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Introduction.

There exist two important types of tree self-similarity
related to the Horton-Strahler ordering and Tokunaga
indexing schemes for tree branches.

The Horton-Strahler indexing assigns orders to the
tree branches according to their relative importance
in the hierarchy.

• Introduced in hydrology in the 1950s to describe
the dendritic structure of river networks.

• Applications: ranking river tributaries, analysis of
brain structure, designing optimal computer codes,
etc.
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Horton-Strahler ordering.

Consider a rooted tree mod series reduction (remov-
ing degree two vertices).

• Horton-Strahler orders measure “importance” of
tree branches within the hierarchy

• In a perfect binary tree (all leaves having the
same depth) the orders are proportional to depth

• How to assign orders in a non-perfect tree?
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Horton-Strahler order (via pruning).

• Pruning R(T ) of a finite tree T cuts the leaves, followed
by series reduction.

• A chain of the same order vertices with edges connecting
to parent vertices is called branch.

• Branches cut at k-th pruning, Rk−1(T ) \Rk(T ), have order
k, k ≥ 1.

• Nk denotes the number of branches of order k in a finite
tree T
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Pruning of a tree mod series reduction

T R2(T) R3(T) R(T) 

Cutt
ing

 le
av

es 

Se
rie

s r
ed

uc
tio

n 

Cutt
ing

 le
av

es 

Se
rie

s r
ed

uc
tio

n 

Empty tree 

1 1 

1 

1 

1 1 

1 1 1 1 

2 2 

3 

3 

2 

2 

2 

2 

3 

The order of the tree is k(T ) = 3 with N1 = 10,
N2 = 3, N3 = 1, and N1,2 = 3, N1,3 = 1, N2,3 = 1.
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Horton-Strahler ordering.

The Horton-Strahler ordering of the vertices of a finite rooted
labeled binary tree is performed in a hierarchical fashion, from
leaves to the root:

(i) each leaf has order r(leaf) = 1;

(ii) when both children, c1, c2, of a parent vertex p have the same
order r, the vertex p is assigned order r(p) = r + 1;

(iii) when two children of vertex p have different orders, the
vertex p is assigned the higher order of the two.
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Horton-Strahler ordering and Tokunaga indexing.

Example: (a) Horton-Strahler ordering

(b) Tokunaga indexing.

Two order-2 branches are depicted by heavy lines in both panels.
The Horton-Strahler orders refer, interchangeably, to the tree
nodes or to their parent links. The Tokunaga indices refer to
entire branches, and not to individual vertices.
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Tokunaga indexing: finite binary tree.

• Let τ (k)
ij , 1 ≤ k ≤ Nj, 1 ≤ i < j ≤ K, denote the

number of branches of order i that merge into the the k-th
branch of order j

• Let Nij be the total number of instances when an order-i
branch merges an order-j branch

Nij =
∑
k

τ (k)
ij , i < j

• The Tokunaga index Tij is the average number of order-i
branches that join an order-j branch:

Tij =
Nij

Nj



Horton-Strahler ordering in stochastic processes 12

Tokunaga indexing.

• Let τ (k)
ij , 1 ≤ k ≤ Nj, 1 ≤ i < j ≤ K, denote the

number of branches of order i that merge into the the k-th
branch of order j

• Let Nij be the total number of instances when an order-i
branch merges an order-j branch

Nij =
∑
k

τ (k)
ij , i < j

• The Tokunaga index Tij is the average number of order-i
branches that join an order-j branch:

Tij =
Nij

Nj



Horton-Strahler ordering in stochastic processes 13

Tokunaga indexing.

• Let τ (k)
ij , 1 ≤ k ≤ Nj, 1 ≤ i < j ≤ K, denote the

number of branches of order i that join the non-terminal
vertices of the k-th branch of order j

• Let Nij be the total number of instances when an order-i
branch merges an order-j branch

Nij =
∑
k

τ (k)
ij , i < j

• The Tokunaga index Tij is the average number of order-i
branches that join an order-j branch:

Tij =
Nij

Nj
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Tree self-similarity

Consider probability measures {µK}K≥1, each defined
on the set TK of finite binary trees of Horton-Strahler
order K.

Define the average Horton numbers:

Nk[K] = EK[Nk], 1 ≤ k ≤ K, K ≥ 1.

Define the respective expectation

Nij[K] = EK[Nij].

