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Shu�es

The shu�e of two words from some alphabet is the random word formed
by interleaving the two words uniformly at random while maintaining the
relative ordering of the letters in each word.

Example: shu�ing ab and cd we get the words abcd, acbd, cabd, acdb,
cadb, cdab � each with probability 1

6
.
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Shu�e chains

Build a Markov chain pWnqnPN0 by at each stage shu�ing a �xed word
with the current word to produce a new word.

Consider from now on the simplest nontrivial case where the alphabet is
ta, bu and the �xed word repeatedly shu�ed in is ab.

The transition probabilities describing the conditional distribution of W3

given W2 are

� aaabbb aababb aabbab abaabb ababab

aabb 9{15 4{15 1{15 1{15 0
abab 0 4{15 4{15 4{15 3{15




The marginal distribution of W3 is PtW3 � aaabbbu � 6
15
,

PtW3 � aababbu � 4
15
, PtW3 � aabbabu � 2

15
, PtW3 � abaabbu � 2

15
,

and PtW3 � abababu � 1
15

� not uniform.
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Ballot sequences and trees

The Markov chain gives a growing sequence of ballot sequences (strings of
n letters a and and n letters b such that for any k ¤ 2n the number of
letters a in the �rst k letters is at least the number of letters b).

Write Bn for the set of ballot sequences of length 2n (� possible values of
Wn). Note that #Bn is the nth Catalan number 1

n�1

�
2n
n

�
.

By standard bijections, the Markov chain gives �growing� sequences of
various kinds of planar trees (or any of the hundreds of other objects
counted by the Catalan numbers).
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Compacti�cation

Can we use Doob�Martin theory to compactify the space of �nite ballot
sequences (equivalently, various spaces of objects such as planar trees)?

Essentially, �How can the Markov chain be conditioned to behave at large
times?�
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Words to matchings

A matching of r2ns is a partition of r2ns into subsets of size 2.

Given a word w � w1 . . . w2n P Bn, a matching M of r2ns is an admissible
associated matching if for every block ti, ju of M with i   j we have
wi � a and wj � b.

Example: if n � 3 and w � aababb, then the admissible associated
matchings of the word w are tt1, 3u, t2, 5u, t4, 6uu, tt1, 3u, t2, 6u, t4, 5uu,
tt1, 5u, t2, 3u, t4, 6uu, and tt1, 6u, t2, 3u, t4, 5uu.
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Matchings to words

Any matching of M of r2ns de�nes a word w P Bn for which M is an
admissible associated matching: if ti, ju is a block of M with i   j, then
place a letter a in the position i and a letter b in the position j.

Denote this word by ΦpMq.

Example: Φptt1, 3u, t2, 5u, t4, 6uuq � aababb.

Let Λpwq :� #tM : ΦpMq � wu be the number of admissible associated
matchings of a word w.

Example: Λpaababbq � 4.
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Counting admissible associated matchings

Given a word w � w1 . . . w2n P Bn, the number of admissible associated
matchings is

Λpwq �
¹

1¤k¤2n,wk�a

p#t1 ¤ i ¤ k : wi � au � #t1 ¤ j ¤ k : wj � buq .

That is, if we write ip for the index of the pth letter a in w, then

Λpwq �
n¹
p�1

hpipq,

where

hptq :� #t1 ¤ i ¤ t : wi � au � #t1 ¤ j ¤ t : wj � bu

is the height at time t of the path that makes a �1 step for each a and a �1
step for each b. Note that hptq ¥ 0 for 0 ¤ t ¤ 2n and hp0q � hp2nq � 0.
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Matching chain

Write In, Jn P r2ns for the positions into which a, b are shu�ed to
produce Wn.

