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. Introduction: planar maps with/without a structure
[I. Bipolar maps [Bonichon, mbm, Fusy 10]
[Il. Bipolar triangulations, quadrangulations, etc. [mbm, Fusy, Raschel 16]

IV. Some experiments
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e Recursive approach: Tutte, Brown, Bender, Canfield, Richmond, Goulden,
Jackson, Wormald, Walsh, Lehman, Gao, Bernardi, mbm...

e Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg, Zinn-Justin,
Boulatov, Kazakov, Mehta, Duplantier, Bouttier, Di Francesco, Guitter, Eynard...

e Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco & Guitter (BDG),
Bernardi, Fusy, Poulalhon, mbm, Chapuy, Bettinelli...

e Geometric properties: Chassaing & Schaeffer, BDG, Marckert & Mokkadem, Le
Gall, Miermont, Curien, Addario-Berry, Albenque, Budd, Abraham...



general maps triangulations
(n edges) (n vertices)
Recursive enumeration | a(n) = % (2™ %
(algebraic series) [Tutte 63] [Mullin, Nemeth,
Schellenberg 70]
Bijective enumeration [Cori-Vauquelin 81, [Bouttier, Di
(connection with trees) Schaeffer 98] Francesco, Guitter 02]
Limit behaviour [Bettinelli, Jacob, [Le Gall 13]
(diameter ~ n1/4) Miermont 14]




lllustration: general planar maps and triangulations

general maps

triangulations

(n edges) (n vertices)
Recursive enumeration | a(n) = % ) %
(algebraic series) [Tutte 63] [Mullin, Nemeth,

Schellenberg 70]

Bijective enumeration

(connection with trees)

[Cori-Vauquelin 81,

Schaeffer 98]

[Bouttier, Di

Francesco, Guitter 02]

Limit behaviour

(diameter ~ n1/4)

[Bettinelli, Jacob,

Miermont 14]

[Le Gall 13]

An algebraic series satisfies a polynomial equation. For instance, if

A(t)

> ,a(n)t", then

27t2A(t)? + (1 — 18t)A(t) + 16t — 1 = 0.




A hierarchy of formal power series

o Rational series

e Algebraic series

P(t,A(t)) =0
o Differentially finite series (D-finite)

d
> Pi()A () =0
i=0

e D-algebraic series
P(t, A(t), A(t), ..., A(t)) = 0




A hierarchy of formal power series

e Rational series

e Algebraic series
P(t,A(t)) =0

e Differentially finite series (D-finite)
d
> Pi(t)A(t) =0
i=0

& linear recurrence for a(n):
e

> a(n—k)pi(n) =0

k=0




Maps equipped with an additional structure

@ Spanning trees [Mullin 67, Bernardi]

@ Spanning forests [Bouttier et al., Sportiello et al., mbm-Courtiel]
@ Proper colourings [Tutte 68-84]

Self-avoiding walks [Duplantier-Kostov]

Hard particles [Bouttier et al., mbm, Schaeffer, Jehanne]

The g-state Potts model (equivalent to the Tutte polynomial)
[Eynard—Bonnet 99, Baxter, Bermardi-mbm, Borot et al. ]

LOOp models [Borot et al., Eynard, Kristjansen, Zinn-Justin]

Bipolar orientations [Fusy et al., Bonichon et al., Felsner et al., Kenyon et al.]
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Many of these structures are special/limit cases of the Potts model.



general maps |  triangulations

recursive enumeration [mbm-Bernardi 15]

(differentially algebraic series)

bijective enumeration in some cases

limit behaviour ?

(diameter ~ n)




general maps |  triangulations

recursive enumeration [mbm-Bernardi 15]

(differentially algebraic series)

bijective enumeration in some cases
limit behaviour ?
(diameter ~ n) (1)

(1) recent results on the convergence in the peanosphere sense [Gwynne,
Kassel, Kenyon, Miller, Sheffield, Wilson 15-]






@ a rooted planar map, with root vertex N
@ two marked vertices S and N (the poles) in the outer face
@ an acyclic orientation

@ S is the only source and N the only target

N_ o



@ simple orientations around a vertex/face

target

source



@ simple orientations around a vertex/face

@ dual orientation



Two ways of adding an edge:

ﬁ

no new face



Two ways of adding an edge:

left outer degree 3 Dﬁ

a new face

no new face
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Two ways of adding an edge:

—

North degree 4 \ ZLIC;;

a new face

no new face



Two ways of adding an edge:
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North degree 4

a new face

no new face
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@ Every bipolar map is obtained exactly once



Two ways of adding an edge:

‘dely

o Every bipolar map is obtained exactly once



How to grow a bipolar map? a simple recursive structure

Two ways of adding an edge:

a new face
left outer degree 3 7

no new face

North degree 4

@ Every bipolar map is obtained exactly once
@ The number of descendants of a map with left outer degree i/ and
North degree j is i + j, and their respective left outer degree/North
degree are
- (Lj+1), (2,j+1), (i,j+1),
()~q = . :
(+1)), .. (i+12), (i+11).



