#### Random Trees and Maps, CIRM, 07-06-2016

# Geometry of random planar maps with high degrees Timothy Budd



Based on arXiv:1506.01590, arXiv:1602.01328 with N. Curien, and arXiv:1605.00581 with J. Bertoin, N. Curien, I. Kortchemski.

Niels Bohr Institute, University of Copenhagen budd@nbi.dk, http://www.nbi.dk/~budd/

▶ Let  $\mathfrak{m} \in \mathcal{M}^{(I)}$  be a bipartite rooted planar map with root face degree 2*I*.



▶ Let  $\mathfrak{m} \in \mathcal{M}^{(I)}$  be a bipartite rooted planar map with root face degree 2I.



▶ Let  $\mathfrak{m} \in \mathcal{M}^{(I)}$  be a bipartite rooted planar map with root face degree 2I.





- Let  $\mathfrak{m} \in \mathcal{M}^{(I)}$  be a bipartite rooted planar map with root face degree 2I.
- ▶ Given a sequence  $\mathbf{q} = (q_1, q_2, ...)$  in  $[0, \infty)$ , define weight of  $\mathfrak{m}$  to be the product  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_f q_{\deg(f)/2}$  over non-root faces f.





- Let  $\mathfrak{m} \in \mathcal{M}^{(l)}$  be a bipartite rooted planar map with root face degree 2l.
- ▶ Given a sequence  $\mathbf{q} = (q_1, q_2, ...)$  in  $[0, \infty)$ , define weight of  $\mathfrak{m}$  to be the product  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_f q_{\deg(f)/2}$  over non-root faces f.
- ▶ **q** admissible iff  $W^{(I)}(\mathbf{q}) := \sum_{\mathfrak{m} \in \mathcal{M}^{(I)}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$ . Then  $w_{\mathbf{q}}$  gives rise to probability measure on  $\mathcal{M}^{(I)}$ : the **q**-Boltzmann planar map (with boundary of length 2I).
- ▶ **q** critical iff admissible and increasing any  $q_k$  leads to  $W^{(l)}(\mathbf{q}) = \infty$ .





- Let  $\mathfrak{m} \in \mathcal{M}^{(I)}$  be a bipartite rooted planar map with root face degree 2I.
- ▶ Given a sequence  $\mathbf{q} = (q_1, q_2, ...)$  in  $[0, \infty)$ , define weight of  $\mathfrak{m}$  to be the product  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_f q_{\deg(f)/2}$  over non-root faces f.
- ▶ **q** admissible iff  $W^{(I)}(\mathbf{q}) := \sum_{\mathfrak{m} \in \mathcal{M}^{(I)}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$ . Then  $w_{\mathbf{q}}$  gives rise to probability measure on  $\mathcal{M}^{(I)}$ : the **q**-Boltzmann planar map (with boundary of length 2I).
- **q** critical iff admissible and increasing any  $q_k$  leads to  $W^{(l)}(\mathbf{q}) = \infty$ .
- ▶ Special case: can view any rooted (bip.) planar map as having boundary of length 2.





- Let  $\mathfrak{m} \in \mathcal{M}^{(I)}$  be a bipartite rooted planar map with root face degree 2I.
- ▶ Given a sequence  $\mathbf{q} = (q_1, q_2, ...)$  in  $[0, \infty)$ , define weight of  $\mathfrak{m}$  to be the product  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_f q_{\deg(f)/2}$  over non-root faces f.
- ▶ **q** admissible iff  $W^{(I)}(\mathbf{q}) := \sum_{\mathfrak{m} \in \mathcal{M}^{(I)}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$ . Then  $w_{\mathbf{q}}$  gives rise to probability measure on  $\mathcal{M}^{(I)}$ : the **q**-Boltzmann planar map (with boundary of length 2I).
- **q** critical iff admissible and increasing any  $q_k$  leads to  $W^{(l)}(\mathbf{q}) = \infty$ .
- ► Special case: can view any rooted (bip.) planar map as having boundary of length 2.





- Let  $\mathfrak{m} \in \mathcal{M}^{(I)}$  be a bipartite rooted planar map with root face degree 2I.
- ▶ Given a sequence  $\mathbf{q} = (q_1, q_2, ...)$  in  $[0, \infty)$ , define weight of  $\mathfrak{m}$  to be the product  $w_{\mathbf{q}}(\mathfrak{m}) = \prod_f q_{\deg(f)/2}$  over non-root faces f.
- ▶ **q** admissible iff  $W^{(I)}(\mathbf{q}) := \sum_{\mathfrak{m} \in \mathcal{M}^{(I)}} w_{\mathbf{q}}(\mathfrak{m}) < \infty$ . Then  $w_{\mathbf{q}}$  gives rise to probability measure on  $\mathcal{M}^{(I)}$ : the **q**-Boltzmann planar map (with boundary of length 2I).
- **q** critical iff admissible and increasing any  $q_k$  leads to  $W^{(l)}(\mathbf{q}) = \infty$ .
- ► Special case: can view any rooted (bip.) planar map as having boundary of length 2.
- Dual planar map denoted by m<sup>†</sup>.



#### Infinite Boltzmann planar maps



► Local limit: there exists a unique random infinite map, the **q**-IBPM, whose neighborhoods of the root are distributed as those of a **q**-BPM conditioned to have large number of vertices.

