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Introduction

It is strongly believed that the large-scale properties of random maps
carrying an extra structure (“matter”) may differ drastically from those of
the usual (undecorated) random maps.

It is also believed that there is a one-parameter family of possible scaling
limits (or universality classes) indexed by the so-called central charge
c ∈ (−∞, 1] or equivalently by the SLE parameter κ.
In particular this whole family should be obtained as the scaling limits of
random maps decorated by loops, as the weight per loop n varies in the
range [0, 2].
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The O(n) model: a partial history
Originally introduced by H. E. Stanley (1968) as a statistical physics
model for n-dimensional classical spins (unit vectors) on a lattice with
Hamiltonian H = −J∑〈i ,j〉 ~σi · ~σj .
De Gennes (1972) observed that self-avoiding walks are obtained as a
suitably defined n→ 0 limit of this model.
Domany et al. (1981) introduced a variant which, on a trivalent
lattice, admits a simple exact representation in terms of loops for all n.
1980’s: O(n)-type models on a regular 2D lattice were thoroughly
analyzed using various techniques (Coulomb gas, integrability, CFT)
[Nienhuis, Blöte, Batchelor...]
1990’s: the O(n) model on random maps was introduced and studied
by matrix integral and quantum gravity techniques [Kostov, Gaudin,
Duplantier, Staudacher, Eynard, Kristjansen...]
Sheffield and Werner (2012) introduced Conformal Loop Ensembles
which are the conjectural scaling limits of the model at a critical
point on a regular lattice. Coupling with Liouville quantum gravity for
the random map version?
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The O(n) loop model on random maps: definition

A rooted planar map is a graph embedded in the plane, considered up to
continuous deformation, with a distinguished root edge incident to the
outer face.

A triangulation with a boundary (each inner face has degree 3)
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The O(n) loop model on random maps: definition
Given a rooted map, a loop configuration is a collection of disjoint simple
cycles (loops) on the dual map. By convention the outer face is not visited.

A loop configuration on a triangulation with a boundary

A configuration of the O(n) loop model is a map endowed with a loop
configuration.
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The O(n) loop model on random maps: definition

For simplicity we restrict here to the case where the underlying map is a
triangulation with a boundary. To each such configuration C we associate
a weight

w(C) = nL(C)gUF (C)hVF (C)uV (C)

where L(C), UF (C), VF (C) and V (C) are respectively the numbers of
loops, unvisited inner faces, visited faces and vertices of C.

We define the
partition function of the model on disks of perimeter ` as

F` ≡ F`(n, g , h, u) =
∑

C of outer degree `

w(C).

If n, g , h, u ≥ 0 are such that F` <∞, the model is said well-defined and
the normalized weight yields a probability distribution over configurations.
The model is then said critical if it ceases to be well-defined whenever u is
increased, and subcritical otherwise. (Those properties do not depend on
`.)
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Critical exponents
Suppose n, g , h are such that the model is at a critical point for u = 1.

Volume exponent γstr (string susceptibility):

[uV ]F` ∼ V γstr−2, V →∞

Perimeter exponent a:

F` ∼
C `

`a
, `→∞

(also defined for subcritical points !).

For a fixed value of n ∈ (0, 2), each of these exponents can only take a
small finite number of possible values, which are rational functions of
b = 1

π arccos
(
n
2

)
∈ (0, 1/2) [see e.g. BBG’12 and BBD’16].

generic dilute dense subcritical

γstr −1/2 −b −b/(1− b)

a 5/2 2 + b 2− b 3/2

Jérémie Bouttier (IPhT/DMA) Nesting statistics in O(n) model on maps 9 June 2016 7 / 31



Phase diagram for fixed n = 2 cos(πb) ∈ (0, 2)

g

h

subcritical

dense

dilute

generic

non well-defined

generic dilute dense subcritical

γstr −1/2 −b −b/(1− b)

a 5/2 2 + b 2− b 3/2

For n > 2 we only have generic critical points (same exponents as for
maps without loops).

Jérémie Bouttier (IPhT/DMA) Nesting statistics in O(n) model on maps 9 June 2016 8 / 31



Remark: connection with the O(n) model on regular lattice
On a 2D regular lattice, one also observes dilute and dense critical points
for n ∈ (0, 2), and the critical exponents are still rational functions of b,
which is closely related to the so-called Coulomb gas coupling constant

g =

{
1 + b (dilute),

1− b (dense).

In particular the central charge reads [see e.g. Duplantier’04]

c = 1− 6(g− 1)2/g

and the corresponding expected CLE parameter is

κ = 4/g.

