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Introduction.

There exist two important types of tree self-similarity
related to the Horton-Strahler ordering and Tokunaga
indexing schemes for tree branches.

The Horton-Strahler indexing assigns orders to the
tree branches according to their relative importance
in the hierarchy.

e Introduced in hydrology in the 1950s to describe
the dendritic structure of river networks.

e Applications: ranking river tributaries, analysis of
brain structure, designing optimal computer codes,
etc.
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Horton-Strahler ordering.

Consider a rooted tree mod series reduction (remov-
ing degree two vertices).

e Horton-Strahler orders measure “importance” of
tree branches within the hierarchy

e In a perfect binary tree (all leaves having the
same depth) the orders are proportional to depth

e How to assign orders in a non-perfect tree?
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Horton-Strahler order (via pruning).

e Pruning R(T) of a finite tree T cuts the leaves, followed
by series reduction.

e A chain of the same order vertices with edges connecting
to parent vertices is called branch.

e Branches cut at k-th pruning, R¥1(T) \ R¥(T), have order
k, k> 1.

e N, denotes the number of branches of order k in a finite
tree T
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Pruning of a tree mod series reduction

Series reduction

Series reduction
<«

° Empty tree

T R(T) RAD) R(T)

The order of the tree is k(T) = 3 with N; = 10,
Ny = 3, N3 = 1, and N1,2 = 3, N1,3 =1, N2,3 =1.
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Horton-Strahler ordering.

(a) Horton-Strahler orders (b)Tokunaga indices

The Horton-Strahler ordering of the vertices of a finite rooted

labeled binary tree is performed in a hierarchical fashion, from
leaves to the root:

(i) each leaf has order r(leaf) = 1;

(ii) when both children, c1, cp, of a parent vertex p have the same
order r, the vertex p is assigned order r(p) =r 4+ 1;

(iii) when two children of vertex p have different orders, the
vertex p is assigned the higher order of the two.
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Horton-Strahler ordering and Tokunaga indexing.

(a) Horton-Strahler orders (b)Tokunaga indices

Example: (a) Horton-Strahler ordering
(b) Tokunaga indexing.

Two order-2 branches are depicted by heavy lines in both panels.
The Horton-Strahler orders refer, interchangeably, to the tree
nodes or to their parent links. The Tokunaga indices refer to
entire branches, and not to individual vertices.
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Tokunaga indexing: finite binary tree.

o Let Ti(jk), 1 < k< N;,, 1< 1<y < K, denote the
number of branches of order ¢ that merge into the the k-th
branch of order j

e Let N;; be the total number of instances when an order-;
branch merges an order-j5 branch

k) . .
Ni'ZZTig-),Z<j

k

e The Tokunaga index T;; is the average number of order-;
branches that join an order-; branch:

L
ij =
N
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Tokunaga indexing.

o Let Ti(jk), 1 < k< N;,, 1< 1<y < K, denote the
number of branches of order ¢ that merge into the the k-th
branch of order j

Index of parental branch

i

T

A

1_/' Horton order of parental branch

Horton order of side-branch

e Let NV;; be the total number of instances when an order-:
branch merges an order-5 branch

Nij = Z Tig-k),i <J

k

e The Tokunaga index T;; is the average number of order-;
branches that join an order-5 branch:

N,
Ty =
N;
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Tokunaga indexing.

o Let Ti(jk), 1 < k< N,;, 1<1i<j <K, denote the
number of branches of order 7 that join the non-terminal
vertices of the k-th branch of order j

11 11 11 11 11 11

Q P Q 90 @
22 22 O

~
g 1
A 2

e Let N;; be the total number of instances when an order-;
branch merges an order-j5 branch

k) . .
Ny =3 i <

k

-
N NN
= QW
[N -]

e The Tokunaga index Tj; is the average number of order-;

branches that join an order-; branch:
N
Tij = —=
J
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Tree self-similarity

Consider probability measures {ux}x>1, each defined
on the set 7x of finite binary trees of Horton-Strahler
order K.

Define the average Horton numbers:

Ne[K]l = Ek[Ny], 1<k<K, K2>1.