[Björnberg, Stefánsson, '14] [Stephenson, '14]



|        |                                                                                                                                                                                               | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c  \kappa^{k-1} k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| PRIMAL | $Vol(\overline{Ball}_r)$                                                                                                                                                                      | $\sim r^4$                                                                            |                                                                                            |
|        | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk                                                                                                                                  | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] |                                                                                            |
| DUAL   | $\begin{aligned} & \text{Vol}\left(\overline{\text{Ball}}_r^\dagger\right) \\ & \text{Scaling limit} \\ & \text{(Gromov-Hausdorff)} \\ & \text{Simple random} \\ & \text{walk} \end{aligned}$ |                                                                                       |                                                                                            |







|        |                                                                                        | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c  \kappa^{k-1} k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |
|--------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| PRIMAL | $Vol(\overline{Ball}_r)$                                                               | $\sim r^4$                                                                            |                                                                                            |
|        | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk                           | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] |                                                                                            |
| DUAL   | $Vol(\overline{Ball}_r^{\dagger})$ Scaling limit (Gromov-Hausdorff) Simple random walk | $\sim r^4$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent          |                                                                                            |







|        |                                                                                                                                                                                         | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c  \kappa^{k-1} k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| PRIMAL | $Vol(\overline{Ball}_r)$                                                                                                                                                                | $\sim r^4$                                                                            | $\sim r^{2a-1}$                                                                            |
|        | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk                                                                                                                            | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] | Stable maps<br>[Le Gall, Miermont]<br>Recurrent<br>[Björnberg, Stefánsson]                 |
| DUAL   | $\begin{aligned} & \text{Vol}\left(\overline{\text{Ball}}_r^\dagger\right) \\ & \text{Scaling limit}_{\text{(Gromov-Hausdorff)}} \\ & \text{Simple random}_{\text{walk}} \end{aligned}$ | $\sim r^4$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent          |                                                                                            |







|        |                                     | Regular critical ${f q}$                                 | Non-generic $q_k \sim c  \kappa^{k-1} k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |
|--------|-------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| PRIMAL | $Vol(\overline{Ball}_r)$            | $\sim r^4$                                               | $\sim r^{2a-1}$                                                                            |
|        | Scaling limit<br>(Gromov-Hausdorff) | Brownian map<br>[Le Gall, Miermont]                      | Stable maps<br>[Le Gall, Miermont]                                                         |
|        | Simple random<br>walk               | Recurrent<br>[Gurel-Gurevich, Nachmias]                  | Recurrent<br>[Björnberg, Stefánsson]                                                       |
| DUAL   | $Vol(\overline{Ball}_r^{\dagger})$  | $\sim r^4$                                               | ?                                                                                          |
|        | Scaling limit (Gromov-Hausdorff)    | Probably Brownian map  Triangulations: [Curien, Le Gall] | ?                                                                                          |
|        | Simple random<br>walk               | Recurrent                                                | ?                                                                                          |







- ▶ Two convenient representations of a *submap*:
  - ▶ Connected subset  $e^{\circ}$  of dual edges intersecting root.
  - ► As a planar map e with holes.





- ▶ Two convenient representations of a *submap*:
  - ▶ Connected subset  $e^{\circ}$  of dual edges intersecting root.
  - ► As a planar map  $\mathfrak e$  with holes.



- ▶ Two convenient representations of a *submap*:
  - ▶ Connected subset  $e^{\circ}$  of dual edges intersecting root.
  - ► As a planar map e with holes.



- ▶ Two convenient representations of a *submap*:
  - ▶ Connected subset  $e^{\circ}$  of dual edges intersecting root.
  - ► As a planar map e with holes.



- ▶ Two convenient representations of a *submap*:
  - ▶ Connected subset e° of dual edges intersecting root.
  - ► As a planar map e with holes.





- ▶ Two convenient representations of a *submap*:
  - ► Connected subset  $e^{\circ}$  of dual edges intersecting root.
  - ► As a planar map  $\mathfrak e$  with holes.
- ▶ Peeling process corresponds to sequence  $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \mathfrak{e}_2 \subset \cdots$ ,  $\mathfrak{e}_{i+1}$  is obtained from  $\mathfrak{e}_i$  by *peeling* an edge  $\mathcal{A}(\mathfrak{e}_i)$ .







- ▶ Two convenient representations of a *submap*:
  - Connected subset e° of dual edges intersecting root.
  - ► As a planar map e with holes.
- Peeling process corresponds to sequence  $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \mathfrak{e}_2 \subset \cdots$ ,  $\mathfrak{e}_{i+1}$  is obtained from  $\mathfrak{e}_i$  by *peeling* an edge  $\mathcal{A}(\mathfrak{e}_i)$ .

  A is *peel algorithm*:  $\mathcal{A}(\text{map with holes}) \in \{\text{edge incident to a hole}\}$







- ▶ Two convenient representations of a *submap*:
  - Connected subset e° of dual edges intersecting root.
  - ► As a planar map € with holes.
- Peeling process corresponds to sequence  $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \mathfrak{e}_2 \subset \cdots$ ,  $\mathfrak{e}_{i+1}$  is obtained from  $\mathfrak{e}_i$  by *peeling* an edge  $\mathcal{A}(\mathfrak{e}_i)$ .

  A is *peel algorithm*:  $\mathcal{A}(\text{map with holes}) \in \{\text{edge incident to a hole}\}$







- ▶ Two convenient representations of a *submap*:
  - Connected subset e° of dual edges intersecting root.
  - As a planar map e with holes.
- ▶ Peeling process corresponds to sequence  $\mathfrak{e}_0 \subset \mathfrak{e}_1 \subset \mathfrak{e}_2 \subset \cdots$ ,  $\mathfrak{e}_{i+1}$  is obtained from  $\mathfrak{e}_i$  by *peeling* an edge  $\mathcal{A}(\mathfrak{e}_i)$ .

