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Goal

Develop framework for modelling of genealogical information of a
stochastically evolving population as a strong Markov process, i.e. the
forward picture is described.

Apply this to obtain properties of process, equilibria, longtime
behaviour, parameter dependence, path properties.

In particular study

infinite divisibility

branching property, generator criterion

We want to extend the theory to spatial models.
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Consider a finite population say a Moran-model or a branching model
(Galton-Watson).

Moran:

We have birth-death events
a pair dies at rate d instantaneously one of them gives birth to two
new individuals.

Galton-Watson:

At rate b an individual gives birth to a new one

At rate b an individual dies
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The genealogical tree

Birth event
ι −→ ι′, ι′′

ι′, ι′′ are the descendents of ι, ι is ancestor of ι′, ι′′.

This defines:
(1) a ”genealogical tree”, a rooted labelled tree.
(2) Genealogical distance: 2 · time to MRCA

Of interest is a structure abstracting from labels.

We are interested to model the stochastic evolution of the
genealogical structure as solution to a martingale problem on a Polish
space, in particular for the diffusion limit.
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Moran model size-N genealogies

Our model for a Moran population genealogy:

U = (U, r , µ),

U =set of individuals
r : U × U −→ [0,∞), quasi ultrametric
r(ι, ι′) = genealogical distance of ι and ι′ = twice time to MRCA

µ = 1
|U| ·

∑
ι∈U

δι ∈M1(U), sampling measure

— : equivalence class under isometries and measure-preserving maps
of supp(µ) : U.

U is called an ultrametric probability space
U := {U|U is up-space}
U is a Polish space for topology introduced later.
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Branching genealogies: extended up-space

Our model for a branching genealogy with varying population size
requires µ ∈Mfin(U).

U = (µ̄, (U, r , µ̂)),

µ̂ ∈M1(U), µ̄ ∈ R+,

µ =
∑
ι∈U

δι , µ̄ = µ(U) , µ̂(·) = µ(·)
µ(U) .

U∗ = R+ × U (extended ultrametric probability measures)

U∗ is a Polish space
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Population with types and locations: marked
up-space

Individuals with types and locations require:
V = K×G, K = type space, G = geographic space.
Assume that K is a compact Polish space, G finite or compact.
Mark function is added to description κ : U −→ V .
Consider (U, r , κ, µ).
Form equivalence class including mark preservation.
Obtain (extended) V -marked ultrametric probability measure spaces:

U = (U, r , κ, µ)

Allow : κ : kernel U × V , ν = µ⊗ κ : (U, r , ν)

State space: UV , respectively U∗V ultrametric (probability) measure
spaces.

UV ,U
∗
V are Polish spaces.
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Polynomials

Polynomials are functions of the form:

Φ : U −→ R, U∗ −→ R, U∗V −→ R

(1) Φ(U) =
∫
Un

ϕ((r(ui , uj))1≤i<j≤n)µ(du1) · · ·µ(dun)

ϕ ∈ C 1
b ((R)(n

2),R) , µ ∈M1(U).

(2) Φ(U) = Φ̄(µ̄)Φ̂((U, r , µ̂)) , Φ̄ ∈ Cb(R,R)
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(3)

Φ(U) = Φ̄(ν̄)
∫

(U×V )n
ϕ((r(ui , uj))1≤i<j≤n)χ((v1, v2, · · · , vn))ν̂⊗n(d(u, v))

ν = µ⊗ κ
χ ∈ Cb(V ,R) (χ ∈ Cbb(V ,R))

We call the generated algebra of functions by Π,Π∗,ΠV .
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Topology

Define topology via convergence of sequences.

Idea: Convergence ←→ convergence of sampled (marked) subtrees
and population sizes.

Un =⇒ U as n→∞ if

Φ(Un)−→
n→∞

Φ(U), ∀ Φ ∈ Π resp. Π∗,ΠV ,Π
∗
V .

In particular polynomials are bounded continuous functions on :

U,UV ,U∗,U∗V .
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Next Goal

Decompose the tree into subfamilies of depth h, for varying h.
Obtain the path

h −→ subfamily decomposition (2.1)

How to formalize this on the level of ultrametric measure spaces?

