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With degree constraints: rooted triangulations



A chronology of planar maps

Matrix integrals 

1960 1978 1981 1995 2000

Geometric properties 

Bijections 

Recursive approach (Tutte)

• Recursive approach: Tutte, Brown, Bender, Canfield, Richmond, Goulden,
Jackson, Wormald, Walsh, Lehman, Gao, Bernardi, mbm...

• Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg, Zinn-Justin,
Boulatov, Kazakov, Mehta, Duplantier, Bouttier, Di Francesco, Guitter, Eynard...

• Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco & Guitter (BDG),
Bernardi, Fusy, Poulalhon, mbm, Chapuy, Bettinelli...

• Geometric properties: Chassaing & Schaeffer, BDG, Marckert & Mokkadem, Le
Gall, Miermont, Curien, Addario-Berry, Albenque, Budd, Abraham...
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Illustration: general planar maps and triangulations

general maps triangulations

(n edges) (n vertices)

Recursive enumeration a(n) = 2·3n

(n+1)(n+2)

(2n
n

) 2· 4n−2 (3n−6)!!
n!(n−2)!!

(algebraic series) [Tutte 63] [Mullin, Nemeth,

Schellenberg 70]

Bijective enumeration [Cori-Vauquelin 81, [Bouttier, Di

(connection with trees) Schaeffer 98] Francesco, Guitter 02]

Limit behaviour [Bettinelli, Jacob, [Le Gall 13]

(diameter ' n1/4) Miermont 14]

An algebraic series satisfies a polynomial equation. For instance, if
A(t) =

∑
n a(n)tn, then

27t2A(t)2 + (1− 18t)A(t) + 16t − 1 = 0.
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A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series

P(t,A(t),A′(t), . . . ,A(d)(t)) = 0



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

⇔ linear recurrence for a(n):
e∑

k=0

a(n − k)pk(n) = 0



Maps equipped with an additional structure

Spanning trees [Mullin 67, Bernardi]

Spanning forests [Bouttier et al., Sportiello et al., mbm-Courtiel]

Proper colourings [Tutte 68-84]

Self-avoiding walks [Duplantier-Kostov]
Hard particles [Bouttier et al., mbm, Schaeffer, Jehanne]

The q-state Potts model (equivalent to the Tutte polynomial)
[Eynard-Bonnet 99, Baxter, Bermardi-mbm, Borot et al. ]

Loop models [Borot et al., Eynard, Kristjansen, Zinn-Justin]
Bipolar orientations [Fusy et al., Bonichon et al., Felsner et al., Kenyon et al.]

Many of these structures are special/limit cases of the Potts model.
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Maps weighted by their Tutte (or: Potts) polynomial

general maps | triangulations

recursive enumeration [mbm-Bernardi 15]

(differentially algebraic series)

bijective enumeration in some cases

limit behaviour ?

(diameter ' n?)

(1)

(1) recent results on the convergence in the peanosphere sense [Gwynne,
Kassel, Kenyon, Miller, Sheffield, Wilson 15–]
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II. Bipolar orientations:
a structure with very rich
underlying combinatorics



Bipolar maps: definition

a rooted planar map, with root vertex N
two marked vertices S and N (the poles) in the outer face
an acyclic orientation
S is the only source and N the only target

S

N



Bipolar maps: basic facts

simple orientations around a vertex/face
dual orientation

target

source
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How to grow a bipolar map? a simple recursive structure

Two ways of adding an edge:

a new face

no new face

Every bipolar map is obtained exactly once
The number of descendants of a map with left outer degree i and
North degree j is i + j , and their respective left outer degree/North
degree are

(i , j) 

 (1, j + 1), (2, j + 1), . . . (i , j + 1),

(i + 1, j), . . . (i + 1, 2), (i + 1, 1).
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How to grow a bipolar map? a simple recursive structure

Two ways of adding an edge:

contract

delete

Every bipolar map is obtained exactly once
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Functional equation: Let B(x , y) ≡ B(t; x , y) be the generating function
of bipolar orientations counted by edges, left outer degree and North
degree:

B(x , y) =
∑
O

te(0)x lod(O)ynd(O).

Then

B(x , y) = txy + txy
B(x , y)− B(1, y)

x − 1
+ txy

B(x , y)− B(x , 1)

y − 1

A linear equation with two divided differences (or discrete derivatives).
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Recursive enumeration of bipolar maps

B(t; x , y) ≡ B(x , y) = txy + txy
B(x , y)− B(1, y)

x − 1
+txy

B(x , y)− B(x , 1)

y − 1

Proposition [Baxter 01, mbm 11]
The number of bipolar maps with n edges is

b(n) =
2

n(n + 1)2

n∑
k=1

(
n + 1
k − 1

)(
n + 1

k

)(
n + 1
k + 1

)
.

The associated series is D-finite:

(n + 6)(n + 5)b(n + 2) = (7n2 + 49n + 82)b(n + 1) + 8(n + 2)(n + 1)b(n)

(+ Refinements with left outer degree and North degree).



