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Definitions

A bipartite map with a boundary is a rooted bipartite map in which face on
the right of the root edge is called the external face, and the other faces
called internal faces.
A quadrangulation with a boundary is a bipartite map with a boundary
whose internal faces are all quadrangles.

Remark

The boundary is not necessarily
simple.

We denote by 2p the perimeter of
the map (i.e. degree of the exter-
nal face).

↖ 2p = 24
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Enumeration results

Generating function of pointed quadrangulations with a boundary of length
2, with a weight g per face

Q•1 (g) := 1 +
∑
q∈Q•

g f (q)

= 2 · x(g) where x = 1 + 3gx2

Generating function of pointed bipartite maps with a boundary of length 2p,
with a weight gk per face of degree 2k

B•p(g1, g2, . . .) :=
∑
m∈B•p

∞∏
k=1

g fk(m)
k =

(
2p

p

)
· x(g)p

where x = 1 + φg(x) with

φg(x) =

∞∑
k=1

1

2

(
2k

k

)
gkx

k
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O(n) model on quadrangulations

A loop configuration on a quadrangulation with boundary q is a collection of
disjoint simple closed paths on the dual of q which do not visit the external
face. We restrict ourselves to the so-called rigid loops, i.e. such that every
internal face is of type

or

Op =

{
(q, `)

∣∣∣∣q is a quadrangulation with a boundary of length 2p,
` is a rigid loop configuration on q.

}
For n ∈ (0, 2) and g, h > 0, let

Fp(n; g, h) =
∑

(q,`)∈Op
g# h# n#

A triple (n; g, h) is admissible if Fp(n; g, h) <∞. (This is independent of p).
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O(n) model on quadrangulations

Definition

Fix p > 0. For each admissible triple (n; g, h), we define a probability
distribution on Op by

P(p)
n;g,h((q, `)) =

g# h# n#

Fp(n; g, h)

 P(12)
n;g,h( · ) =

g8 h38 n9

F12(n; g, h)
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Theorem (Borot, Bouttier, Guitter ’12)

For all admissible (n; g, h), there exist κ̄(n; g, h) and α(n; g, h) such that

Fp(n; g, h) ∼
p→∞

C κ̄−p p−α−1/2

For each n(0, 2), there are four possible values of α
subcritical: α = 1 generic critical: α = 2
non-generic critical

dense phase: α =
3

2
− 1

π
arccos(n/2) ∈ (1, 3/2)

dilute phase: α =
3

2
+

1

π
arccos(n/2) ∈ (3/2, 2)

h

g1
12

dense
dilute

generic
criticalsubcritical
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The perimeter cascade of loops

We focus on the hierarchical structure of the loops, which we represent by a
tree labeled by the half-perimeters of the loops.
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We complete the tree by vertices of label 0. This gives a random process

(χ
(p)
u )u∈U labeled by the Ulam tree U =

⋃
n≥0(N∗)n. We call this process the

(half-)perimeter cascade of the rigid O(n) model on quadrangulations.
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Main results

Theorem (C., Curien, Maillard 2016+)

Let (χ
(p)
u )u∈U be the previously defined perimeter cascade. Then, we have

the following convergence in distribution in `∞(U):(
p−1χ(p)

u

)
u∈U

p→∞
=⇒ (Zαu )u∈U ,

where Zα = (Zαu )u∈U is a multiplicative cascade to be defined later.
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Multiplicative cascades

Linxiao Chen O(n) model on random quadrangulations: the cascade of loop perimeters 11 / 26



Multiplicative cascades

Definition

A multiplicative cascade is a random process Z = (Z(u))u∈U such that

Z∅ = 1, ∀u ∈ U , i ≥ 1 : Zui = Zu · ξu(i),

where (ξu)u∈U = (ξu(i), i ≥ 1)u∈U is an i.i.d. family of random vectors in
(R+)N

∗
. The law of ξ = ξ∅ is the o�spring distribution of the cascade Z .

Remark: X = log Z = (log Zu)u∈U is a branching random walk.
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Mellin transform and martigales of multiplicative cascades

Definition (Mellin transform)

φ(θ) := E

[∑
i∈N∗

ξ(i)θ
]
∈ (−∞,+∞]

logφ is convex

W (θ)
n := φ(θ)−n

∑
|u|=n(Zu)

θ is a
martingale.

log φ

θ1 θ2 θ

(log φ)′(θ1) < (log φ(θ1))/θ1
uniformly integrable

(log φ)′(θ2) > (log φ(θ2))/θ2
not uniformly integrable

Theorem (Biggins, Lyons)

W (θ)
n is uniformly integrable if and only if

E[W (θ)
1 log+W (θ)

1 ] <∞ and (logφ)′(θ) < (logφ(θ))/θ
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The multiplicative cascade Zα

(ζt)t≥0: α-stable Lévy process without negative jumps, started from 0.

