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Boltzmann planar maps

> Let m € M) be a bipartite rooted planar map with root face
degree 2/.

» Given a sequence q = (g1, g2, . . .) in [0, 00), define weight of m to
be the product wq(m) = []; Gaeg(r)/2 OVer non-root faces f.

» q admissible iff W)(q) := 3 c v wa(m) < 0. Then wyq gives
rise to probability measure on M(): the q-Boltzmann planar map
(with boundary of length 21).

» q critical iff admissible and increasing any gy leads to W{)(q) = cc.

» Special case: can view any rooted (bip.) planar map as having
boundary of length 2.

» Dual planar map denoted by m'.




Infinite Boltzmann planar maps

» Local limit: there exists a unique random infinite map, the q-/1BPM,
whose neighborhoods of the root are distributed as those of a
q-BPM conditioned to have large number of vertices.

[Bjérnberg, Stefansson, '14] [Stephenson, '14]
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Submaps and peeling processes

» Two convenient representations of a submap:

» Connected subset ¢° of dual edges intersecting root.
» As a planar map ¢ with holes.
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Submaps and peeling processes

» Two convenient representations of a submap:

» Connected subset ¢° of dual edges intersecting root.
» As a planar map ¢ with holes.
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Peeling process of q-IBPM (non-branching)

» Markov property: unexplored region after i steps is distributed as a
g-IBPM with boundary length equal to perimeter 2P;.
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> In particular, (P;); is Markov and independent of peel algorithm A.
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» Markov property: unexplored region after i steps is distributed as a
g-IBPM with boundary length equal to perimeter 2P;.
> In particular, (P;); is Markov and independent of peel algorithm A.
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Peeling process of q-IBPM (non-branching) Y
=

» Markov property: unexplored region after i steps is distributed as a
g-IBPM with boundary length equal to perimeter 2P;.
» In particular, (P;); is Markov and independent of peel algorithm A.

0o 2/
Using Wi = > wq(m) Y% CNTRT (R, hT(/)::2/2‘2'</)
maps m
N vertices 0

boundary 2/

hT(P,—|—k) qk+1l<£7k k>0

P(Piy1 =P+ k)= ——+~+= -
(Pisy k) (P 2wk Dek k<0
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I/(k)—{qk+ll{ k_o

Wk =k k<0

» defines probability measure on Z
> Let (W;); be random walk with
law v.




—k > Pi & \ =
v(k) = Fh+1h k=0 %
2WEk-D—k | <0 s

» defines probability measure on Z !

> Let (W;); be random walk with D2 T
law v.

Proposition (TB, '15)

> (P); g (WT),, i.e. (W;); started at 1 and conditioned to stay
positive.

g AT (W +k
> (W]'); is h-transform of (W;);: B(W/,, = W 4+ k) = h(T(i'W;))u(k).

Z K1+ K)w(k) 'Z BT(1)

k=—o0
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Gk+1K k>0 s % ;
k =

v(k) {2W(k1)/<;k k<0 : ¢

» defines probability measure on Z !

> Let (W;); be random walk with D2 T
law v.

Proposition (TB, '15)

> (P); g (WT),, i.e. (W;); started at 1 and conditioned to stay
positive.

g AT (W +k
> (W]'); is h-transform of (W;);: B(W/,, = W 4+ k) = h(T(i'W;))u(k).

» g — v defines a bijection

{q critical} +— { Z AT (I + k)v(k) ‘= = (/)}

k=—o0




Dual graph distance

» Balll(m,) is the submap of m,, determined by all dual edges with
at least one end at dj, < r from root. mﬁ(mw) is its hull.
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» Balll(m,) is the submap of m,, determined by all dual edges with
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Ereo = > E[Exp(2P)] = Y E;

i=0 i=0

E7o = oo iff (W) is recurrent on Z! )
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Regular critical 4

Non-generic Gx ~ ckK"1k=2 a€ (%, g)

Vol(Ball,) ~rt ~ p2a-l
-
< Scaling limit Brownian map Stable maps
= (Gromow-Hausor [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€ (2 3) "Dense" a€ (3.2
1
—| Vol(Ball,) ~ r
<C
2| Scaling limit Probably Brownian map
[a) (Gromov-Hausdorff) Triangulations: [Curien, Le Gall]
Simple random Recurrent Transient
walk
Too o0 a.s. o0 a.s. Finite a.s.

Proposition (TB, Curien, '16)

Any infinite graph with ET,, < oo is transient.
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Regular critical 4 Non-generic Gx ~ ckK"1k=2 a€ (%, 5)
Vol(Ball,) ~rt ~ p2a-l
-l
< Scaling limit Brownian map Stable maps
; (Gromov-Hausdorff) [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€(2,3) | "Dense" ac€ (3.2
Bant 4
2 Vol(Ball,) ~r ~ exp(r)
2| Scaling limit Probably Brownian map
O (Gromow%ausdorff) Triangulations: [Curien, Le Gall] ><
Simple random Recurrent Transient
walk
Too o0 a.s. o0 a.s. Finite a.s.