  A is *peel algorithm*:  $\mathcal{A}(\mathsf{map} \mathsf{ with holes}) \in \{\mathsf{edge incident to a hole}\}$







- ▶ Two convenient representations of a *submap*:
  - Connected subset  $e^{\circ}$  of dual edges intersecting root.
  - ► As a planar map e with holes.
- ▶ Peeling process corresponds to sequence  $e_0 \subset e_1 \subset e_2 \subset \cdots$ ,  $e_{i+1}$  is obtained from  $e_i$  by *peeling* an edge  $\mathcal{A}(e_i)$ .
- ▶ Branching vs. non-branching (immediately explore non- $\infty$  holes).







- ▶ Two convenient representations of a *submap*:
  - ► Connected subset  $e^\circ$  of dual edges intersecting root.
  - ► As a planar map e with holes.
- ▶ Peeling process corresponds to sequence  $e_0 \subset e_1 \subset e_2 \subset \cdots$ ,  $e_{i+1}$  is obtained from  $e_i$  by *peeling* an edge  $\mathcal{A}(e_i)$ .
- ▶ Branching vs. non-branching (immediately explore non- $\infty$  holes).



















































































Markov property: unexplored region after i steps is distributed as a **q**-IBPM with boundary length equal to perimeter  $2P_i$ .







- ▶ Markov property: unexplored region after i steps is distributed as a **q**-IBPM with boundary length equal to perimeter  $2P_i$ .
- ▶ In particular,  $(P_i)_i$  is Markov and independent of peel algorithm A.







- ▶ Markov property: unexplored region after i steps is distributed as a q-IBPM with boundary length equal to perimeter 2P<sub>i</sub>.
- ▶ In particular,  $(P_i)_i$  is Markov and independent of peel algorithm A.

Using 
$$W_N^{(I)} := \sum_{\substack{\mathsf{maps } \mathfrak{m} \\ \mathsf{N} \text{ vertices} \\ \mathsf{boundary } 2I}} w_{\mathbf{q}}(\mathfrak{m}) \overset{\mathsf{N} \to \infty}{\sim} C N^{-\gamma} h^{\uparrow}(I) \kappa^{-I}, \quad h^{\uparrow}(I) := 2I 2^{-2I} \binom{2I}{I}$$

$$\mathbb{P}(P_{i+1} = P_i + k) = \frac{h^{\uparrow}(P_i + k)}{h^{\uparrow}(P_i)} \begin{cases} q_{k+1}\kappa^{-k} & k \ge 0 \\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$









- ► Markov property: unexplored region after *i* steps is distributed as a **q**-IBPM with boundary length equal to *perimeter* 2*P<sub>i</sub>*.
- ▶ In particular,  $(P_i)_i$  is Markov and independent of peel algorithm A.

Using 
$$W_N^{(I)} := \sum_{\substack{\text{maps }\mathfrak{m} \\ N \text{ vertices} \\ \text{boundary } 2I}} w_{\mathbf{q}}(\mathfrak{m}) \overset{N \to \infty}{\sim} C N^{-\gamma} h^{\uparrow}(I) \kappa^{-I}, \quad h^{\uparrow}(I) := 2I 2^{-2I} \binom{2I}{I}$$

$$\mathbb{P}(P_{i+1} = P_i + k) = \frac{h^{\uparrow}(P_i + k)}{h^{\uparrow}(P_i)} \overbrace{\begin{cases} q_{k+1} \kappa^{-k} & k \geq 0 \\ 2W^{(-k-1)} \kappa^{-k} & k < 0 \end{cases}}$$

$$\nu(k) = \begin{cases} q_{k+1} \kappa^{-k} & k \ge 0 \\ 2W^{(-k-1)} \kappa^{-k} & k < 0 \end{cases}$$

ightharpoonup defines probability measure on  $\mathbb Z$ 



$$\nu(k) = \begin{cases} q_{k+1}\kappa^{-k} & k \ge 0\\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$

- ightharpoonup defines probability measure on  $\mathbb Z$
- Let  $(W_i)_i$  be random walk with law  $\nu$ .



$$u(k) = \begin{cases} q_{k+1}\kappa^{-k} & k \geq 0 \\ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$



- ightharpoonup defines probability measure on  $\mathbb{Z}$
- ▶ Let  $(W_i)_i$  be random walk with law  $\nu$ .

#### Proposition (TB, '15)

- $ightharpoonup (P_i)_i \stackrel{\text{(d)}}{=} (W_i^{\uparrow})_i$ , i.e.  $(W_i)_i$  started at 1 and conditioned to stay positive.
- $(W_i^{\uparrow})_i$  is h-transform of  $(W_i)_i$ :  $\mathbb{P}(W_{i+1}^{\uparrow} = W_i^{\uparrow} + k) = \frac{h^{\uparrow}(W_i^{\uparrow} + k)}{h^{\uparrow}(W_i^{\uparrow})} \nu(k)$ .

$$\sum_{l=-\infty}^{\infty} h^{\uparrow}(l+k)\nu(k) \stackrel{l>0}{=} h^{\uparrow}(l)$$



$$u(k) = egin{cases} q_{k+1}\kappa^{-k} & k \geq 0 \ 2W^{(-k-1)}\kappa^{-k} & k < 0 \end{cases}$$



- ightharpoonup defines probability measure on  $\mathbb Z$
- Let  $(W_i)_i$  be random walk with law  $\nu$ .