There is perfect agreement with the Knizhnik-Polyakov-Zamolodchikov
formulas predicting relations between critical exponents on a 2D regular
lattice and on random maps.
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Phase diagram for fixed n = 2 cos(πb) ∈ (0, 2)

g

h

subcritical

dense

dilute

generic

non well-defined

generic dilute dense subcritical

γstr −1/2 −b −b/(1− b)

a 5/2 2 + b 2− b 3/2

c 0 1− 6b2/(1 + b) 1− 6b2/(1− b)

κ 8/3 4/(1 + b) 4/(1− b)
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Gasket exponents

Beyond these global critical exponents, little is known about the
geometrical properties of O(n) configurations at a critical point. In
particular, if we condition the maps to have a fixed large volume V , we
expect the typical distance between vertices to be of order V 1/dH for some
dH > 0, but there is not even a consensus on what dH should be.

In BBG’12, we obtained information
about the geometry of the gasket of
O(n) configurations, namely the
submap formed by the edges which
are exterior to all the loops.
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Gasket exponents

We showed that, at a critical point, the gasket is distributed as a
Boltzmann map with large faces, as studied by Le Gall and Miermont
(2011). Consequently the Hausdorff dimension for the scaling limit(s) of
the gasket reads

dgasket
H =

{
3 + 2b (dilute),

3− 2b (dense).

In BBD’16 we also studied the probability that, in an O(n) configuration
of fixed volume V , a uniformly chosen vertex belongs to the gasket. At a
non generic critical point this probability decays as V−ν for V →∞ with

ν =

{
1−2b

2 (dilute),
1−2b

2(1−b) (dense).
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Phase diagram for fixed n = 2 cos(πb) ∈ (0, 2)

g

h

subcritical

dense

dilute

generic

non well-defined

generic dilute dense subcritical
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a 5/2 2 + b 2− b 3/2
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dgasket
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Nesting tree

Rather than considering distances (which we do not understand yet), we
may study the structure of nestings between loops. In the planar case they
are coded by the nesting tree.

Each node of the nesting tree corresponds to a map without loops but
arbitrarily large faces. In particular the root of the tree corresponds to the
gasket. What is the structure of the nesting tree at a critical point?
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Nesting tree
Using the combinatorial decomposition of BBG’12 it can be seen that the
nesting tree is a multitype branching process with infinitely many types
(keeping track of loop perimeters). This does not seem very easy to
analyze... (but see Chen-Curien-Maillard’s approach in the next talk)

Here we consider the following simpler question: given an O(n)
configuration with fixed volume V , what is the distribution of the depth of
a uniformly chosen vertex ? (i.e. the number of loops separating it from
the outer face, or the height of the corresponding node in the nesting tree)
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Main results

The depth is of order lnV and more precisely:

Theorem 1 (central limit theorem) [Borot-B.-Duplantier 2016]

Let PV ,` be the depth of a uniformly chosen vertex of an O(n)
configuration of fixed volume V and perimeter `. Then, at a non generic
critical point, we have

PV ,` − cpopt
π lnV√

lnV

(d)−−→ N (0, σ2)

where

c =

{
1 (dilute)

1
1−b (dense)

, popt =
n√

4− n2
, σ2 =

4nc

π(4− n2)3/2
.
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Main results

Theorem 2 (large deviation principle) [Borot-B.-Duplantier 2016]

Let PV ,` be the depth of a uniformly chosen vertex of an O(n)
configuration of fixed volume V and perimeter `. Then, at a non generic
critical point, we have

P
(
PV ,` =

c lnV

π
p

)
∼ C (lnV )−1/2V−

c
π
J(p), V →∞

where c = 1 (dilute) or c = 1/(1− b) (dense) and

J(p) = ln

(
2

n

p√
1 + p2

)
+ arccot(p)− arccos(n/2).
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Main results
Remarks:

We have a similar statement when the perimeter ` is taken to be
“large” (of order V c/2), just replace J by J/2.

Instead of marking a vertex, we may mark an inner face and obtain
similar results.

The large deviation function J(p) is nonnegative, vanishes at
p = popt, satisfies J ′′(p) = 1

p(p2+1)
, J(p) ∼ p ln(2/n) for p →∞ and

J(0) = arcsin(n/2) = π(1/2− b) (consistently with the value of ν
given before).

1 2 3 4
p

0.5

1.0

1.5

J(p)
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Main results
Our results can be compared to the so-called multifractal spectrum of
extreme nesting of CLEκ obtained by Miller, Watson and Wilson (2016).

Colloquially speaking it amounts to a large deviation principle for the
number of loops surrounding a small ball of Euclidean radius ε, as ε→ 0.
Our comparison then consists in replacing the constraint on the Euclidean
radius by one on the Liouville quantum area δ.