@ The number of descendants of a map with left outer degree / and
North degree j is i + j, and their respective left outer degree/North
degree are

(Lj+1), (2J+1), e (i,j+1),

(irg) ~ (i+1,)), (i+1,2), (i+1,1).



How to grow a bipolar map? a simple recursive structure

@ The number of descendants of a map with left outer degree i and
North degree j is i + j, and their respective left outer degree/North
degree are

(1,;+1), (2,j+1), (i,j+1),

(1,0) >4 . . .
(i+1,)), (i+1,2), (i+1,1).

Functional equation: Let B(x,y) = B(t; x,y) be the generating function
of bipolar orientations counted by edges, left outer degree and North

degree:
B(x,y) = Z te(O)X/Od(O)ynd(O)‘
o
Then
B(x,y) = txy + txy B(X’y)z : 15(1#) by B(X,yy) : f(x, 1)

A linear equation with two divided differences (or discrete derivatives).



B(Xv.y) — B(l’y)—i-txy B(Xa.y) — B(X7 1)

B(t;x,y)=B(x,y) =t t
(tix,y) = B(x,y) = txy + txy 1 1

The number of bipolar maps with n edges is

b(n) = n+1 2Z<n+1> (n+1> <Z——ti>

The associated series is D-finite:

(n+6)(n+5)b(n+2) = (7n* +49n + 82)b(n+ 1) + 8(n+2)(n + 1)b(n)

(+ Refinements with left outer degree and North degree).




Towards bijections

Several other objects can be recursively described by isomorphic
constructions:

@ Baxter permutations

@ watermelons with three lines

SR .

I
fiacciiE

0=53497810612




Baxter permutations [Baxter 64
-
e e

ascent descent




Bocterpermutations (Baxir 64
g

ascent descent

Recursive construction: insert n+1 in the ®
permutation *
) : : °
iz number of left-to-right maxima ®
J: number of right-to left maxima ®

=




Watermelons

e Recursive construction: insert a North step in each path, or an East step

e Easy to count using the Lindstrom-Gessel-Viennot determinant.



[Bonichon, mbm & Fusy 10]
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Properties:
@ behaves well with respect to symmetries (including duality)
@ the longest increasing subsequence of the permutation is the longest
meridian (SN-path)

[Bonichon, mbm & Fusy 10]
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Properties:
@ behaves well with respect to symmetries (including duality)
@ the longest increasing subsequence of the permutation is the longest
meridian (SN-path)

[Bonichon, mbm & Fusy 10]






@ Due to edge contractions, the above recursive construction behaves
badly (apart from triangulations [mbm 11])

@ A new construction [Kenyon, Miller, Sheffield, Wilson, 15(a)]



The KMSW construction

Take a lattice walk with two kinds of steps:
@ SE steps (1,-1)
e NW steps (—i,/) with i,j >0

The construction starts from a walk and a bipolar map reduced to an
edge, and yields an incomplete bipolar map.

out—degree 1




The KMSW construction

The construction starts from a walk and a bipolar map reduced to an
edge, and yields an incomplete bipolar map.

@ every SE step (1, —1) creates an edge.
@ every NW step (—1,) creates a face of degree i 4+ j + 2 and an edge.

\
\

1

1
|

or (7’.7].)

Example: walk
(07 2)(17 *1)(1’ *1)(*17 0)(1’ *1)(*37 1)(*17 O)(lv *1)(07 1)(0’ 1)



This construction is a bijection from lattice paths to incomplete bipolar

maps.

in—degree 1

out—degree 1



This construction is a bijection from lattice paths to incomplete bipolar
maps.

e steps < edges in the orientation (minus 1)
o steps (—1,j) < faces of oriented degree (i + 1,/ + 1)
e coordinates of the endpoints < left and right boundaries of the map.

b+1 \

\ c+1




unrestricted half—plane quadrant
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incomplete left incomplete complete
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unrestricted half—plane quadrant
Q
/ \ 1
\
\
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\ \ y
O
incomplete left incomplete complete

Enumeration?



Parameters and variables:
@ steps/edges: variable t
e steps (—/,/) (faces): variable z;; (degree selection)
@ coordinates of the endpoint: variables x, y

Example: w = (0,2)(1,-1)(1,—-1)(—1,0)(1,-1)
= weight(w) = t°zz1x%y

where y == y~1.