#### Proposition (TB, '15)

- ▶  $(P_i)_i \stackrel{\text{(d)}}{=} (W_i^{\uparrow})_i$ , i.e.  $(W_i)_i$  started at 1 and conditioned to stay positive.
- $(W_i^{\uparrow})_i \text{ is h-transform of } (W_i)_i \colon \mathbb{P}(W_{i+1}^{\uparrow} = W_i^{\uparrow} + k) = \frac{h^{\uparrow}(W_i^{\uparrow} + k)}{h^{\uparrow}(W_i^{\uparrow})} \nu(k).$
- $\mathbf{q} \rightarrow \nu$  defines a bijection

$$\{\mathbf{q} \; \textit{critical}\} \longleftrightarrow \left\{ 
u : \sum_{k=-\infty}^{\infty} h^{\uparrow}(l+k) 
u(k) \stackrel{l > 0}{=} h^{\uparrow}(l) \right\}$$



ch ch

▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathit{hull}$ .



vith

▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_{\mathsf{gr}}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathit{hull}$ .



th

▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathit{hull}$ .





- th
- ▶ Ball $_r^{\dagger}(\mathfrak{m}_{\infty})$  is the submap of  $\mathfrak{m}_{\infty}$  determined by all dual edges with at least one end at  $d_{\mathrm{gr}}^{\dagger} < r$  from root.  $\overline{\mathrm{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})$  is its hull.
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices;





- th
- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .







- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\rm gr}^{\dagger}$  by  $\approx 1/(2P_i)$ .







- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\rm gr}^{\dagger}$  by  $\approx 1/(2P_i)$ .







- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with A = "by layers". Typically expect that each step increases average  $d_{gr}^{\dagger}$  by  $\approx 1/(2P_i)$ .









- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\rm gr}^{\dagger}$  by  $\approx 1/(2P_i)$ .







- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\rm gr}^{\dagger}$  by  $\approx 1/(2P_i)$ .









- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\rm gr}^{\dagger}$  by  $\approx 1/(2P_i)$ .







- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\mathrm{gr}}^{\dagger}$  by  $\approx 1/(2P_i)$ .









- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\rm gr}^{\dagger}$  by  $\approx 1/(2P_i)$ .









- ▶  $\mathsf{Ball}_r^\dagger(\mathfrak{m}_\infty)$  is the submap of  $\mathfrak{m}_\infty$  determined by all dual edges with at least one end at  $d_\mathsf{gr}^\dagger < r$  from root.  $\overline{\mathsf{Ball}}_r^\dagger(\mathfrak{m}_\infty)$  is its  $\mathsf{hull}$ .
- ▶ Volume  $|\overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$  is # internal vertices; half-perimeter  $|\partial \overline{\text{Ball}}_r^{\dagger}(\mathfrak{m}_{\infty})|$ .
- ▶ Can be obtained from a peeling process with  $\mathcal{A} = \text{"by layers"}$ . Typically expect that each step increases average  $d_{\mathrm{gr}}^{\dagger}$  by  $\approx 1/(2P_i)$ .





▶ Equip each dual edge with i.i.d. Exp(1) random length, and view  $\mathfrak{m}_{\infty}^{\dagger}$  as a length metric space.





- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view  $\mathfrak{m}_{\infty}^{\dagger}$  as a length metric space.
- ▶  $\mathsf{Ball}_{\tau}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})$  determined by set of dual edges that are fully explored after time  $\tau \in \mathbb{R}$ ;



- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view  $\mathfrak{m}_{\infty}^{\dagger}$  as a length metric space.
- ▶ Ball<sub> $\tau$ </sub>  $(\mathfrak{m}_{\infty})$  determined by set of dual edges that are fully explored after time  $\tau \in \mathbb{R}$ :





- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view  $\mathfrak{m}_{\infty}^{\dagger}$  as a length metric space.
- ▶  $\mathsf{Ball}_{\tau}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})$  determined by set of dual edges that are fully explored after time  $\tau \in \mathbb{R}$ ;  $\overline{\mathsf{Ball}}_{\tau}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})$  its hull.





- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view  $\mathfrak{m}_{\infty}^{\dagger}$  as a length metric space.
- ▶  $\mathsf{Ball}_{\tau}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})$  determined by set of dual edges that are fully explored after time  $\tau \in \mathbb{R}$ ;  $\overline{\mathsf{Ball}}_{\tau}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})$  its hull.
- ▶ If  $0 = \tau_0 < \tau_1 < \cdots$  are times at which  $\overline{\text{Ball}}_{\tau}^{\text{fpp}}(\mathfrak{m}_{\infty})$  changes, then:
  - $lackbox \left(\overline{\mathsf{Ball}}_{ au_i}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})\right)_i$  is peeling process with  $\mathcal{A}=$  "uniform random".
  - $\qquad \qquad \tau_{i+1} \tau_i \stackrel{\mathrm{(d)}}{=} \mathsf{Exp}(2P_i) \qquad \text{(with mean } 1/(2P_i)\text{)}.$







- ▶ Equip each dual edge with i.i.d. Exp(1) random length, and view  $\mathfrak{m}_{\infty}^{\dagger}$  as a length metric space.
- ▶  $\mathsf{Ball}_{\tau}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})$  determined by set of dual edges that are fully explored after time  $\tau \in \mathbb{R}$ ;  $\overline{\mathsf{Ball}}_{\tau}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})$  its hull.
- ▶ If  $0 = \tau_0 < \tau_1 < \cdots$  are times at which  $\overline{\text{Ball}}_{\tau}^{\text{fpp}}(\mathfrak{m}_{\infty})$  changes, then:
  - $lackbox \left(\overline{\mathsf{Ball}}_{ au_i}^{\mathrm{fpp}}(\mathfrak{m}_{\infty})\right)_i$  is peeling process with  $\mathcal{A}=$  "uniform random".
  - $ightharpoonup au_{i+1} au_i \stackrel{ ext{(d)}}{=} ext{Exp}(2P_i)$  (with mean  $1/(2P_i)$ ).