Define the respective expectation

Nij[K] = Ex[Ni;].

The Tokunaga coefficients T;;[K] for subspace T are
defined as

Nij K]

T K] = NK] LS <j <
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Tree self-similarity

Definition. A set of measures {ux} on {7k} is called
coordinated if T;; :=T;;[K] forall K >2and 1 <i< j < K.

There, the Tokunaga matrix

(0 Tio Tiz ... Tixg
O O T3 ... 1Tk
Tre=| O O el e : :
: : .. 0 TK—l,K
O O 0 0 0

coincides with the restriction of Ty;, M > K, to the
first K coordinates.

Definition. Coordinated probability measures {ux}
are (mean) self-similar if T;; = T;_; for some sequence
T, > 0 known as Tokunaga coefficients and any K > 2.
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Tree self-similarity

Definition. Coordinated probability measures {ux}
are (mean) self-similar if T;; = T;_; for some sequence
T > 0 known as Tokunaga coefficients and any K > 2.

There, the Tokunaga matrix

0Ty To ... Ty_q1 |

0 0 Ty ... Tk_»
Ty=|0 0 --. - :

: : 0] T

0O 0 0 O 0

Here pruning is equivalent to deleting the first row
and first column.
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Tokunaga self-similarity

Definition. A random self-similar tree is Tokunaga
self-similar if

Tiy1/Tp, =c & T, = acF ! a,c>0, 1 <k< K-1.

There, the Tokunaga matrix

O a ac ac® ... ack=2
O 0 a ac ... ack3

Tx. =10 0 0 a ... acf™®
O O O o ... a

McConnell and Gupta 2008 showed that Tokunaga
self-similarity implies strong Horton law:

. Ni[K]
AN K]

= R'"* <~ for any k> 1.
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Tree self-similarity

Theorem (YK and Zaliapin, Fractals 2016).
Consider a sequence of coordinated self-similar probability mea-
sures {ux} such that

lim supT.l/j < 0.
Jj—o0 J
Then {ux} satisfy the strong Horton law for some R > 0: for
each integer 53 > O,
| K
lim N; K] =

IV pleg
K—)ooNl[K] .

Moreover, 1/R = wq is the only real root of the function

tH(z)=-1422+ ZZJTJ
j=1
in the interval (0,%}.
N K]
Ni1[K]

Conversely, if lim suijl/j — oo, then the limit lim does

j—00 K—oco
not exist at least for some j.
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Horton self-similarity: more generally.

A sequence of probability measures {Pny}nyen Over bi-
nary trees has well-defined asymptotic Horton-Strahler
orders if for each k € N, the following limit law is sat-
isfied:

NP

];V » N in probability as N — oo,

where N is called the asymptotic ratio of the branches
of order k.

Horton self-similarity: sequence N, decreases in a reg-
ular geometric fashion with k£ — .

Informally,
N =< Np - R7*
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Horton self-similarity: more generally.

NkXNQ-R_k

A sequence {Pn}neny With well-defined asymptotic Horton-
Strahler orders obeys a Horton self-similarity law if
and only if at least one of the following limits exists
and is finite and positive:

ol

(a) root law : im (J\/k>_ = R >0,

|
k—o0

. . N,
(b) ratio law :  |im " —R>0,
k—o00 Nk+1
(c) geometric law : k!im Ny - RF = Ng > 0.
— 00

The constant R is called the Horton exponent.
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Galton-Watson tree.

e Critical binary Galton-Watson tree exhibits both Horton and
Tokunaga self-similarities (Burd, Waymire, and Winn, 2000).
This model has R =4 and (a,c) = (1,2).

Theorem (Shreve, 1969; Burd et al., 2000). A critical binary
Galton-Watson tree is Tokunaga self-similar with
(a,c) = (1,2),
that is
T, =21 and R=4.

Theorem (Burd et al., 2000).

1. Let Pgw(pr) denote a Galton-Watson distribution on the
space of finite trees with branching probabilities {pt}. Then
Pew (pr) is tree self-similar if and only if {px} is the critical
binary distribution po = p> = 1/2.