This leads to
- Lévy-Khintchine formula
- branching property
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Definition (Forests, trees and concatenation)

Let h > 0.

(a) Define the subset of h-forests

U(h)t := U([0, 2h]) := {[U, r , µ] ∈ U : µ⊗2({(u, v) ∈ U2 : (2.2)

r(u, v) ∈ (2h,∞)}) = 0} .

(b) For u, v ∈ U(h)t with u = [U, rU , µ], v = [V , rV , ν] define the
h-concatenation:

u th v := [U ] V , rU th rV , µ+ ν] , (2.3)

where ] is the disjoint union of sets and rU th rV |U×U = rU ,
rU th rV |V×V = rV and for x ∈ U, y ∈ V :(

rU th rV
)

(x , y) = 2h. We write t if h > 0 has been fixed. (2.4)

(c) Define the subset of h-trees

U(h) := U([0, 2h)) := {[U, r , µ] ∈ U : µ⊗2({(u, v) ∈ U2 : (2.5)

r(u, v) ∈ [2h,∞) = 0} .
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We define the h-truncation of an h′-top for h′ > h as

Ut(h′)→ Ut(h) (2.6)

τh′,h (u) = (u, r ∧ 2h, µ), u ∈ Ut(h′)
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Theorem (Semigroup structure)

(a)The algebraic structure (U(h)t,th) is a Delphic semigroup. The set
of irreducible elements is U(h) and any u ∈ U(h)t has a unique (up to
order) decomposition:

u =
⊔h

i∈I

ui , (2.7)

where I is a countable index set and ui ∈ U(h) \ {0} associating with u a
collection of decompositions for h′ ∈ [0, h].

(b)The h-decompositions are consistent, i.e.

τh′,h (uh
′

1 t ... t uh
′

` ) = uh1 t ... t uhm, (2.8)

where {uh
′

2 , ...u
h′

` }, {uh1, ...uhm}

are the h′ respectively h-decomposition of u. �
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We obtain a path of consistent decompositions

h −→ {u(h)1, · · · , u(h)n} (2.9)

which consistent w.r.t. to truncation.

Values are taken in semigroups (U(h)t,th).
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Definition (Tops and trunks)

Let h > 0 and u = [U, r , µ] ∈ U:

(a) Define the h-top u(h) := [U, r ∧ 2h, µ] ∈ U(h)t.

(b) Suppose u(h) =
⊔h

i∈I ui as in (2.7) with at most countable index set
I and ui ∈ U(h) \ {0} and write ui = [Ui , ri , µi ] for i , i ′ ∈ I . The
h-trunk of u is defined as the ultrametric space

u(h) = [I , r∗, µ∗], (2.10)

with

r∗(i , i ′) = inf {r(u, v)− 2h | u ∈ Ui , v ∈ Ui ′} (2.11)

and the weights
µ∗({i}) = µi (Ui ). (2.12)
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Proposition

The mapping U 7→ U(h)t, u 7→ u(h)and (0, t] 7→ U(h)t, h 7→ u(h) is
continuous.

Definition (number of h-balls)

If u ∈ U and let I be the index set belonging to the decomposition of
u(h) as given in Theorem 2. Then we set #hu := #I .

Proposition (Lemma 2.4(a) in[EM14])

The number of open 2h-balls #h is measurable. It is an additive
functional on (U(h)t,th), that is

#h(u t v) = #h(u) + #h(v) , (2.13)

for all u, v ∈ U(h)t, where we interpret ∞+ a = a +∞ =∞ for
a ∈ N0 ∪ {∞}.
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Definition (ultrametric distance matrices)

(a) Define the set of ultrametric distance matrices of order m ≥ 2 by

Dm := {(rij)i≤i<j≤m : rij ≥ 0 , rij ≤ rik ∨ rkj ∀1 ≤ i < k < j ≤ m}
(3.1)

and D1 = {0}.

(b) For an ultrametric space u = [U, r , µ] ∈ U and m ≥ 2 we define the
distance matrix map of order m

Rm,(U,r) : Um → Dm , (ui )i=1,...,m 7→ (r(ui , uj))1≤i<j≤m (3.2)

and the distance matrix measure of order m

νm,u(dr) := µ⊗m ◦ (Rm,(U,r))−1 (3.3)

= µ⊗m({(u1, . . . , um) ∈ Um : (r(ui , uj))1≤i<j≤m ∈ dr}) .