τ : the hitting time of −1 by ζ .
(∆ζ)↓τ : the jumps of ζ before τ , sorted in ↓ order.
d να := 1/τ

E[1/τ ]d ν̃α, where ν̃α is the law of (∆ζ)↓τ

Theorem (C., Curien, Maillard 2016+)

Let (χ(p)(u))u∈U be the perimeter cascade of the rigid O(n) model on
quadrangulations. Then we have the convergence in distribution in `∞(U):(

p−1χ(p)
u

)
u∈U

p→∞
=⇒ (Zαu )u∈U ,

where (Zαu )u∈U is a multiplicative cascade of o�spring distribution να.

Linxiao Chen O(n) model on random quadrangulations: the cascade of loop perimeters 14 / 26



The multiplicative cascade Zα

(ζt)t≥0: α-stable Lévy process without negative jumps, started from 0.

τ : the hitting time of −1 by ζ .
(∆ζ)↓τ : the jumps of ζ before τ , sorted in ↓ order.
d να := 1/τ

E[1/τ ]d ν̃α, where ν̃α is the law of (∆ζ)↓τ

Theorem (C., Curien, Maillard 2016+)

Let (χ(p)(u))u∈U be the perimeter cascade of the rigid O(n) model on
quadrangulations. Then we have the convergence in distribution in `∞(U):(

p−1χ(p)
u

)
u∈U

p→∞
=⇒ (Zαu )u∈U ,

where (Zαu )u∈U is a multiplicative cascade of o�spring distribution να.

Linxiao Chen O(n) model on random quadrangulations: the cascade of loop perimeters 14 / 26



Properties of Zα

Theorem (C., Curien, Maillard 2016+)

The Mellin transform of the multiplicative cascade Zα is

φα(θ) =
sin(π(2− α))

sin(π(θ − α))
pour θ ∈ (α, α+ 1) et φα(θ) =∞ sinon.
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Proofs
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The gasket decomposition

A gasket.
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The gasket decomposition [Borot, Bouttier, Guitter ’12]

gasket: a bipartite map
A hole of size 2k in the gasket:

an element of Ok + a “necklace”

⇒ fixed point condition{
Fp(n; g, h) = Bp(g1, g2, . . .)

gk = gδk,2 + n h2k Fk(n; g, h) (k ≥ 1)
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Encoding the gasket: the BDG and JS bijections
[Bouttier, Di Francesco, Guitter ’04, Janson-Stefánsson ’15]

Starting point:
pointed bipartite map

gk  face of degree 2k
BDG−−−−→ gk  • of degree k
labels−−−→ g̃k  • of degree k g̃k = gk

(2k−1
k

)
JS−−−→ g̃k  • with k descendants (k ≥ 1)

(1 ◦ with 0 descendant)
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Encoding the gasket: the BDG-JS bijection

pointed bipartite maps under
the Boltzmann distribution

P•p,g(M = m•) =

∏∞
k=1 g

fk(m
•)

k

B•p(g)

BDG−→
JS

Galton-Watson tree
of o�spring distribution

µJS(k) = g̃kκ
k−1

∼ Ck−α

face of degree 2k −→ interal vertex with k children

vertices −→ leaves

The BDG and JS bijections applies naturally to pointed bipartite maps. To
recover a non-pointed Boltzmann map, we need to bias the law of the
Galton-Watson tree by 1/{its number of leaves}.

Ep,g[F((χk))] =
E•p,g

[
1

#vertexF((χk))
]

E•p,g
[

1
#vertex

] =
EGW

[
1

#leafF((Di)↓)
]

EGW
[

1
#leaf

]

Linxiao Chen O(n) model on random quadrangulations: the cascade of loop perimeters 20 / 26



Encoding the gasket: the BDG-JS bijection

pointed bipartite maps under
the Boltzmann distribution

P•p,g(M = m•) =

∏∞
k=1 g

fk(m
•)

k

B•p(g)

BDG−→
JS

Galton-Watson tree
of o�spring distribution

µJS(k) = g̃kκ
k−1

∼ Ck−α

face of degree 2k −→ interal vertex with k children

vertices −→ leaves

The BDG and JS bijections applies naturally to pointed bipartite maps. To
recover a non-pointed Boltzmann map, we need to bias the law of the
Galton-Watson tree by 1/{its number of leaves}.

Ep,g[F(M)] =
E•p,g

[
1

#vertexF(M)
]

E•p,g
[

1
#vertex

] =
EGW

[
1

#leafF(T)
]

EGW
[

1
#leaf

]
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Encoding the gasket: scaling limit of the hole sizes

Conclusion

Let (χ
(p)
i )i≥1 be the half-degrees of faces of the gasket, sorted in ↓ order and

completed with zeros. Then for all bound function F ,

E[F(χ
(p)
i )] =

E
[

1
#{i≤Tp:Xi=−1}F((Xi + 1)↓i≤Tp)

]
E
[

1
#{i≤Tp:Xi=−1}

]

≈
E
[
1
τ F((∆ζ)↓τ )

]
E
[
1
τ

]

where Sn = X1 + X2 + · · ·+ Xn is a random walk with step distribution
µ(k) = µJS(k + 1) (k ≥ −1) and Tp its hitting time of −1.