Construct as follows a Markov chain pMnqnPN0 such that Mn is an
admissible associated matching of Wn: in going from Mn to Mn�1 match
In�1 and Jn�1 (that is, make tIn�1, Jn�1u a block of the partition
Mn�1) and de�ne the remaining blocks by taking each block tk, `u of Mn

with k   ` and transforming it into the block tp, qu of Mn�1, where
p � k and q � ` if k   `   In�1   Jn�1,
p � k and q � `� 1 if k   In�1   `� 1   Jn�1,
p � k � 1 and q � `� 1 if In�1   k � 1   `� 1   Jn�1,
p � k � 1 and q � `� 2 if In�1   k � 1   Jn�1   `� 2,
p � k � 2 and q � `� 2 if In�1   Jn�1   k � 2   `� 2.

That is, Mn�1 with the block tIn�1, Jn�1u removed is a matching of
r2n� 2sztIn�1, Jn�1u obtained by pushing Mn forwards using the
increasing bijection from r2ns to r2n� 2sztIn�1, Jn�1u.
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Uniformity

For each n P N0, the random matching Mn is uniformly distributed over
the 1

n!

±n
k�1

�
2k
2

�
� p2n� 1qp2n� 3q � � � 3 � 1 � p2n� 1q!! matchings of

r2ns.

For each n P N0 and w P Bn,

PtWn � wu � PtΦpMnq � wu �
Λpwq

p2n� 1q!!
.
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�Filtering�

For each n P N0 and w P Bn, the conditional distribution of Mn given
Wn � w is uniform on the Λpwq admissible associated matchings of w.
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Going backwards in time

For v P Bn and w P Bn�1,

PtWn � v |Wn�1 � wu �
1

n� 1
Npv, wq

Λpvq

Λpwq
,

where Npv, wq is the number of pairs pi, jq with 1 ¤ i   j ¤ 2pn� 1q
such that w � v1 . . . vi�1avi . . . vj�2bvj�1 . . . v2n.

The conditional distribution of Mn given Mn�1 � M is the distribution of
the random partition of r2ns that is produced by �rst removing a block
ti, ju uniformly at random from the n� 1 blocks of M to produce a
matching of the set r2n� 2szti, ju and then applying the unique
increasing bijection from r2n� 2szti, ju to r2ns to turn this matching into
a matching of r2ns.
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Combining �ltering and going backwards in time

Consider w P Bn�1 and construct a random matching R of r2ns as
follows. Let S be a uniform random admissible associated matching for w
and let R be such that the conditional distribution of R given S � S
coincides with the conditional distribution of Mn given Mn�1 � S.
Then, the distribution of R is the same as the conditional distribution of
Mn given tWn�1 � wu.

Thus, the distribution of the random word ΦpRq coincides with the
conditional distribution of Wn given tWn�1 � wu.

Moreover, given ΦpRq the conditional distribution of the random matching
R is uniform on the set of admissible associated matchings of ΦpRq.
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Combining �ltering and going backwards in time

remove uniformly chosen matched pair 

choose  
uniform 
admissible 
associated 
matching 

P{W=*} = P{Wn = * | Wn+1 = w} 

turn 
matching 
into 
word 

W 

R S 

w 
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Labeled matchings

A labeled matching of r2ns is a matching in which the n blocks are labeled
with distinct elements of rns.

Using the same randomness that was used to construct W1,W2, . . . and
M1,M2, . . ., build a Markov chain L1, L2, . . . such that Ln is a labeled
matching of r2ns for n P N: the blocks of Ln are the same as the blocks
of Mn and in going from Ln to Ln�1 the newly created block
tIn�1, Jn�1u is labeled with n� 1 whilst the blocks that arise by
transforming blocks already present in Mn keep their labels.

Given a labeled matching L of r2ns, let ΨpLq P Bn be the corresponding
word (that is, forget about the labels and for each block ti, ju with i   j
we place a letter a in position i and a letter b in position j).

By construction, ΨpLnq �Wn.
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Uniformity with labels

For each n P N, the random matching Ln is uniformly distributed over the
n!p2n� 1q!! labeled matchings of r2ns.
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�Filtering� with labels

For each n P N, the conditional distribution of Ln given Mn is uniform
over the n! labelings of Mn.