The Tokunaga coefficients Tij[K] for subspace TK are
defined as

Tij[K] =
Nij[K]

Nj[K]
, 1 ≤ i < j ≤ K.
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Tree self-similarity

Definition. A set of measures {µK} on {TK} is called
coordinated if Tij := Tij[K] for all K ≥ 2 and 1 ≤ i < j ≤ K.

There, the Tokunaga matrix

TK =


0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0 .. . . . . ...
... ... . . . 0 TK−1,K

0 0 0 0 0

 ,
coincides with the restriction of TM , M > K, to the
first K coordinates.

Definition. Coordinated probability measures {µK}
are (mean) self-similar if Tij = Tj−i for some sequence
Tk ≥ 0 known as Tokunaga coefficients and any K ≥ 2.
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Tree self-similarity

Definition. Coordinated probability measures {µK}
are (mean) self-similar if Tij = Tj−i for some sequence
Tk ≥ 0 known as Tokunaga coefficients and any K ≥ 2.

There, the Tokunaga matrix

TK =


0 T1 T2 . . . TK−1

0 0 T1 . . . TK−2

0 0 .. . . . . ...
... ... . . . 0 T1

0 0 0 0 0

 .

Here pruning is equivalent to deleting the first row
and first column.
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Tokunaga self-similarity

Definition. A random self-similar tree is Tokunaga
self-similar if

Tk+1/Tk = c ⇔ Tk = a ck−1 a, c > 0, 1 ≤ k ≤ K−1.

There, the Tokunaga matrix

TK =


0 a ac ac2 . . . acK−2

0 0 a ac . . . acK−3

0 0 0 a . . . acK−4

... ... ... . . . ...
0 0 0 0 . . . a

 .
McConnell and Gupta 2008 showed that Tokunaga
self-similarity implies strong Horton law:

lim
K→∞

Nk[K]

N1[K]
= R1−k <∞ for any k ≥ 1.
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Tree self-similarity

Theorem (YK and Zaliapin, Fractals 2016).
Consider a sequence of coordinated self-similar probability mea-
sures {µK} such that

lim sup
j→∞

T
1/j
j <∞.

Then {µK} satisfy the strong Horton law for some R > 0: for
each integer j > 0,

lim
K→∞

Nj[K]

N1[K]
= R1−j.

Moreover, 1/R = w0 is the only real root of the function

t̂(z) = −1 + 2z +

∞∑
j=1

zjTj

in the interval
(

0, 1
2

]
.

Conversely, if lim sup
j→∞

T
1/j
j = ∞, then the limit lim

K→∞

Nj[K]
N1[K]

does

not exist at least for some j.
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Horton self-similarity: more generally.

A sequence of probability measures {PN}N∈N over bi-
nary trees has well-defined asymptotic Horton-Strahler
orders if for each k ∈ N, the following limit law is sat-
isfied:

N (PN)
k

N
−→ Nk in probability as N →∞,

where Nk is called the asymptotic ratio of the branches
of order k.

Horton self-similarity: sequence Nk decreases in a reg-
ular geometric fashion with k →∞.

Informally,

Nk � N0 ·R−k
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Horton self-similarity: more generally.

Nk � N0 ·R−k

A sequence {PN}N∈N with well-defined asymptotic Horton-
Strahler orders obeys a Horton self-similarity law if
and only if at least one of the following limits exists
and is finite and positive:

(a) root law : lim
k→∞

(
Nk
)−1

k

= R > 0,

(b) ratio law : lim
k→∞

Nk
Nk+1

= R > 0,

(c) geometric law : lim
k→∞

Nk ·Rk = N0 > 0.

The constant R is called the Horton exponent.
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Galton-Watson tree.
• Critical binary Galton-Watson tree exhibits both Horton and
Tokunaga self-similarities (Burd, Waymire, and Winn, 2000).
This model has R = 4 and (a, c) = (1,2).

Theorem (Shreve, 1969; Burd et al., 2000). A critical binary
Galton-Watson tree is Tokunaga self-similar with

(a, c) = (1,2),
that is

Tk = 2k−1 and R = 4.

Theorem (Burd et al., 2000).

1. Let PGW(pk) denote a Galton-Watson distribution on the
space of finite trees with branching probabilities {pk}. Then
PGW(pk) is tree self-similar if and only if {pk} is the critical
binary distribution p0 = p2 = 1/2.