When p is large, #{i ≤ Tp : Xi = −1} ≈ µ(−1)Tp.

Proposition

(p−1χ(p)
i )i≥1 =⇒

p→∞
να as p→∞ in the sense of finite dimension marginals.
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An identity on random walks

Theorem (CCM)

Let Sn = X1 + · · ·+ Xn be a random walk with steps Xi ∈ {−1, 0, 1, · · · }.
Let Tp be its hitting time of −p. Then, for all f : Z→ R+ and all p ≥ 2,

E

 1

Tp − 1

Tp∑
i=1

f (Xi)

 = E
[
f (X1)

p

p + X1

]
.

Theorem (CCM)

Let (ηt)t≥0 be a Lévy process without negative jumps and of Lévy measure π.
Let τ be its hitting time at −1. Then, for all measurable f : R∗+ → R+

E

 1

τ

∑
t≤τ

f (∆ηt)

 =

∫
f (x)

1

1 + x
π(dx).
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Proof of the discrete identity

Kemperman’s formula ( /cyclic lemma /ballot theorem . . .)

If the F is invariant under cyclic permutation of its arguments, then

E
[
F(X1, · · · , Xn)1{Tp=n}

]
=

p

n
E
[
F(X1, · · · , Xn)1{Sn=−p}

]

Proof.

An := E

[
n∑
i=1

f (Xi)1{Tp=n}

]
=

p

n
E

[
n∑
i=1

f (Xi)1{Sn=−p}

]
by Kemperman’s formula

= pE
[
f (X1)1{Sn=−p}

]
by cyclic symmetry

= pE
[
f (X1)1{S̃n−1=−p−X1}

]
by Markov property

= pE
[
f (X1)

n− 1

p + X1
1{T̃p+X1

=n−1}

]
by Kemperman’s formula.

For p ≥ 2 we have always Tp ≥ 2, hence

E

 1

Tp − 1

Tp∑
i=1

f (Xi)

 =
∞∑
n=2

An
n− 1

= p
∞∑
n=2

E
[
f (X1)

1

p + X1
1{T̃p+X1

=n−1}

]

= E
[
f (X1)

p

p + X1

]
.
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Consequences of the identities

The Mellin transform of the continuous cascade Zα: for θ ∈ (α, α+ 1),

E

[
1
τ

∑
t≤τ

(∆ηt)
θ

]
E
[
1
τ

] =

∫
xθ

1+xπ(dx)∫
1

1+xπ(dx)
=

sin(π(2− α))

sin(π(θ − α))

Convergence of moments of the o�spring distribution

E

∑
|u|=k

(
p−1χ(p)

u

)θ −→
p→∞

E

∑
|u|=k

(Zαu )θ


Convergence in `∞(Uk) of the perimeter cascade: for all ε > 0,

P
(
∃u ∈ Uk \ [Uk]n, p−1χ(p)

u > ε
)
−→
n→∞

0
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Convergence in `∞(U)

Two ingredients

There exists θ > 0 such that

E

[ ∞∑
i=1

(χ(p)
i

p

)θ]
−→
p→∞

E

[ ∞∑
i=1

(Zαi )θ

]
< 1

For some p0 and c < 1, we have

∀p > p0, E

[ ∞∑
i=1

(
p−1χ

(p)
i

)θ]
≤ c

∀p, E
[∑∞

i=1 V̄ (χ
(p)
i )
]
< V̄ (p)

where V̄ (p) is the expected volume of a rigid
O(n)-quadrangulation of perimeter 2p.

There exists c′ < 1 such that

∀p ≤ p0, E

[ ∞∑
i=1

V̄ (χ
(p)
i )

]
≤ c′V̄ (p)

We denote by Np0 (u) the number of ancestors of u ∈ U which has a label ≤ p0.

E

∑
|u|>k

(χ(p)
i

p

)θ
1{Np0 (u)≤m}

 −→
k→∞

0

P
(
∃u /∈ Uk : Np0 (u) ≤ m , χ(p)

u ≥ εp
)
−→
k→∞

0

E

 ∑
u∈Lm,ε

V̄ (χ
(p)
u )

 ≤ c′mV̄ (p) −→
m→∞

0

P
(
∃u ∈ U : Np0 (u) > m , χ(p)

u ≥ εp
)
−→
m→∞

0

P
(
∃u ∈ U \ Uk : χ

(p)
u ≥ εp

)
−→
k→∞

0
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 −→
k→∞

0

P
(
∃u /∈ Uk : Np0 (u) ≤ m , χ(p)

u ≥ εp
)
−→
k→∞

0

E

 ∑
u∈Lm,ε

V̄ (χ
(p)
u )

 ≤ c′mV̄ (p) −→
m→∞

0

P
(
∃u ∈ U : Np0 (u) > m , χ(p)

u ≥ εp
)
−→
m→∞

0

P
(
∃u ∈ U \ Uk : χ

(p)
u ≥ εp

)
−→
k→∞

0
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Thank you for your attention !
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