The step polynomial (generating function of the steps)

S(,y)=txy+t Y ziyxy
ij>0



Parameters and variables:
@ steps/edges: variable t
e steps (—/,/) (faces): variable z;; (degree selection)
@ coordinates of the endpoint: variables x, y

Example: w = (0,2)(1,—-1)(1,-1)(-1,0)(1,-1)
= weight(w) = t°zz1x%y

where y == y~1.

The step polynomial (generating function of the steps)

S(,y)=txy+t Y ziyxy
ij>0

1

Z \Veight(W) = T()(}/)

w




The step polynomial: o
S(x,y) =txy +t Z ZipjX'y,
ij>0




The step polynomial: o
S(x,y) =txy +t Z ZipjX'y,
ij>0

tx




The step polynomial: o
S(x,y) =txy +t Z ZipjX'y,
ij>0

tx

/>0



tx
where Yj is the unique series in t satisfying 1 = S (x, Yp(x)).

Proof. Functional equation for walks in the upper half-plane:
H(x,y) =1+ H(x,y)S(x,y) — txyH(x,0),
where S(x,y) is the step generating function. Equivalently,
(1=5S(x,y)) H(x,y) =1 — txyH(x,0).
Let y = Yp(x) cancel the L.h.s. Then H(x,0) = Yp/(tx).

CYRRCT




> i+ 1)z;>_<i+2> .

!

Functional equation:
Q(x,y) =14 Q(x,¥)S(x,y) — txyQ(x,0)
—t z: zi Xy (Qoly) + x@Qu(y) + -+ x1Qi1(y))

i>0,>0

where Q;(y) counts quadrant walks ending at abscissa i.

)



ix) <1 - % +D 6+ 1)z,->‘<"+2> :

A simple case: triangulations. Take zz =1 and z; =0if i # 1

Walks confined to a Weyl chamber, solvable using the reflection principle
[Gessel-Zeilberger 92]



Q = [ 2 (1 ~ Y+ 1>z,-%"+2> .

tx

Quadrangulations. Take zz =1 and z; =0 if j # 2




Yo(x)

1 . _I
Q = [x0] 222 1—¥+Z(/+1)z,-x+2

tx :
i>0

Functional equation:
Q(x,y) =1+ Q(x,¥)S(x,y) — txy Q(x,0)
—t Z zig %'y (Qoly) + xQu(y) + -+ x ' Qi—1(y))
i>0,/>0

where Q;(y) counts quadrant walks ending at abscissa i.

o Walks with small steps in the quadrant:

Bostan, mbm, Fayolle, Kauers, Kourkova, Koutschan, Mishna, Raschel, Zeilberger...

e Walks with large steps in the quadrant: Fayolle & Raschel 15 — Bostan,
mbm & Melczer 16



e p =1 (triangulations)
(n+3)(n+2)a(n+1) =33n+2)(3n+1)a(n)
e p = 2 (quadrangulations)
(n+4)(n—|—3)2a(n +2) =4(2n+3)(n+3)(n+1)a(n + 1)+12(2n+3)(2n+1)(n+1)a(n)

e p = 3 (pentagulations)

27(3n +8)(3n 4 4)(5n + 3)(3n + 5)°(3n + 7)*(n + 2)?a(n + 2) =
60(5n+7)(3n+5)(5n+9)(5n+6)(3n+4)(8+5n)(145n> +532n> +626n+233)a(n + 1)
—800(5n + 6)(5n 4 1)(5n + 7)(5n + 2)(5n + 3)(5n + 9)(5n + 4)(8 + 5n)?a(n)

Software: [Bostan, Lairez, Salvy 13]



Asymptotic results for (p + 2)-angulations with n edges

e Unconstrained walks (incomplete orientations) /\
\
u(n) ~ o (p +2)"n° '

\
\

e Half-plane walks (left incomplete orientations)

h(n) ~ c1 (p + 2)"n~3/2 1
e Quadrant walks (complete orientations) "
q(n) ~ copu"n*
with 1

_p+2 (plp+1))YPH? !
p= 5






@ longest meridian (SN oriented path)
o left path to the South pole
@ shortest path to the South pole

A7

longest meridian left path to the South pole shortest path to the South pole



@ longest meridian (SN oriented path)
o left path to the South pole ~ n1/2
@ shortest path to the South pole

left path to the South pole



o longest meridian (SN oriented path) ~ n0-76-
o left path to the South pole ~ n1/2
@ shortest path to the South pole

0.80
0.75 \
-o

0.70

0.65
longest meridian 0 0.1 0.2 0.3 0.4 0.5




o longest meridian (SN oriented path) ~ n076
o left path to the South pole ~ n1/2

@ shortest path to the South pole ~ n%45--

shortest path to the South pole



In conclusion

@ Very rich combinatorics

@ Connection with quadrant walks, with the longest increasing
sequence in (Baxter) permutations...
@ Enumerative results

@ What about large random bipolar maps? large Baxter permutations?
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