# Back of the envelope: does $\tau_i \to \infty$ ?



$$\mathbb{E}\tau_{\infty} = \sum_{i=0}^{\infty} \mathbb{E}\left[\exp(2P_{i})\right] = \sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2W_{i}^{\uparrow}}\right] = \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2k} \mathbb{P}\begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$= \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{h^{\uparrow}(k)}{2k} \mathbb{P}\begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$= \sum_{i=0}^{\infty} \mathbb{P}\begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$= \sum_{j=1}^{\infty} \mathbb{P}\begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$= \sum_{j=1}^{\infty} \mathbb{P}\begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$= \mathbb{E}\begin{bmatrix} w \\ 1 \end{bmatrix}$$

# Back of the envelope: does $\tau_i \to \infty$ ?



$$\mathbb{E}\tau_{\infty} = \sum_{i=0}^{\infty} \mathbb{E}\left[\exp(2P_{i})\right] = \sum_{i=0}^{\infty} \mathbb{E}_{1}\left[\frac{1}{2W_{i}^{\uparrow}}\right] = \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2k} \mathbb{P}\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$= \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \frac{h^{\uparrow}(k)}{2k} \mathbb{P}\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix} = \sum_{i=0}^{\infty} \sum_{k=1}^{\infty} \mathbb{P}\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$= \sum_{i=0}^{\infty} \mathbb{P}\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix} = \sum_{i=0}^{\infty} j \mathbb{P}\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$= \sum_{i=0}^{\infty} \mathbb{P}\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix} = \mathbb{E}\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

 $\mathbb{E}\tau_{\infty}=\infty$  iff  $(W_i)$  is recurrent on  $\mathbb{Z}!$ 

|        |                                                                                        | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c  \kappa^{k-1} k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |  |
|--------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| _      | $Vol(\overline{Ball}_r)$                                                               | $\sim r^4$                                                                            | $\sim r^{2a-1}$                                                                            |  |
| PRIMAL | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk                           | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] | Stable maps<br>[Le Gall, Miermont]<br>Recurrent<br>[Björnberg, Stefánsson]                 |  |
| DUAL   | $Vol(\overline{Ball}_r^{\dagger})$ Scaling limit (Gromov-Hausdorff) Simple random walk | $\sim r^4$ Probably Brownian map Triangulations: [Curien, Le Gall] Recurrent          | ?<br>?<br>?                                                                                |  |







-7 -6 -5 -4 -3 -2 -1 1 2 3 4

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

|        |                                     | Regular critical ${f q}$                                   | Non-generic $q_k \sim c$ F           | $\kappa^{k-1}k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |  |
|--------|-------------------------------------|------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|--|
| PRIMAL | $Vol(\overline{Ball}_r)$            | $\sim r^4$                                                 | $\sim r^{2a-1}$                      |                                                                   |  |
|        | Scaling limit<br>(Gromov-Hausdorff) | Brownian map<br>[Le Gall, Miermont]                        | Stable maps<br>[Le Gall, Miermont]   |                                                                   |  |
| PR     | Simple random<br>walk               | Recurrent<br>[Gurel-Gurevich, Nachmias]                    | Recurrent<br>[Björnberg, Stefánsson] |                                                                   |  |
|        |                                     |                                                            | "Dilute" $a \in (2, \frac{5}{2})$    | "Dense" $a \in \left(\frac{3}{2}, 2\right)$                       |  |
| ۸L     | $Vol(\overline{Ball}_r^\dagger)$    | $\sim r^4$                                                 |                                      |                                                                   |  |
| DU,    | Scaling limit<br>(Gromov-Hausdorff) | Probably Brownian map<br>Triangulations: [Curien, Le Gall] |                                      |                                                                   |  |
|        | Simple random<br>walk               | Recurrent                                                  |                                      | Transient                                                         |  |

 $au_{\infty}$   $\infty$  a.s.  $\infty$  a.s. Finite a.s.

#### Proposition (TB, Curien, '16)

Any infinite graph with  $\mathbb{E}\tau_{\infty}<\infty$  is transient.

|        |                                                              | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c$ F                                                        | $\kappa^{k-1}k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |  |
|--------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| _      | $Vol(\overline{Ball}_r)$                                     | $\sim r^4$                                                                            | $\sim r^{2a-1}$                                                                   |                                                                   |  |
| PRIMAL | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] | Stable maps<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Björnberg, Stefánsson] |                                                                   |  |
|        |                                                              |                                                                                       | "Dilute" $a \in (2, \frac{5}{2})$                                                 | "Dense" $a \in \left(\frac{3}{2}, 2\right)$                       |  |
| ۸L     | $Vol(\overline{Ball}_r^\dagger)$                             | $\sim r^4$                                                                            |                                                                                   | $\sim \exp(r)$                                                    |  |
| DN,    | Scaling limit<br>(Gromov-Hausdorff)                          | Probably Brownian map<br>Triangulations: [Curien, Le Gall]                            |                                                                                   | ><                                                                |  |
|        | Simple random<br>walk                                        | Recurrent                                                                             |                                                                                   | Transient                                                         |  |

 $au_{\infty}$  on a.s.  $au_{\infty}$  a.s. Finite a.s.

