does the Hausdorff dimension β_{α} increase as $\alpha \downarrow 1$?