2. Any critical Galton-Watson tree T ,
∑

k pk = 1, converges
to the binary critical tree under the operation of pruning,
Rn(T ), n→∞.



Horton-Strahler ordering in stochastic processes 22

Pruning of a level-set tree of a function.

Function Xt (panel a) with a finite number of local extrema and
its level-set tree level(X) (panel b).
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Pruning of time series

Proposition (Zaliapin and YK, CSF 2012). The
transition from a time series Xk to the time series
X(1)
k of its local minima corresponds to the pruning

of the level-set tree level(X).
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Horton and Tokunaga self-similarity: Markov chains

Let Xk be a symmetric homogeneous Markov chain
and T = shape (level(X)) be the combinatorial level
set tree of Xk.

Theorem (Zaliapin and YK, CSF 2012).

1. Tree T is Tokunaga self-similar with parameters
(a, c) = (1,2):

E
[
τ (j)
i,i+k

]
=: Tk = 2k−1,

and geometric-Horton self-similar, asymptotically
in N , with R = 4.

2. Accordingly, a combinatorial level-set tree for reg-
ular Brownian motion is Tokunaga and Horton
self-similar, with (a, c) = (1,2), and R = 4.
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Level-set tree of a homogeneous Markov chai.

Zaliapin and YK, CSF 2012:

• Proved Horton and Tokunaga self-similarity for the
level-set tree representation of a homogeneous dis-
crete Markov chain and infinite-tree representation of
a regular Brownian motion in continuous time.

• Infinite trees built from the leafs representing the
complete history of time series. Strong limit laws.

• Conjecture. The tree of a fractional Brownian
motion BH

t , t ∈ [0,1] with the Hurst index 0 < H < 1
is Tokunaga self-similar with

Ti,i+k = Tk = ck−1, i, k ≥ 1

with c = 2H + 1.



Horton-Strahler ordering in stochastic processes 26

Root-Horton law for the Kingman’s coalescent

In YK & Zaliapin (AIHP 2016) we

• Established the root-Horton law for the Kingman’s
coalescent.

• Showed that the tree for Kingman’s coalescent is
combinatorially equivalent to the level-set tree of iid
time series (the two measures are one pruning apart).

• Numerical experiments that suggest stronger Hor-
ton laws: ratio, geometric.
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Root-Horton law for the Kingman’s coalescent.

In YK & Zaliapin (AIHP 2016), we prove the limit law (in
probability) for the asymptotics of the number Nk of branches
of Horton-Strahler order k in Kingman’s N-coalescent process
with constant collision kernel:

Nk = lim
N→∞

Nk/N

We show that

Nk =
1

2

∫ ∞

0

g2
k(x) dx,

where the sequence gk(x) solves:

g′k+1(x)−
g2
k(x)

2
+ gk(x)gk+1(x) = 0, x ≥ 0

with g1(x) = 2/(x+ 2), gk(0) = 0 for k ≥ 2.
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Root-Horton law for the Kingman’s coalescent.

Theorem (YK & Zaliapin, AIHP 2016). The asymptotic
Horton ratios Nk exist and finite and satisfy the convergence

lim
k→∞

(Nk)−
1
k = R with 2 ≤ R ≤ 4.

Conjecture. The tree associated with Kingman’s coalescent
process is Horton self-similar with

lim
k→∞

Nk
Nk+1

= lim
k→∞

(Nk)−
1
k = R and lim

k→∞
(NkRk) = const.,

where R = 3.043827 . . . and Tokunaga self-similar, asymptoti-
cally in k:

lim
i→∞

Ti,i+k =: Tk and lim
k→∞

Tk

ck−1
= a

for some positive a and c.
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Root-Horton law for the Kingman’s coalescent.

• Theorem (YK & Zaliapin, AIHP 2016). The asymptotic
Horton ratios Nk exist and finite and satisfy the convergence

lim
k→∞

(Nk)−
1
k = R with 2 ≤ R ≤ 4.

• Consider now a time series X with N local maxima separated
by N−1 internal local minima such that the latter form a discrete
white noise; we call X an extended discrete white noise.

Theorem (YK & Zaliapin, AIHP 2016). The combinato-
rial level set tree of the extended discrete white noise has the
same distribution on TN as the combinatorial tree generated by
Kingman’s N-coalescent.