The conditional distribution of Ln given Wn is uniform over the n!ΛpWnq
labeled admissible associated matchings of Wn.
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Going backwards in time with labels

The labeled matching Ln is obtained from the labeled matching Ln�1 by
removing the block labeled n� 1 and if this block contains the indices
ti, ju applying the unique increasing bijection from r2n� 2szti, ju to r2ns
to turn this labeled matching of r2n� 2szti, ju into a labeled matching of
r2ns.

Note that the backward transition dynamics are deterministic.
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Combining �ltering and going backwards in time with labels

Consider w P Bn�1 and construct a random labeled matching P of r2ns as
follows. Let Q be a uniform random labeled admissible associated
matching for w and let P be such that the conditional distribution of P
given tQ � Qu coincides with the conditional distribution of Ln given
tLn�1 � Qu. Then, the distribution of P is the same as the conditional
distribution of Ln given tWn�1 � wu.

Thus, the distribution of the random word ΨpP q coincides with the
conditional distribution of Wn given tWn�1 � wu.

Moreover, given ΨpP q, the conditional distribution of the random labeled
matching P is uniform on the set of labeled admissible associated
matchings of ΨpP q.
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Combining �ltering and going backwards in time with labels

remove block { an+1 , bn+1 } 

choose  
uniform 
labeled 
admissible 
associated 
matching 

P{W=*} = P{Wn = * | Wn+1 = w} 

turn 
labeled 
matching 
into 
word 

W 

P Q 

 w 
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Bridges

For w P Bn, let pWw
0 ,W

w
1 , . . . ,W

w
n q be the bridge obtained by

conditioning pW0,W1, . . . ,Wnq on the event tWn � wu.

All bridges have the same backwards transition probabilities as pWnqnPN0 :

PtWw
k � u |Ww

k�1 � vu � PtWk � u |Wk�1 � vu.

An in�nite bridge is a Markov process pW8
n qnPN0 with the same backwards

transition probabilities as pWnqnPN0 .

Finding the Doob�Martin compacti�cation is essentially the same as
characterizing the in�nite bridges with almost surely trivial tail σ-�elds
(any in�nite bridge is a mixture of such in�nite bridges).
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Lifting an in�nite bridge to a process of labeled matchings

Suppose that pW8
n qnPN0 is an in�nite bridge. Then there exists a Markov

process pL8n qnPN0 with distribution uniquely speci�ed by the requirements
that:

L8n is a random labeled matching of r2ns for all n P N,
the process pΨpL8n qqnPN0

has the same distribution as pW8
n qnPN0

,
the conditional distribution of L8n given ΨpL8n q is uniform on the set of
labeled associated admissible matchings of ΨpL8n q for all n P N0.

That is, we can lift up an in�nite word-valued bridge to produce a nice
process taking values in the space of labeled matchings that has
deterministic backwards transitions.
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Labeled random matchings and total orders

Turn L8n into a word of length 2n in the alphabet
�n
k�1tak, bku in which

each letter appears exactly once as follows: place the letter ap in position i
if the block of L8n labeled p is of the form ti, ju with i   j and place the
letter bq in position ` if the block of L8n labeled q is of the form tk, `u
with k   `.

This word de�nes a total order on
�n
k�1tak, bku in the obvious way: x

precedes y in the total order if the letter x comes before the letter y in the
word.

This total order is paired, by which we mean that ar always precedes br.

These paired total orders are consistent as n varies and hence de�ne a
paired total order on I0 :�

�
kPNtak, bku.
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Exchangeability

A random paired total order   on I0 is exchangeable if for every n P N the
induced random total order  n on

�n
k�1tak, bku has the same distribution

as the random total order  nσ for any permutation σ of
rns :� t1, 2, . . . , nu, where  nσ is de�ned as follows:

aσpiq  
n
σ bσpjq i� ai  

n bj ,
bσpiq  

n
σ aσpjq i� bi  

n aj ,
aσpiq  

n
σ aσpjq i� ai  

n aj ,
bσpiq  

n
σ bσpjq i� bi  

n bj .

The random paired total order associated with pL8n qnPN0 is exchangeable.