#### Theorem (TB, Curien, '16)

In the dense case  $a \in (\frac{3}{2}, 2)$  there exists  $c_a > 0$  such that

$$r^{-1}\log\left(|\partial\overline{Ball}_r^\dagger|\right) \xrightarrow[r \to \infty]{(\mathrm{p})} c_a, \quad r^{-1}\log\left(|\overline{Ball}_r^\dagger|\right) \xrightarrow[r \to \infty]{(\mathrm{p})} (a-rac{1}{2})c_a$$

#### Simulations: dense case







#### Simulations: dense case







## Theorem (TB, Curien, '16)

When a < 2 the **q**-IBPM and its dual both contain infinitely many cut vertices separating root from  $\infty$ .

## Simulations: dense case







## Simulations: dense case













a = 2.3

















- As  $\nu(k) \stackrel{|k| \to \infty}{\sim} |k|^{-a}$  we have convergence to a (a-1)-stable process  $(S_t)$  with  $\mathbb{P}(S_t \le 0) = \frac{1}{2(a-1)}$ .
- Since  $(P_i) \stackrel{\text{(d)}}{=} (W_i^{\uparrow})$ , we have [Caravenna, Chaumont]

$$\left(\frac{P_{\lfloor nt\rfloor}}{n^{\frac{1}{a-1}}}\right)_{t\geq 0}\xrightarrow[n\to\infty]{(d)}\mathsf{p}_{\mathsf{q}}\,(S_t^\uparrow)_{t\geq 0}$$



- As  $\nu(k) \stackrel{|k| \to \infty}{\sim} |k|^{-a}$  we have convergence to a (a-1)-stable process  $(S_t)$  with  $\mathbb{P}(S_t \le 0) = \frac{1}{2(a-1)}$ .
- Since  $(P_i) \stackrel{\text{(d)}}{=} (W_i^{\uparrow})$ , we have [Caravenna, Chaumont]

$$\left(\frac{P_{\lfloor nt \rfloor}}{n^{\frac{1}{s-1}}}\right)_{t>0} \xrightarrow[n \to \infty]{(d)} \mathbf{p_q}(S_t^{\uparrow})_{t\geq 0}$$



#### Theorem (TB, Curien, '16)

The peeling process on a dilute q-IBPM satisfies

$$\left(\frac{P_{\lfloor nt\rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor nt\rfloor}}{n^{\frac{a-1/2}{a-1}}}\right) \xrightarrow[n \to \infty]{(d)} \left(\mathbf{p_q} \cdot S_t^{\uparrow}, \mathbf{v_q} \cdot Z_t\right)_{t \ge 0}$$

- As  $\nu(k) \stackrel{|k| \to \infty}{\sim} |k|^{-a}$  we have convergence to a (a-1)-stable process  $(S_t)$  with  $\mathbb{P}(S_t \le 0) = \frac{1}{2(a-1)}$ .
- ► Since  $(P_i) \stackrel{\text{(d)}}{=} (W_i^{\uparrow})$ , we have [Caravenna, Chaumont]

$$\left(\frac{P_{\lfloor nt \rfloor}}{n^{\frac{1}{a-1}}}\right)_{t \geq 0} \xrightarrow[n \to \infty]{(d)} \mathbf{p_q}(S_t^{\uparrow})_{t \geq 0}$$



#### Theorem (TB, Curien, '16)

The uniform peeling process on a dilute q-IBPM satisfies

$$\left(\frac{P_{\lfloor nt\rfloor}}{n^{\frac{1}{a-1}}}, \frac{V_{\lfloor nt\rfloor}}{n^{\frac{a-1/2}{a-1}}}, \frac{\tau_{\lfloor nt\rfloor}}{n^{\frac{a-2}{a-1}}}\right) \xrightarrow[n \to \infty]{(d)} \left(\mathbf{p_q} \cdot S_t^{\uparrow}, \mathbf{v_q} \cdot Z_t, \frac{1}{2\mathbf{p_q}} \int_0^t \frac{\mathrm{d}u}{S_u^{\uparrow}}\right)_{t \geq 0}$$

- As  $\nu(k) \stackrel{|k| \to \infty}{\sim} |k|^{-a}$  we have convergence to a (a-1)-stable process  $(S_t)$  with  $\mathbb{P}(S_t \le 0) = \frac{1}{2(a-1)}$ .
- ► Since  $(P_i) \stackrel{\text{(d)}}{=} (W_i^{\uparrow})$ , we have [Caravenna, Chaumont]

$$\left(\frac{P_{\lfloor nt \rfloor}}{n^{\frac{1}{a-1}}}\right)_{t>0} \xrightarrow[n \to \infty]{(d)} \mathbf{p_q}(S_t^{\uparrow})_{t\geq 0}$$



#### Theorem (TB, Curien, '16)

The uniform peeling process on a dilute q-IBPM satisfies

$$\left(\frac{P_{\lfloor nt\rfloor}}{n^{\frac{1}{a-1}}},\frac{V_{\lfloor nt\rfloor}}{n^{\frac{a-1/2}{a-1}}},\frac{\tau_{\lfloor nt\rfloor}}{n^{\frac{a-2}{a-1}}}\right)\xrightarrow[n\to\infty]{(d)}\left(\mathbf{p_q}\cdot S_t^\uparrow,\mathbf{v_q}\cdot Z_t,\frac{1}{2\mathbf{p_q}}\int_0^t\frac{\mathrm{d}u}{S_u^\uparrow}\right)_{t\geq0}$$

$$\left(\frac{|\partial \overline{\mathit{Ball}}^{\mathit{fpp}}_{\lfloor nt \rfloor}(\mathfrak{m}_{\infty})|}{n^{\frac{1}{\vartheta-2}}}, \frac{|\overline{\mathit{Ball}}^{\mathit{fpp}}_{\lfloor nt \rfloor}(\mathfrak{m}_{\infty})|}{n^{\frac{a-1/2}{\vartheta-2}}}\right) \xrightarrow[n \to \infty]{(d)} \left(\mathbf{p_q} \cdot S_{\theta_{2\mathbf{p_q}t}}^{\uparrow}, \mathbf{v_q} \cdot Z_{\theta_{2\mathbf{p_q}t}}\right)_{t \geq 0}$$

