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A simple fact

The unique invariant, reversible probability measure is

1n(S)

1
B Zl/v(l fNPN) e

where we define the (signed) area under the interface S



Objective of this work

— Understand the behaviour of the interface according to the
asymmetry py — (1 — ppn).
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Choice of parametrisation
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Scaling limit of the invariant measure

We present a Central Limit Theorem for the interface under py.

To that end, we rescale the interface in the following generic way:

_ SNy~ w0
M) = TR

where ¥V is the mean under py.



Scaling limit of the invariant measure: a > 3/2

Theorem (L.)
For all a € (3/2, c0),

(S\(;%V) . x €0, 1]) = Brownian Bridge




Scaling limit of the invariant measure: a € (1,3/2]

Theorem (L.)
For all o € (1,3/2],

<S(X2N) —ox(1 — x)(2N)%>~«

Jon . x €0, 1]) = Brownian Bridge .

(2n)> e [ o




Scaling limit of the invariant measure: a =1
Theorem (L.)

For all « =1,

(5(X2N) —¥V(x)

,x €[0,1] ) = Time changed Brownian Bridge .
7 )

Sim. to Dobrushin-Hryniv (PTRF 96), Derrida-Enaud-Landim-Olla (JSP 05).

TV(x) = 2N/X (o1 —2y))dy + O1), xe[0,1].



Scaling limit of the invariant measure: o < 1

Theorem (L.)
For all o < 1,

(5(/v + x(2N)*) — TN (x)

(2N)3 X € R) = Time changed Brownian Bridge .
2

—

(2)°

YN(x) = N+ (2N)* (x + /OO(L'(2Uy) - 1)dy) +0(1), xeR.
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What does the dynamical interface (S(t, k), t > 0, k € [0,2N])
look like when it starts from pp ?



Dynamic at equilibrium

What does the dynamical interface (S(t, k), t > 0,k € [0,2N])
look like when it starts from pp ?

e Keep the same scalings in space and height as in the previous
results.

e Speed up time appropriately.



Dynamic at equilibrium: a >1

2 x —0 2-ay(1 — x
uN(t,x) - S(t(2N)?, x2N) \/%QN) (1 ) Cxel].

Theorem (L.)

Start from pupy. Then, u™V = u where

Oeu=202u+¢, x €[0,1]
u(t,0) = u(t,1) =0,

and & space-time white noise.




Dynamic at equilibrium: o =1

e ) o STERNX2N) — T(x)

x €1[0,1] .

Theorem (L.)

Start from ppy. Then, vV = u where

{8tu = 1020 — 208, T10,u + /1 — (0,21)2E, x € [0,1]

u(t,0) = u(t,1) =0,

and £ space-time white noise, and £;(-) = limy ):é"l\(/).

Similar to De Masi-Presutti-Scacciatelli (Ann. IHP 89), Dittrich-Gartner (MN 91).



Dynamic at equilibrium: a <1

S((2N)2®, N + x(2N)*) — TN (x)

N —
u(t,x) = 2N)

Theorem (L.)

Start from ppy. Then, uN = u where

Ol = %ﬁiu — 20 0xLo0xu+ /1 —(0xXa)?¢, xER,

and ¢ space-time white noise, and X, (-) = limy zé’\“lz(,'\z);N.
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Dynamic out of equilibrium

What happens if we start the interface far from equilibrium ?

For instance, if we start from the flat initial condition

We look at:
e the hydrodynamic limit,

e the fluctuations.



Hydrodynamic limit
Set

(£ x) = (2,\,2 =S(t(2N)?, x(2N)) .  «€]1,3/2),
’ A S(t2N)He x(2N)) a<l.



Hydrodynamic limit
Set

(£ x) = (2,\,2 =S(t(2N)?, x(2N)) .  «€]1,3/2),
’ A S(E2N)H x(2N)) a<l.

Theorem (L.)

Start from a flat initial condition. Then m" = m where

%8)2(m—|—0', a€(1,3/2).
Orm = %8)2<m+ a(l = (8Xm)2) , a=1,
a(l — (8Xm)2) , a<l,

with Dirichlet boundary conditions m(t,0) = m(t,1) = 0.

Similar results: Gartner (SPA 88), De Masi-Presutti-Scacciatelli (Ann. IHP 89),

Kipnis-Olla-Varadhan (CPAM 89), Rezakhanlou (CMP 91), Bahadoran (CMP 12) ...



More on the case o < 1

m(t=0,)=0,
m(t,0) = m(t,1) =0.

{8tm =o(1—(0xm)?),



More on the case o < 1

Oem = o (1 — (0em)?) ,
m(t=0,)=0,
m(t,0) = m(t,1) =0.

Inviscid Burgers

We actually prove convergence of the density of particles towards
the (entropy!) solution of the inviscid Burgers equation:

6t9206x(9(1_ Q)) ]
ot=0,)=1/2,
o(t,0)=1, p(t,1)=0.

Solution theory by Bardos-Le Roux-Nédélec (CPDE 79).
CV result similar to Rezakhanlou (CMP 91), Bahadoran (CMP 12).



A famous result of Bertini and Giacomin on KPZ

Nl -

Theorem (Bertini-Giacomin CMP 97)
Set he(t,x) = e(S(E%, 6%) — 6%) Then, h¢ = h where

1
(KPZ) 0:h= Ea§h - %(ath +¢, xeR.




KPZ fluctuations

Let's apply Bertini-Giacomin's scaling in our case:
e Height scaling: € < W
Heights are smaller than N. So we need to take o < 1.
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KPZ fluctuations

Let's apply Bertini-Giacomin's scaling in our case:
e Height scaling: € < W
Heights are smaller than N. So we need to take o < 1.
e Space scaling: €72 <> (2N)?.
Lattice of order N. So we need to take o < 1/2.

e Time scaling: e* « (2N)*.
Hydro. limit reaches equilibrium in finite time in the time scale
(2N)1. So we need to take 4o < 1+ a, or equivalently
a<1/3.



KPZ fluctuations

For a <1/3, set

hN(t,x) =

(2N)e (5 (f(2N)4“, N + x(2/\/)2a> —ot(2 N)3a> .



KPZ fluctuations

For a <1/3, set

AN (t,x) =

(2N)e (5 (f(2N)4°“, N + x(2/\/)2a> —ot(2 N)3a> .

Theorem (L.)

We have hN' = h in D([0, T),C(R)) where h is the solution of
(KPZ) on the line and

- +o0 a<1/3,
| a=1/3.

20

Notice that the fluctuations vanish suddenly at time T in the case
a=1/3.



Thank you for your attention.