Towards bijections

Several other objects can be recursively described by isomorphic
constructions:

Baxter permutations
watermelons with three lines

σ = 5 3 4 9 7 8 10 6 1 2



Baxter permutations [Baxter 64]

ascent descent

Recursive construction: insert n+1 in the
permutation
i : number of left-to-right maxima
j : number of right-to left maxima
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Recursive construction: insert n+1 in the
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Watermelons

−1i

j−1

• Recursive construction: insert a North step in each path, or an East step

• Easy to count using the Lindström-Gessel-Viennot determinant.



From Baxter permutations to bipolar maps

Properties:
behaves well with respect to symmetries (including duality)
the longest increasing subsequence of the permutation is the longest
meridian (SN-path)

[Bonichon, mbm & Fusy 10]
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III. Bipolar triangulations,
quadrangulations, etc.



Prescribing face degrees

Due to edge contractions, the above recursive construction behaves
badly (apart from triangulations [mbm 11])
A new construction [Kenyon, Miller, Sheffield, Wilson, 15(a)]



The KMSW construction

Take a lattice walk with two kinds of steps:
SE steps (1,−1)

NW steps (−i , j) with i , j ≥ 0

The construction starts from a walk and a bipolar map reduced to an
edge, and yields an incomplete bipolar map.

N

S
out−degree 1

in−degree 1



The KMSW construction

The construction starts from a walk and a bipolar map reduced to an
edge, and yields an incomplete bipolar map.

every SE step (1,−1) creates an edge.
every NW step (−i , j) creates a face of degree i + j + 2 and an edge.

or (−i , j)

i + 1
j + 1

(1,−1)

Example: walk
(0, 2)(1,−1)(1,−1)(−1, 0)(1,−1)(−3, 1)(−1, 0)(1,−1)(0, 1)(0, 1)



The KMSW construction

Proposition [Kenyon et al. 15(a)]
This construction is a bijection from lattice paths to incomplete bipolar
maps.

N

S
out−degree 1

in−degree 1

walk orientation

steps edges -1

(−i , j) steps finite faces of oriented degree (i + 1, j + 1)

minimal coordinates left boundary

coordinates of the endpoint right boundary



The KMSW construction

Proposition [Kenyon et al. 15(a)]
This construction is a bijection from lattice paths to incomplete bipolar
maps.

• steps ⇔ edges in the orientation (minus 1)
• steps (−i , j) ⇔ faces of oriented degree (i + 1, j + 1)
• coordinates of the endpoints ⇔ left and right boundaries of the map.

b d

a

c + 1
c

b + 1

d

a

walk orientation

steps edges -1

(−i , j) steps finite faces of oriented degree (i + 1, j + 1)

minimal coordinates left boundary

coordinates of the endpoint right boundary



The KMSW construction: Some specializations

1

1
1

1

unrestricted half−plane quadrant

left incompleteincomplete complete

Enumeration?



The KMSW construction: Some specializations

1

unrestricted half−plane quadrant

left incompleteincomplete complete

1

1
1

Enumeration?



The KMSW construction: Some specializations

1

unrestricted half−plane quadrant

left incompleteincomplete complete

Enumeration?



The KMSW construction: Some specializations

1

unrestricted half−plane quadrant

left incompleteincomplete complete

Enumeration?



Walk enumeration

Parameters and variables:
steps/edges: variable t
steps (−i , j) (faces): variable zi+j (degree selection)
coordinates of the endpoint: variables x , y

Example: w = (0, 2)(1,−1)(1,−1)(−1, 0)(1,−1)

⇒ weight(w) = t5z2z1x2ȳ

where ȳ := y−1.

The step polynomial (generating function of the steps)

S(x , y) := txȳ + t
∑
i ,j≥0

zi+j x̄ iy j

Unrestricted walks: a rational series

U(x , y) =
∑
w

weight(w) =
1

1− S(x , y)



Walk enumeration

Parameters and variables:
steps/edges: variable t
steps (−i , j) (faces): variable zi+j (degree selection)
coordinates of the endpoint: variables x , y

Example: w = (0, 2)(1,−1)(1,−1)(−1, 0)(1,−1)

⇒ weight(w) = t5z2z1x2ȳ
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∑
i ,j≥0

zi+j x̄ iy j

Unrestricted walks: a rational series

U(x , y) =
∑
w

weight(w) =
1

1− S(x , y)



Walk enumeration

The step polynomial:
S(x , y) := txȳ + t

∑
i ,j≥0

zi+j x̄ iy j ,

Unrestricted walks: a rational series

U(x , y) =
1

1− S(x , y)

Half-space walks: an algebraic series

H(x) =
Y0(x)

tx
,

where Y0 is the unique series in t satisfying 1 = S (x ,Y0(x)) .

Quadrant walks: a D-finite series

Q = [x0]
Y0(x)

tx

1− 1
tx2 +

∑
i≥0

(i + 1)zi x̄ i+2

 .
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Walk enumeration: a proof!