- As  $\nu(k) \stackrel{|k| \to \infty}{\sim} |k|^{-s}$  we have convergence to a (s-1)-stable process  $(s_t)$  with  $\mathbb{P}(s_t \le 0) = \frac{1}{2(s-1)}$ .
- ► Since  $(P_i) \stackrel{\text{(d)}}{=} (W_i^{\uparrow})$ , we have [Caravenna, Chaumont]

$$\left(\frac{P_{\lfloor nt \rfloor}}{n^{\frac{1}{g-1}}}\right)_{t \geq 0} \xrightarrow[n \to \infty]{(d)} \mathbf{p_q}(S_t^{\uparrow})_{t \geq 0}$$



#### Theorem (TB, Curien, '16)

The "by layers" peeling process on a dilute q-IBPM satisfies

$$\left(\frac{P_{\lfloor nt\rfloor}}{n^{\frac{1}{a-1}}},\frac{V_{\lfloor nt\rfloor}}{n^{\frac{a-1/2}{a-1}}},\frac{\overset{\textbf{r}}{\lfloor nt\rfloor}}{n^{\frac{a-2}{a-1}}}\right)\xrightarrow[n\to\infty]{(d)}\left(\textbf{p}_{\textbf{q}}\cdot S_{t}^{\uparrow},\textbf{v}_{\textbf{q}}\cdot Z_{t},\textbf{h}_{\textbf{q}}^{}\int_{0}^{t}\frac{\mathrm{d}u}{S_{u}^{\uparrow}}\right)_{t>0}$$

$$\left(\frac{|\partial \overline{\mathit{Ball}}_{\lfloor \mathit{nt} \rfloor}^{\dagger}(\mathfrak{m}_{\infty})|}{n^{\frac{1}{s-2}}}, \frac{|\overline{\mathit{Ball}}_{\lfloor \mathit{nt} \rfloor}^{\dagger}(\mathfrak{m}_{\infty})|}{n^{\frac{s-1/2}{s-2}}}\right) \xrightarrow[n \to \infty]{(d)} \left(\mathbf{p_q} \cdot S_{\theta_{t/\mathbf{h_q}}}^{\uparrow}, \mathbf{v_q} \cdot Z_{\theta_{t/\mathbf{h_q}}}\right)_{t \geq 0}$$

|        |                                                              | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c  \kappa$                                           | $\left[ k^{k-1}k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right) \right]$ |  |
|--------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|        | $Vol(\overline{Ball}_r)$                                     | $\sim r^4$                                                                            | $\sim r^{2a-1}$                                                            |                                                                             |  |
| PRIMAL | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] | Stable maps<br>[Le Gall, Miermont]<br>Recurrent<br>[Björnberg, Stefánsson] |                                                                             |  |
|        |                                                              |                                                                                       | "Dilute" $a \in (2, \frac{5}{2})$                                          | "Dense" $a \in \left(\frac{3}{2}, 2\right)$                                 |  |
| DUAL   | $Vol(\overline{Ball}_r^{\dagger})$                           | $\sim r^4$                                                                            | $\sim r^{\frac{a-1/2}{a-2}}$                                               | $\sim \exp(r)$                                                              |  |
|        | Scaling limit<br>(Gromov-Hausdorff)                          | Probably Brownian map<br>Triangulations: [Curien, Le Gall]                            |                                                                            | ><                                                                          |  |
|        | Simple random<br>walk                                        | Recurrent                                                                             |                                                                            | Transient                                                                   |  |

|        |                                                              | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c  \kappa$                                           | $\left[ k^{k-1}k^{-a}  a \in \left(\frac{3}{2}, \frac{5}{2}\right) \right]$ |  |
|--------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|        | $Vol(\overline{Ball}_r)$                                     | $\sim r^4$                                                                            | $\sim r^{2a-1}$                                                            |                                                                             |  |
| PRIMAL | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] | Stable maps<br>[Le Gall, Miermont]<br>Recurrent<br>[Björnberg, Stefánsson] |                                                                             |  |
|        |                                                              |                                                                                       | "Dilute" $a \in (2, \frac{5}{2})$                                          | "Dense" $a \in \left(\frac{3}{2}, 2\right)$                                 |  |
| DUAL   | $Vol(\overline{Ball}_r^{\dagger})$                           | $\sim r^4$                                                                            | $\sim r^{\frac{a-1/2}{a-2}}$                                               | $\sim \exp(r)$                                                              |  |
|        | Scaling limit<br>(Gromov-Hausdorff)                          | Probably Brownian map<br>Triangulations: [Curien, Le Gall]                            | ? "Stable spheres" ?                                                       | ><                                                                          |  |
|        | Simple random<br>walk                                        | Recurrent                                                                             |                                                                            | Transient                                                                   |  |