2. Any critical Galton-Watson tree T, kak = 1, converges
to the binary critical tree under the operation of pruning,
R™(T), n — oo.
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Pruning of a level-set tree of a function.

(a) Function.Y, (b) Tree LEVEL(Y)

Function X; (panel a) with a finite number of local extrema and
its level-set tree level(X) (panel b).
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Pruning of time series

Proposition (Zaliapin and YK, CSF 2012). The
transition from a time series X, to the time series

X,gl) of its local minima corresponds to the pruning
of the level-set tree level(X).

/\/\“‘“\/\F}

Time, ¢
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Horton and Tokunaga self-similarity: Markov chains

Let X, be a symmetric homogeneous Markov chain
and T = shape (level(X)) be the combinatorial level
set tree of Xj.

Theorem (Zaliapin and YK, CSF 2012).

1. Tree T is Tokunaga self-similar with parameters
(a,c) = (1,2):

E [Tz(ilk} =: T, = 2",
and geometric-Horton self-similar, asymptotically
in N, with R = 4.

2. Accordingly, a combinatorial level-set tree for reg-
ular Brownian motion is Tokunaga and Horton
self-similar, with (a,c) = (1,2), and R = 4.



Horton-Strahler ordering in stochastic processes 25

Level-set tree of a homogeneous Markov chai.
Zaliapin and YK, CSF 2012:

e Proved Horton and Tokunaga self-similarity for the
level-set tree representation of a homogeneous dis-
crete Markov chain and infinite-tree representation of
a regular Brownian motion in continuous time.

e Infinite trees built from the leafs representing the
complete history of time series. Strong limit laws.

e Conjecture. The tree of a fractional Brownian
motion Bff, t € [0,1] with the Hurst index 0 < H < 1
is Tokunaga self-similar with

Tk =Ty =c""1 ik>1
with e=2H + 1.
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Root-Horton law for the Kingman’'s coalescent

In YK & Zaliapin (AIHP 2016) we

e Established the root-Horton law for the Kingman’s
coalescent.

e Showed that the tree for Kingman's coalescent is
combinatorially equivalent to the level-set tree of iid
time series (the two measures are one pruning apart).

e Numerical experiments that suggest stronger Hor-
ton laws: ratio, geometric.
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Root-Horton law for the Kingman’s coalescent.

In YK & Zaliapin (AIHP 2016), we prove the limit law (in
probability) for the asymptotics of the number N, of branches
of Horton-Strahler order k in Kingman's N-coalescent process
with constant collision kernel:

N—o0

We show that
1 [T,
0

2
where the sequence gi(x) solves:
2
95 (x)
Ghi1 (@) — 2L 4 gu(@)gry1(z) =0, >0

2
with g1(z) = 2/(z + 2), g,(0) = 0 for k > 2.



Horton-Strahler ordering in stochastic processes 28

Root-Horton law for the Kingman’s coalescent.

Theorem (YK & Zaliapin, AIHP 2016). The asymptotic
Horton ratios N, exist and finite and satisfy the convergence
lim (V) * = R with 2 < R < 4.

k—oo

Conjecture. The tree associated with Kingman's coalescent
process is Horton self-similar with

lim Ni = lim (J\/'ka)_% =R and lim (N,R") = const.,

k—oco NE+1 k—o00 k—o00

where R = 3.043827 ... and Tokunaga self-similar, asymptoti-
cally in k:

T}

lim 75 ;4 =: T}, and lim o

—00 k—o0

- a

for some positive a and c.
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Root-Horton law for the Kingman’s coalescent.

e Theorem (YK & Zaliapin, AIHP 2016). The asymptotic
Horton ratios N, exist and finite and satisfy the convergence

lim (M) F = R with 2 < R < 4.
k—o0

e Consider now a time series X with N local maxima separated
by N—1 internal local minima such that the latter form a discrete
white noise; we call X an extended discrete white noise.