For m = 1 we set ν1,u := ū := µ(U) the total mass.
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Definition (Polynomials)

For m ≥ 1 and φ ∈ Cb(Dm), define the monomial

Φ = Φm,φ : U→ R , u 7→ 〈φ, νm,u〉 =

∫
νm,u(dr)φ(r) . (3.4)

The elements of the algebra generated by Π are called polynomials, the
corresponding set A(Π). We denote special classes of monomials for
h > 0 as follows:

Πh := {Φm,φ ∈ Π : supp(φ) ⊆ [0, 2h)(m
2)},Π+ := {Φm,φ ∈ Π : φ ≥ 0}

(3.5)

and Πh,+ = Πh ∩ Π+ .
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Definition (truncation)

Let m ∈ N and φ : Dm → R. Define the upper h-truncation of φ:

φh(r) : = φ(r) ·
∏

1≤i<j≤m

1[0,2h)(rij), (3.6)

For the monomial Φm,φ ∈ Π define

Φm,φ
h (u) := 〈φh, νm,u〉. (3.7)

This extends to polynomials by linearity.
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Definition (Laplace transform)

The Laplace functional LU : Π+ → [0, 1] of a random um-space U by

LU(Φ) := E
[
exp(−Φm,φ(U))

]
, Φ = Φm,φ ∈ Π+ , (3.8)

the truncated Laplace functional LU : A(Πh,+)→ [0, 1] by restriction.

The next result tells us that Laplace transforms on U(h)t share an
important property with Laplace transforms on [0,∞): they well-define a
probability measure on that space.

Theorem (Truncated Laplace transform)

(a) Let U,U′ ∈ U(h)t be random h-forests. Then,

U
d
= U′ ⇐⇒ LU(Φ) = LU′(Φ) ∀Φ ∈ A(Πh,+) . (3.9)

(b) Let U,Un, n ∈ N, be random h-forests. Then,

Un =⇒
n→∞

U ⇐⇒ LUn(Φ)→ LU(Φ) ∀Φ ∈ A(Πh,+) . (3.10)
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We have a R+ indexed collection of nested semigroups for which we
want to decompose our law. The key concept is the following.

Definition (Infinite divisibility)

Suppose t > 0. A random um-space U taking values in U(t)t which is
not identically 0 is called infinitely divisible if for all h > 0 (or t-infinitely
divisible if for all h ∈ (0, t]) and n ∈ N
we find i.i.d. U

(h,n)
1 , . . . ,U

(h,n)
n ∈ U(h)t,

s.t.the h-top of U is a concatenation of these random forests:

U(h)
d
= U

(h,n)
1 t · · · t U(h,n)

n . (4.1)

Note that by Theorem (9) this is equivalent to saying that for all
h > 0 the Laplace functional of the h-treetop factorizes for any n ∈ N:

∃U(h,n) ∈ U(h)t with LU(Φ) = (LU(h,n) (Φ))n, Φ ∈ A(Πh,+) . (4.2)
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Recall that M#(E ) denotes the set of boundedly finite measures on
E , which we will consider here for the space E = U(h)t \ {0}) with the
point 0 infinitely far away.

Theorem (Lévy-Khintchine representation)

An infinitely divisible random ultrametric measure space U allows for a
Lévy-Khintchine representation of its Laplace functional; more precisely,
there exists a unique λ∞ ∈M#(U \ {0}) with

∫
(ū ∧ 1)λ∞(du) <∞

such that for any h ∈ (0,∞):

− log LU(Φh) =

∫
U(h)t\{0}

(1− e−Φh(u))λh(du) ∀Φ ∈ Π+ , (4.3)

for

λh(du) =

∫
U\{0}

λ∞(dv)1(v(h) ∈ du) ∈M#(U(h)t \ {0}) . (4.4)
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Theorem

If U is merely t-infinitely divisible, there is a unique
λt ∈M#(U(t)t \ {0}) such that u 7→ (ū ∧ 1) is also integrable, (4.3)
holds for h ∈ (0, t] and (4.4) holds with λt instead of λ∞ for h ∈ (0, t].
In either case,