Theorem (TB, Curien, '16)

In the dense case a € (%, 2) there exists ¢, > 0 such that

r~llog (|aBa// |) —> ¢ rtlog (|§II1I) 2, (a— Y,

— 00
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Simulations: dense case

g
When a < 2 the q-IBPM and its dual both contain infinitely many cut
vertices separating root from oo.
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Scaling limit in dilute case
> As v(k) k2o |k|~2 we have
convergence to a (a — 1)-stable
process (S;) with P(S; <0) =
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Scaling limit in dilute case
> As v(k) k2o |k|~2 we have
convergence to a (a — 1)-stable t du
process (S;) with P(S; <0) = ﬁ o Gi
- T
» Since (P;) = @ (W), we have 3 &
[Caravenna, Chaumont]
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Theorem (TB, Curien, '16)
The “by layers” peeling process on a dilute q-IBPM satisfies
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Regular critical 4

Non-generic Gx ~ ckK"1k=? a€ (%, g)

Vol(Ball,) ~rt ~ p2a-1
-
< Scaling limit Brownian map Stable maps
= (Gromow-Hausor [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€ (2 3) "Dense" a€ (3.2
—t a—1/2
- Vol (Ball;) ~ r ~ f a2 ~ exp(r)
2| Scaling limit Probably Brownian map
a (Gromowfiusdorﬁ) Triangulations: [Curien, Le Gall] ><
Simple rlindom Recurrent Transient
wa




Regular critical 4

15— 3 5
Non-generic Gx ~ ckK"1k=2 a€ (5; 5)

Vol(Ball,) ~rt ~ p2a-1
-l
< Scaling limit Brownian map Stable maps
= (Gromow-Hausor [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€ (2 3) "Dense" a€ (3,2)
+ a—1/2
| Vol (Bally) ~ r ~ e ~ exp(r)
= r
2| Scaling limit Probably Brownian map °n "o
o) (Gromowfiusdorﬁ) Triangulations: [Curien, Le Gall ? "Stable spheres' ><
Simple rlindom Recurrent Transient
wa




Regular critical 4 Non-generic gy ~ ckk k=@ ac (%, g)

Vol (Ball,) ~r ~ p2a-1
-
< Ccaling limit D : Ciahl
Jt-p(t) p(t) = P(SRW at origin after t steps)
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Regular critical 9

Non-generic Gx ~ c kK"1k=2 a € (%,
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Regular critical 4

15— 3 5
Non-generic Gx ~ ckK"1k=2 a€ (5; 5)

Vol(Ball,) ~rt ~ p2a-1
-
< Scaling limit Brownian map Stable maps
= (Gromow-Hausor [Le Gall, Miermont] [Le Gall, Miermont]
g Simple random Recurrent Recurrent
walk [Gurel-Gurevich, Nachmias] [Bjornberg, Stefansson]
"Dilute" a€ (2 3) "Dense" a€ (3,2)
+ a—1/2
— VO|(Ba||r) ~ 4 ~ a2 ~ exp(r)
<C
2| Scaling limit Probably Brownian map °n "o
o) (Gromowéausdorff) Triangulations: [Curien, Le Gall ? "Stable spheres' ><
Simple 'Iind"m Recurrent ? Transient ? Transient
wa




Slicing at heights (using branched peeling) %
» Consider Ballf(m) of a (finite) ¢-BPM m with boundary length 2/. .
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Slicing at heights (using branched peeling) &
» Consider Ballf(m) of a (finite) ¢-BPM m with boundary length 2/.
» Let L(r) be sequence of half-degrees of the holes of Balll(m).

Ball!

L(r) (6,0,...) (5,3,1,0,...) (2,1,1,0,...) (,...)

Theorem (Bertoin, TB, Curien, Kortchemski, '16)

If q is dilute critical, a € (2, 3), then (L(Ua;z'”)) © (cxﬁa)) 4
t>

t>0 /—o0

where XE") is a self-similar growth-fragmentation process, taking values in

£i+1/2 = {(X,),eN xX1>x>-->0 Zxa+1/2 }




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.

» For each \jump spawn an i.i.d. rescaled
copy of (X;).




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.

» For each \jump spawn an i.i.d. rescaled
copy of (X;).




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.

» For each \jump spawn an i.i.d. rescaled
copy of (X;).




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.

» For each \jump spawn an i.i.d. rescaled
copy of (X;).




Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.

» For each \jump spawn an i.i.d. rescaled
copy of (X;).

A2X SNG4



Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.
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> xﬁa) enumerates sizes at time t.

DA



Growth-fragmentation process

> There exists a self-similar Markov process (X;)
closely related to (Sgt) describing perimeter of
locally largest cycle.

» For each \jump spawn an i.i.d. rescaled
copy of (X;).

> xﬁ"’) enumerates sizes at time t.




Summary/Outlook %

» Dilute critical Boltzmann planar maps equipped with the dual graph
distance may possess scaling limits with fractal dimensions
3;142 >4, different from Brownian map and stable maps.

» The peeling process is tool of choice to study these distances and its

scaling limits support the belief.
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