• Corollary (YK & Zaliapin, AIHP 2016). The combinatorial
level set tree of iid time series is root-Horton self similar with
the same Horton exponent R as for Kingman’s coalescent.
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Root-Horton law for the Kingman’s coalescent.
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Filled circles: The asymptotic ratio Nk of the number Nk of
branches of order k to N in Kingman’s coalescent, as N → ∞.
Black squares: The empirical ratio Nk/N1 in a level-set tree for
a single trajectory of a iid time series of length N = 218.
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Hierarchical Branching Processes.

Consider a branching process where we begin with a
root of hierarchical order K with probability pK.

• Each branch of order j branches out an offspring of
order i < j with rate λjTj−i.

• The branch of order j terminates with rate λj, at
which moment,

(i) the branch of order j ≥ 2 splits into two
branches, each of order j − 1

(ii) the branch of order j = 1 terminates without
leaving offsprings.

The branching history of the process creates a ran-
dom planar binary tree, with Ti,j = Tj−i.



Horton-Strahler ordering in stochastic processes 32

Hierarchical Branching Processes.

For {pK}K=1,2,..., we generate a random forest. Let
x(s) be the vector with coordinates representing the
average number of branches of respective orders at
time s in a tree.

Initial distribution is x(0) = π :=
∞∑

K=1
pKeK, and

x(s) = eGΛsπ,

where Λ is a diagonal operator with the diagonal en-
tries λ1, λ2, . . . and

G :=


−1 T1 + 2 T2 T3 . . .
0 −1 T1 + 2 T2 . . .

0 0 −1 T1 + 2 ...
0 0 0 −1 .. .
... ... . . . . . . . . .

 .
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Hierarchical Branching Processes.

Consider the width function at time s ≥ 0

C(s) = 〈1, x(s)〉 = 〈1, eGΛsπ〉.

For µ to be self-similar under pruning need

• {pK} to be geometric

• the sequence λj to be geometric: λj = γ · λj for
some γ, λ > 0,

Assuming the above, the critical probability pc is de-
fined as

lim
s→∞

C(s) =∞ if and only if p < pc
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Hierarchical Branching Processes.

Recall:

t̂(z) = −1 + 2z +
∞∑
j=1

zjTj

and w0 = 1/R is the only real root within the radius
of convergence.

Suppose {pK} is geometric with parameter p and
λj = γ · λj, then

x(s) = eGΛsπ = π +
∞∑

m=1

sm

[
m∏
i=1

t̂
(
λi(1− p)

)]
Λmπ.

The convergence requirement here is that λ ≤ 1.



Horton-Strahler ordering in stochastic processes 35

Hierarchical Branching Processes.

Recall: t̂(z) = −1 + 2z +
∞∑
j=1

zjTj and w0 = 1/R is

the only real root within the radius of convergence.

For {pK} geometric and λj = γ · λj for some γ, λ > 0,

x(s) = eGΛsπ = π +
∞∑

m=1

sm

[
m∏
i=1

t̂
(
λi(1− p)

)]
Λmπ.

Thus pc = 1− 1
λR

and C(s) = 〈1, x(s)〉 = 1 at criticality.

Forest invariance property at criticality: eGΛsπ = π.
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Hierarchical Branching Processes.

pc = 1−
1

λR

Observe that for a hierarchical branching process with
λj = γ2−j and Ti,j = 2j−i−1, the critical probability is

pc =
1

2
.

Therefore, R = 1
λ(1−pc) = 4.

Recall that the critical binary Galton-Watson tree
exhibits both Horton and Tokunaga self-similarities
(Burd, Waymire, and Winn, 2000) with parameters
R = 4, (a, c) = (1,2) and

Tk = a · ck−1 = 2k−1.



Horton-Strahler ordering in stochastic processes 37

Hierarchical Branching Processes.

Theorem (YK and Zaliapin, 2016). Consider a
hierarchical branching process with parameters

λj = γ2−j, pK = 2−K, and Ti,j = 2j−i−1.

A (critical) hierarchical branching process with the
above is distributionally equivalent to the critical bi-
nary Galton-Watson process with edge lengths dis-
tributed exponentially with rate γ/2.

• Critical binary Galton-Watson with exponential edge
lengths is both invariant under pruning (from the
leafs) and satisfies the forest invariance property (when
cut from below). It is also self-similar under continu-
ous pruning.