Theorem (YK & Zaliapin, AIHP 2016). The combinato-
rial level set tree of the extended discrete white noise has the
same distribution on 7y as the combinatorial tree generated by
Kingman's N-coalescent.

e Corollary (YK & Zaliapin, AIHP 2016). The combinatorial
level set tree of iid time series is root-Horton self similar with
the same Horton exponent R as for Kingman's coalescent.
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Root-Horton law for the Kingman’s coalescent.

O Kingman coalescence
® ‘ =  Simulated white noise

Proportion of order—k branches, Nk/N

10°

Horton-Strahler order, k

Filled circles: The asymptotic ratio N, of the number N, of
branches of order k£ to N in Kingman's coalescent, as N — oo.
Black squares: The empirical ratio Ni/N;y in a level-set tree for
a single trajectory of a iid time series of length N = 218,
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Hierarchical Branching Processes.

Consider a branching process where we begin with a
root of hierarchical order K with probability pg.

e Each branch of order 53 branches out an offspring of
order ¢ < j with rate A\;7;_;.

e The branch of order j terminates with rate A;, at
which moment,

(i) the branch of order 57 > 2 splits into two
branches, each of order 5 — 1

(ii) the branch of order 5 = 1 terminates without
leaving offsprings.

The branching history of the process creates a ran-
dom planar binary tree, with T; ; = Tj_;.
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Hierarchical Branching Processes.

For {px}k=12.., we generate a random forest. Let
x(s) be the vector with coordinates representing the
average number of branches of respective orders at
time s in a tree.

Initial distribution is z(0) = := >  pgex, and
K=1

z(s) = eV,

where A is a diagonal operator with the diagonal en-
tries A1, Ao,... and

1 Ty 42 > Ts
0 -1 Ty+2 T
G .= 0 0 —1 Ty4+2

o) 0 o) —1




Horton-Strahler ordering in stochastic processes 33

Hierarchical Branching Processes.

Consider the width function at time s > 0

C(s) = (1,z(s)) = (1,e* ).

For u to be self-similar under pruning need
e {px} to be geometric

e the sequence )\; to be geometric: \; = v -\ for
some v, A > 0,

Assuming the above, the critical probability p. is de-
fined as

lim C(s) =oc0 if and only if p < p.

S§— 00



Horton-Strahler ordering in stochastic processes 34

Hierarchical Branching Processes.

Recall:
t(z) =—-1422+ szTj
j=1

and wo = 1/R is the only real root within the radius
of convergence.

Suppose {pk} is geometric with parameter p and
Aj =~ - M, then

z2(s) = N =7 + Z s [H f()\i(l — p))] N,
m=1

i=1
The convergence requirement here is that A < 1.
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Hierarchical Branching Processes.

0

Recall: #(z) = —-1+4+2z4 > 2/T; and wo = 1/R is
j=1

the only real root within the radius of convergence.

For {px} geometric and X\; =~ -\ for some v, > 0,

o0

r(s) = e =7 + ZS [Hf (A'(1—p)) ]

Thusp. =1—y5and C(s) = (1,z(s)) = 1 at criticality.

Forest invariance property at criticality: e®\sx = 7.
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Hierarchical Branching Processes.

1

AR

Observe that for a hierarchical branching process with
Aj =~277 and T;; = 27771, the critical probability is

1

pcza-

pe=1

_ 1 _

Therefore, R = NIy — 4.

Recall that the critical binary Galton-Watson tree
exhibits both Horton and Tokunaga self-similarities
(Burd, Waymire, and Winn, 2000) with parameters
R=4, (a,c)=1(1,2) and
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Hierarchical Branching Processes.

Theorem (YK and Zaliapin, 2016). Consider a
hierarchical branching process with parameters

N=7277, pg=2"%  and T;; =271

A (critical) hierarchical branching process with the
above is distributionally equivalent to the critical bi-
nary Galton-Watson process with edge lengths dis-
tributed exponentially with rate ~/2.

e Critical binary Galton-Watson with exponential edge
lengths is both invariant under pruning (from the
leafs) and satisfies the forest invariance property (when
cut from below). It is also self-similar under continu-
ous pruning.