|        |                                                              | Regular critical ${f q}$                                                              | Non-generic $q_k \sim c  \kappa$                                           | $k^{k-1}k^{-a}$ $a \in \left(\frac{3}{2}, \frac{5}{2}\right)$ |
|--------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|
| Ι.     | $Vol(\overline{Ball}_r)$                                     | $\sim r^4$                                                                            | $\sim r^{2a-1}$                                                            |                                                               |
| PRIMAL | Scaling limit<br>(Gromov-Hausdorff)<br>Simple random<br>walk | Brownian map<br>[Le Gall, Miermont]<br><b>Recurrent</b><br>[Gurel-Gurevich, Nachmias] | Stable maps<br>[Le Gall, Miermont]<br>Recurrent<br>[Björnberg, Stefánsson] |                                                               |
|        |                                                              |                                                                                       | "Dilute" $a \in (2, \frac{5}{2})$                                          | "Dense" $a \in \left(\frac{3}{2}, 2\right)$                   |
| DUAL   | $Vol(\overline{Ball}_r^{\dagger})$                           | $\sim r^4$                                                                            | $\sim r^{\frac{a-1/2}{a-2}}$                                               | $\sim \exp(r)$                                                |
|        | Scaling limit<br>(Gromov-Hausdorff)                          | Probably Brownian map<br>Triangulations: [Curien, Le Gall]                            | ? "Stable spheres" ?                                                       | ><                                                            |
|        | Simple random<br>walk                                        | Recurrent                                                                             | ? Transient ?                                                              | Transient                                                     |

▶ Consider  $Ball_r^{\dagger}(\mathfrak{m})$  of a (finite) **q**-BPM  $\mathfrak{m}$  with boundary length 2l.





▶ Consider  $Ball_r^{\dagger}(\mathfrak{m})$  of a (finite) **q**-BPM  $\mathfrak{m}$  with boundary length 2*l*.





- ▶ Consider  $Ball_r^{\dagger}(\mathfrak{m})$  of a (finite) **q**-BPM  $\mathfrak{m}$  with boundary length 21.
- ▶ Let  $\mathbf{L}(r)$  be sequence of half-degrees of the holes of  $\text{Ball}_r^{\dagger}(\mathfrak{m})$ .



- ► Consider Ball $_r^{\dagger}(\mathfrak{m})$  of a (finite) **q**-BPM  $\mathfrak{m}$  with boundary length 21.
- ▶ Let  $\mathbf{L}(r)$  be sequence of half-degrees of the holes of  $\mathrm{Ball}_r^{\dagger}(\mathfrak{m})$ .



#### Theorem (Bertoin, TB, Curien, Kortchemski, '16)

If  ${\bf q}$  is dilute critical,  $a\in(2,\frac{5}{2})$ , then  $\left(\frac{\mathsf{L}(\lfloor l^{a-2}\cdot t\rfloor)}{l}\right)_{t\geq0}\frac{\mathrm{(d)}}{l\to\infty}\left(c\mathbf{X}_t^{(a)}\right)_{t\geq0}$  where  $\mathbf{X}_t^{(a)}$  is a self-similar growth-fragmentation process, taking values in

$$\ell_{a+1/2}^{\downarrow}:=\left\{(x_i)_{i\in\mathbb{N}}:x_1\geq x_2\geq \cdots\geq 0,\sum_{i=1}^{\infty}x_i^{a+1/2}<\infty\right\}.$$

► There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.





► There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.





► There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.





- There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of locally largest cycle.
- For each  $\searrow$ -jump spawn an i.i.d. rescaled copy of  $(X_t)$ .





- ► There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.
- For each  $\searrow$ -jump spawn an i.i.d. rescaled copy of  $(X_t)$ .





- ► There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.
- For each  $\searrow$ -jump spawn an i.i.d. rescaled copy of  $(X_t)$ .





- ► There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.
- For each  $\searrow$ -jump spawn an i.i.d. rescaled copy of  $(X_t)$ .





- ▶ There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.
- For each  $\searrow$ -jump spawn an i.i.d. rescaled copy of  $(X_t)$ .





- ► There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.
- For each  $\searrow$ -jump spawn an i.i.d. rescaled copy of  $(X_t)$ .
- **X\_t^{(a)}** enumerates sizes at time t.





- ▶ There exists a self-similar Markov process  $(X_t)$  closely related to  $(S_{\theta_t}^{\uparrow})$  describing perimeter of *locally largest* cycle.
- For each  $\searrow$ -jump spawn an i.i.d. rescaled copy of  $(X_t)$ .
- $ightharpoonup X_t^{(a)}$  enumerates sizes at time t.





- ▶ Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions  $\frac{a-1/2}{a-2} > 4$ , different from Brownian map and stable maps.
- ► The peeling process is tool of choice to study these distances and its scaling limits support the belief.



- ▶ Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions  $\frac{a-1/2}{a-2} > 4$ , different from Brownian map and stable maps.
- ► The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- ▶ Next steps: critical case a = 2, O(n) loop model, geodesics.

- raph
- ▶ Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions  $\frac{a-1/2}{a-2} > 4$ , different from Brownian map and stable maps.
- ▶ The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- Next steps: critical case a = 2, O(n) loop model, geodesics.



- ▶ Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions  $\frac{a-1/2}{a-2} > 4$ , different from Brownian map and stable maps.
- ► The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- ▶ Next steps: critical case a = 2, O(n) loop model, geodesics.



- ▶ Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions  $\frac{a-1/2}{a-2} > 4$ , different from Brownian map and stable maps.
- ► The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- Next steps: critical case a = 2, O(n) loop model, geodesics.



- ▶ Dilute critical Boltzmann planar maps equipped with the dual graph distance may possess scaling limits with fractal dimensions  $\frac{a-1/2}{a-2} > 4$ , different from Brownian map and stable maps.
- ► The peeling process is tool of choice to study these distances and its scaling limits support the belief.
- ▶ Next steps: critical case a = 2, O(n) loop model, geodesics.



Thanks for your attention!