Theorem 3 [MWW+BBD’16]

Let Nδ be the number of loops surrounding a small ball of quantum area δ
in a CLEκ coupled to Liouville quantum gravity (for suitable γ) on the
Riemann sphere. Then we have

P
(
Nδ =

cp

π
ln(1/δ)

)
∼ Cδ

c
π
J(p), δ → 0

with c , J(p) as in Theorem 2.

This supports the conjecture that the scaling limit of the critical O(n)
model on random maps is described by a CLE coupled to LQG.
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Ingredients for the proof of Theorems 1 and 2

the gasket decomposition [Borot-B.-Guitter 2012],

a refinement allowing to control the depth of a marked vertex,

a functional equation for the corresponding generating function that
turns out to be exactly solvable (using an elliptic parametrization),

asymptotics!
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The gasket decomposition

Start with a configuration of the O(n) loop model.
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The gasket decomposition

contour

outer

contour

inner

external 

face

The faces visited by a loop forms a necklace.
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The gasket decomposition

Cut along the outer and inner contours of each outermost loop.
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The gasket decomposition

The outer component forms the gasket. It is a map without loops, with the
same outer degree as the original map.
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The gasket decomposition

Each outermost loop forms a necklace (cyclic sequence of polygons glued
side-by-side).
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The gasket decomposition

Each outermost loop contains an internal configuration (of the same nature
as our original object).
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The gasket decomposition

external 

face

There exists a well-defined rooting procedure:

necklaces have a distinguished edge on the outer contour,

internal configurations are rooted.
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The gasket decomposition

Each outermost loop forms a necklace (cyclic sequence of polygons glued
side-by-side).
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The gasket decomposition

Each outermost loop contains an internal configuration (of the same nature
as our original object).
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The gasket decomposition

: consequences

Bijection

{configurations} ' {(gasket, necklaces, internal configurations)}

A gasket is a map whose faces are either regular faces or holes.

Each hole of degree k ≥ 1 is associated with a necklace of outer
length k .

Each necklace of inner length k ′ ≥ 0 is associated with an internal
configuration of outer degree k ′.

Fp = Fp(g1, g2, . . . ; u)

gk = g
(0)
k + n

∑
k ′≥0

Ak,k ′Fk ′
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The gasket decomposition: consequences
To translate this bijection into equations, we introduce the partition
function of Boltzmann maps with outer degree `

F`(g1, g2, . . . ; u) =
∑

maps with
outer degree `

∏
k≥1

g
#{inner faces of degree k}
k u#{vertices}

and the necklace generating function

A(x , y) =
∑
k≥1

∑
k ′≥1

Ak,k ′xkyk
′

:=
∑

necklaces

f (necklace)xouter lengthy inner length.

In the case of the O(n) loop model on triangulations, we have

Ak,k ′ =

(
k + k ′ − 1

k

)
hk+k ′

hence

A(x , y) =
hx

1− h(x + y)
.
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configuration of outer degree k ′.

Fp = Fp(g1, g2, . . . ; u)

gk = g
(0)
k + n

∑
k ′≥0

Ak,k ′

Fk ′
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The gasket decomposition: consequences

Proposition [BBG’12]

The partition function of the O(n) loop model on random maps is
obtained from the generating function for Boltzmann maps via

F` = F`(g1, g2, . . . ; u)

where the gk ’s satisfy the fixed-point condition

gk = g
(0)
k + n

∑
k ′≥0

Ak,k ′Fk ′(g1, g2, . . . ; u).

In particular, the gasket is distributed according to the Boltzmann measure
with face weights g1, g2, . . ..
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Pointed configurations

Now let us differentiate our functional equation with respect to the vertex
weight u, which corresponds to marking a vertex.

By the chain rule we
obtain

F •` = F•` (g1, g2, . . . ; u) + n
∑

k,k ′≥0

F (2)
`,k (g1, g2, . . . ; u)Ak,k ′F •k ′

where

F •` = u
∂

∂u
F`, F•` = u

∂

∂u
F`, F (2)

`,k =
∂

∂gk
F`.

Combinatorial meaning of this equation: the first term corresponds to the
case where the marked vertex is within the gasket, and the second term to
the case where it is surrounded by at least one loop.
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Refinement
This suggests to consider the refined generating function F •` [s] determined
by

F •` [s] = F•` (g1, g2, . . . ; u) + n s
∑

k,k ′≥0

F (2)
`,k (g1, g2, . . . ; u)Ak,k ′F •k ′ [s]

where the parameter s counts the number of loops surrounding the marked
vertex, i.e. its depth!

By a similar idea we may also count cylinders (two boundaries), etc.

· · ·

F (2)

F
(2)
s

sR

F (2) F (2) F (2)

sR sR sR

The refined functional equation can then be solved by a direct
generalization of the method used for the non refined case.
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