λh(U(h)t\{0}) = − logP(Ū = 0) ∈ [0,∞] for any h. (4.5)

We refer to λh as the h-Lévy measure and to λ∞ as the Lévy measure.
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Corollary (Poisson cluster representation)

Let U be infinitely divisible. Then for every h > 0 there exists a Poisson
point process Nλh on U(h)t with intensity measure
λh ∈M#(U(h)t \ {0}) such that

U(h)
d
=

⊔
u∈Nλh

u . (4.6)

If U is t-infinitely divisible, then there exists a Poisson point process on
U(t)t such that the h-truncations of the points form a Poisson point
process Nh with Lévy measure λh with (4.6).
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Branching property:

Different individuals grow independent trees of descendents.

State of the process however contains information about also the
early ancestral relations, creates dependence.

How to reconcile this and how to formalize this for U−valued
processes?
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Setup

Let S be a Polish space. We use B(S) for the Borel σ-field on S and
bB(S) to denote the bounded measurable functions on S.
Assume there are St ⊂ S, t ≥ 0 with the following properties.

Ss ⊆ St for 0 ≤ s ≤ t.

St is closed in S.

There is a continuous mapping Tt : S 7→ St , which is the identity if
restricted to St : Tt(x) = x for any x ∈ St .

There is a binary operation tt : St × St → St such that (St ,tt) is a
commutative topological semigroup for all t ≥ 0 with neutral
element 0 ∈ S0.

The extension of tt to all elements of S is defined via

tt : S × S → St , (x , y) 7→ (Tt(x)) tt (Tt(y)) . (5.1)

For simplicity, we drop the index t at tt if it’s clear from the context.
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Example (um-spaces)

Recall the setting of ultrametric spaces and the semigroup of t-forests.
The evolving genealogy of the population was described via the
genealogical distance between individuals and a sampling measure giving
an ultrametric measure space and element of U.
Trees were h−truncated by truncating the metric at 2h and two such
objects were h− concatenated, th, by taking the disjoint union of the
sets of individuals, keeping the metric in each population and setting the
distance between individuals from different subpopulations equal to 2h
and by adding the measures. Then S = U, St = U(t)t ultrametric
measure spaces of diameter at most t and Ttu = u(t) the classical
truncation, t ≥ 0, u ∈ U.
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Definition (t-multiplicativity and t-additivity)

Let f : S → R measurable and t ≥ 0. We say that f is t-multiplicative on
St if

f (x1 tt · · · tt xn) = f (x1) · · · f (xn) , n ∈ N , x1, . . . , xn ∈ St . (5.2)

We say that f is tt-additive on St if

f (x1 tt · · · tt xn) = f (x1) + · · ·+ f (xn) , n ∈ N , x1, . . . , xn ∈ S . (5.3)
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Definition (Convolution)

Suppose t ≥ 0 and n ∈ N. If Q1,Q2 are probability measures on B(St),
then define the t-convolution
Q1 ∗t Q2 : B(S)→ [0, 1], A 7→ (Q1 ∗t Q2)(A) via

(Q1 ∗t Q2)(A) :=

∫
St

Q1(dx1)

∫
St

Q2(dx2)1(x1 tt x2 ∈ A) . (5.4)

Certain functions on the semigroup will play an important role.

Definition (Branching property for semigroups)

A family (Pt)t≥0 of probability kernels Pt : S × B(S)→ [0, 1] has the
branching property if

Pt(x1 ts x2, ht) = (Pt(x1, ·) ∗s Pt(x2, ·))(ht), x1, x2 ∈ Ss , (5.5)

for any s, t ≥ 0 and ht ∈ bB(S) t-multiplicative on St .
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We need a criterion easy to check to decide whether the solutions of
a martingale problem

(A,F , δu) (6.1)

has the branching property.

This replaces the classical argument with values in linear spaces based
on the Log-Laplace equation, in the context of genealogical processes.
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Theorem (Branching generators)

Let Dt ⊂ Cb(S) be t-multiplicative functions on St , t ≥ 0, and

D̃ ⊂ {(x , t) 7→ ψ(t)ht(x) : ψ ∈ C 1
b (R,R), ht ∈ Dt , (t 7→ ht) (6.2)

∈ C 1(R,Cb(S))}

on which we have a map Ã = A + ∂t : D̃ → B(S). Assume that for any
(x , 0) ∈ S × R the following holds.