Half-space walks: an algebraic series

H(x) =
Y0(x)

tx
,

where Y0 is the unique series in t satisfying 1 = S (x ,Y0(x)) .

Proof. Functional equation for walks in the upper half-plane:

H(x , y) = 1 + H(x , y)S(x , y)− txȳH(x , 0),

where S(x , y) is the step generating function. Equivalently,

(1− S(x , y)) H(x , y) = 1− txȳH(x , 0).

Let y = Y0(x) cancel the l.h.s. Then H(x , 0) = Y0/(tx).



Walk enumeration: the quadrant case

Quadrant walks: a D-finite series

Q = [x0]
Y0(x)

tx

(
1− 1

tx2 +
∑

i

(i + 1)zi x̄ i+2

)
.

Functional equation:

Q(x , y) = 1 + Q(x , y)S(x , y)− txȳQ(x , 0)

− t
∑

i>0,j≥0

zi+j x̄ iy j (Q0(y) + xQ1(y) + · · ·+ x i−1Qi−1(y)
)

where Qi (y) counts quadrant walks ending at abscissa i .



Walk enumeration: the quadrant case

Quadrant walks: a D-finite series

Q = [x0]
Y0(x)

tx

(
1− 1

tx2 +
∑

i

(i + 1)zi x̄ i+2

)
.

A simple case: triangulations. Take z1 = 1 and zi = 0 if i 6= 1

Walks confined to a Weyl chamber, solvable using the reflection principle
[Gessel-Zeilberger 92]



Walk enumeration: the quadrant case

Quadrant walks: a D-finite series

Q = [x0]
Y0(x)

tx

(
1− 1

tx2 +
∑

i

(i + 1)zi x̄ i+2

)
.

Quadrangulations. Take z2 = 1 and zi = 0 if i 6= 2



Walk enumeration: the quadrant case

Quadrant walks: a D-finite series

Q = [x0]
Y0(x)

tx

1− 1
tx2 +

∑
i≥0

(i + 1)zi x̄ i+2

 .

Functional equation:

Q(x , y) = 1 + Q(x , y)S(x , y)− txȳQ(x , 0)

− t
∑

i>0,j≥0

zi+j x̄ iy j (Q0(y) + xQ1(y) + · · ·+ x i−1Qi−1(y)
)

where Qi (y) counts quadrant walks ending at abscissa i .

• Walks with small steps in the quadrant:
Bostan, mbm, Fayolle, Kauers, Kourkova, Koutschan, Mishna, Raschel, Zeilberger...
• Walks with large steps in the quadrant: Fayolle & Raschel 15 – Bostan,
mbm & Melczer 16



Recurrence relations for (p + 2)-angulations by edges

Quadrant walks: a D-finite series

Q = [x0]
Y0(x)

tx

1− 1
tx2 +

∑
i≥0

(i + 1)zi x̄ i+2

 .

• p = 1 (triangulations)

(n + 3)(n + 2)a(n + 1) = 3(3n + 2)(3n + 1)a(n)

• p = 2 (quadrangulations)

(n+4)(n+3)2a(n + 2) = 4(2n+3)(n+3)(n+1)a(n + 1)+12(2n+3)(2n+1)(n+1)a(n)

• p = 3 (pentagulations)

27(3n + 8)(3n + 4)(5n + 3)(3n + 5)2(3n + 7)2(n + 2)2a(n + 2) =

60(5n+7)(3n+5)(5n+9)(5n+6)(3n+4)(8+5n)(145n3+532n2+626n+233)a(n + 1)

− 800(5n + 6)(5n + 1)(5n + 7)(5n + 2)(5n + 3)(5n + 9)(5n + 4)(8+ 5n)2a(n)

Software: [Bostan, Lairez, Salvy 13]



Asymptotic results for (p + 2)-angulations with n edges

• Unconstrained walks (incomplete orientations)

u(n) ∼ c0 (p + 2)nn0

• Half-plane walks (left incomplete orientations)

h(n) ∼ c1 (p + 2)nn−3/2

• Quadrant walks (complete orientations)

q(n) ∼ c2 µ
nn−4

with

µ =
p + 2

p

(
p(p + 1)

2

)2/(p+2)

11

1
1



IV. Distance parameters:
experiments



Distance parameters

longest meridian (SN oriented path)

∼ n0.76...

left path to the South pole

∼ n1/2

shortest path to the South pole

∼ n0.45...

longest meridian left path to the South pole shortest path to the South pole
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Distance parameters

longest meridian (SN oriented path) ∼ n0.76...

left path to the South pole ∼ n1/2

shortest path to the South pole ∼ n0.45...

shortest path to the South pole



In conclusion

Very rich combinatorics
Connection with quadrant walks, with the longest increasing
sequence in (Baxter) permutations...
Enumerative results
What about large random bipolar maps? large Baxter permutations?

c© Jérémie Bettinelli