Conversely, any exchangeable random paired total order is the paired total
order associated with a unique in�nite bridge pW8

n qnPN0 via the
corresponding pL8n qnPN0 .
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Ergodicity and tail triviality

An measurable set A of total orders is almost invariant for a exchangeable
random paired total order   on I0 if t P Au � t σP Au almost surely for
all permutations σ that leave all but �nitely many integers �xed.

A exchangeable random paired total order   on I0 is ergodic if all almost
invariant sets have probability 0 or 1.

The tail σ-�eld of an in�nite bridge pWnqnPN0 is almost surely trivial if
and only if the corresponding exchangeable random paired total order is
ergodic.
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A generic example

Consider a probability measure η on R2 that assigns all of its mass to the
set tps, tq P R2 : s   tu and has di�use marginals.

Let ppSn, TnqqnPN be i.i.d. with common distribution η.

The total order � on I0 constructed by declaring that
ai � aj if Si   Sj ,
bi � bj if Ti   Tj ,
ai � bj if Si   Tj ,
bi � aj if Ti   Sj ,

is paired, exchangeable and ergodic.
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Characterizing ergodic exchangeable paired random total orders

All ergodic exchangeable paired random total orders arise by the
construction in the previous slide.

To see why, �rst de�ne an order-preserving injection f : I0 Ñ r0, 1s by

fpyq � lim sup
nÑ8

1

2n
#t1 ¤ k ¤ n : ak   yu

� lim sup
nÑ8

1

2n
#t1 ¤ ` ¤ n : b`   yu.

De�ne a sequence ppXn, YnqqnPN of r0, 1s2-valued random variables by
setting Xn :� fpanq and Yn :� fpbnq. Then ppXn, YnqqnPN is i.i.d. with
common distribution a probability measure µ that assigns all of its mass to
the set tpx, yq P r0, 1s2 : x   yu and has di�use marginals.

The probability measure µ is uniquely determined by the moment formulae»
r0,1s2

xmyn µpdx, dyq

�

�
1

2


m�n ¸
cP
±m�n

k�1
tak,bku

Ptc1   am�n�1, . . . , cm   am�n�m,

cm�1   bm�n�1, . . . , cm�n   bm�n�nu.
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All in�nite bridges are limits of �nite bridges

An in�nite bridge pW8
n qnPN0 has an almost surely trivial tail σ-�eld if and

only if it is the limit in distribution as k Ñ8 of �nite bridges
pWwk

0 , . . . ,W
wk
nk q for some sequence pwkqkPN with wk P Bnk .

In Doob-Martin language, the full boundary and minimal boundary
coincide. Equivalently, all points in the boundary correspond to extremal
harmonic functions.

Steven N. Evans Iterated shu�e products



Ballot sequences to Dyck paths reminder

Suppose that w P Bn.
Write ik (respectively, jk) for the position of the kth letter a (respectively,
letter b) in the word w; that is, #t1 ¤ r ¤ ik : wr � au � k and
#t1 ¤ s ¤ jk : ws � bu � k.

For 1 ¤ t ¤ 2n set

hptq :� #t1 ¤ i ¤ t : wi � au � #t1 ¤ j ¤ t : wj � bu

� #t1 ¤ p ¤ n : ip ¤ tu � #t1 ¤ q ¤ n : iq ¤ tu.

Thus 0 � hp0q, hp1q, . . . , hp2nq is a path that starts and ends at 0, makes
steps of �1, and stays nonnegative (that is, a Dyck path).
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An explicit example

Suppose that η is the probability distribution of pU, V q conditional on
U   V , where U and V are independent exponential random variables
with respective rate parameters α and β.

Then

PtW8
n � wu

� n!
n¹
p�1

hpipq

�
pα� βqn2n±2n

k�1 pp2n� k � 1 � hpk � 1qqα� p2n� k � 1 � hpk � 1qqβq
.

Note: When α � β, pW8
n qnPN0 has the same distribution as pWnqnPN0 .

Has anyone seen this family of probability distributions on ballot sequences
(equivalently, Dyck paths)?
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