For any two solutions (Xt , t)t≥0 and (X ′t , t)t≥0 of the martingale problem

for (Ã, D̃, δ(x,0)) one has TtXt
d
= TtX

′
t for every t > 0, and a solution

(Xt , t)t≥0 has a stochastically continuous version.
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Theorem

Then the family (Pt)t≥0 defined via Pt(x , f ) = E[f (Xt)|X0 = x ],
x ∈ S , f ∈ bB(S), t ≥ 0 has the branching property if and only if either of
the following conditions is satisfied:

(a) For x1, x2 ∈ St , ψh ∈ D̃, t ≥ 0:

Ãψ(t)ht(x1 t x2) = ψ′(t)ht(x1 t x2) + ψ(t)[Ãht(x1)ht(x2) (6.3)

+ht(x1)Ãht(x2)],

(b) For each ψh ∈ D̃ there exists a function g : R+ × S → R such that
g(t, ·) is t-additive for each t ≥ 0 and, for all (t, x) ∈ R+ × St ,

Ãψ(t)ht(x) = ψ′(t)ht(x) + ψ(t)g(t, x)ht(x) . (6.4)
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Consider the case where St ≡ S , t > 0.

Corollary (branching generator, classical case)

Assume S is a Polish space and D ⊂ bB(S) is multiplicative on S.
Assume that the (A,D)-martingale problem is well-posed and has a
stochastically continuous solution (Xt)t≥0.
Then the semigroup associated to (Xt)t≥0 has the branching property if
and only if either of the following conditions is satisfied.

(a) For all x1, x2 ∈ S , h ∈ D:

Ah(x1 t x2) = Ah(x1)h(x2) + h(x1)Ah(x2), (6.5)

(b) There exists a t-additive function g : S → R,
i.e. g(x1 t x2) = g(x1) + g(x2) for any x1, x2 ∈ S with

Ah(x) = g(x)h(x) , x ∈ S , h ∈ D. (6.6)
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We next want to define the evolving genealogy of a Feller branching
process, as the simplest example of the setting we proposed.
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This U−valued Markov processes solves the HP for the following
operator.

Φn,φ([U, r , µ]) =

∫
Un

φ((r(xi , xj))1 ≤ i < j ∈ n) µ(dx1) . . . µ(dxn) (7.1)

Ω↑Φn,φ(u) = Ω↑,growΦn,φ(u) + Ω↑,branΦn,φ(u) (7.2)

and Ω↑Φn,φ(0) = 0.
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The operators are given by

Ω↑,growΦn,φ(u) = Φn,2∇φ(u), ∇φ =
∑

1≤i<j≤n

∂φ

∂ri,j
, (7.3)

Ω↑,branΦn,φ(u) = bnΦn,φ(u) +
2a

ū

∑
1≤k<l≤n

Φn,φ◦θk,l (u), (7.4)

where(
θk,l(r)

)
i,j

:= ri,j1{i 6=l,j 6=l} + rk,j1{i=l} + ri,k1{j=l}, 1 ≤ i < j . (7.5)
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U(h)t = {U ∈ U |µ⊗2 ({(x , y) ∈ U2 | r(x , y) > 2h}) = 0 (7.6)

U(h) = {U ∈ U |µ⊗2 ({(x , y) ∈ U2 | r(x , y) > 2h}) = 0 (7.7)

Then define for u, v ∈ U(h)t the concatenation:

u t v = [U ] V , rU th rV , µ+ v ], with (7.8)

rU th rV |U×U= rU , rU th rV |V×V = rV , (7.9)

rU t rV (x , y) = 2h, x ∈ U, y ∈ V . (7.10)
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The h-top u(h) of u ∈ U is defined:

u(h) = [U, r ∧ 2h, µ] ∈ U(h)t. (7.11)

Then the truncation operation is :

Th(u) = u(h), Sh = U(h)t. (7.12)
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Theorem (Branching property: tree-valued Feller)

The tree-valued Feller diffusion U has the branching property. �
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This result extends to spatial processes for example:

tree-valued super random walk

historical process of the above

ancestral path marked tree-valued super random walk
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