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Overview
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Throughout the talk, all rings and schemes contain a field.

In characteristic 0, all rings and schemes are essentially finite type over C.
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Singularities in characteristic p > 0 and zero
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Frobenius actions on local cohomology

Let R be a ring of characteristic p > 0. We have the Frobenius
endomorphism of R, F : R → R. This can be identified with the natural
inclusion R → R1/p when R is reduced. The Frobenius induces an action
on the Čech complex:

0→ R → ⊕Rxi → · · · → ⊕Rx1···x̂i ···xn → Rx1···xn → 0,

hence it induces a natural map on each of the local cohomology modules
H i
I (R).

Another way to understand the Frobenius action on local cohomology:

H i
I (R)→ H i

I (R
1/p) ∼= H i

I (R).
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F -split and F -injective singularities

Definition R is F-split if the Frobenius endomorphism R
F−→ R splits, or

equivalently, R → R1/p splits as R-modules.

Definition (Fedder) A local ring (R,m) is F-injective if the Frobenius acts
injectively on H i

m(R) for every i . In general, R is F -injective if all its
localizations are F -injective.

Quite obviously, F -split implies F -injective, the converse is true if R is
F -finite and Gorenstein. F -injective implies reduced.
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Du Bois complex and Du Bois singularities

The Delign-Du Bois complex Ω•
X is a generalization of the de Rham

complex in the smooth case, it is a filtered complex with a natural
OX → Ω0

X . The original construction uses simplicial resolution. Below is a
simple way to define Ω0

X :

Definition/Theorem (Schwede) Let X be a reduced scheme of
characteristic 0. Suppose X ⊆ Y such that Y is smooth. Take an
embedded resolution of (Y ,X ) with E the reduced pre-image of X . Then
Rπ∗OE

∼= Ω0
X . If X is not reduced, set Ω0

X = Ω0
Xred

.

Definition X is Du Bois if OX → Ω0
X is an isomorphism.
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F -injective vs. Du Bois

Theorem (Schwede) Let X be a reduced scheme of characteristic 0.
Suppose X has (dense) F -injective type, then X is Du Bois.

Rough idea: after reduction mod p � 0, the induced Frobenius action on
hi (Ω0

X ) is nilpotent for i > 0: it can be identified with

R iπ∗OỸ
(−E )→ R iπ∗OỸ

(−pE ).

If we pick a counter-example X = Spec(R,m) with minimal dimension, we
can embed hi (Ω0

X ) into H i+1
m (R). Thus this will contradict the injectivity

of Frobenius on local cohomology if hi (Ω0
X ) 6= 0.
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(−pE ).

If we pick a counter-example X = Spec(R,m) with minimal dimension, we
can embed hi (Ω0

X ) into H i+1
m (R). Thus this will contradict the injectivity

of Frobenius on local cohomology if hi (Ω0
X ) 6= 0.

20



F -injective vs. Du Bois

Theorem (Schwede) Let X be a reduced scheme of characteristic 0.
Suppose X has (dense) F -injective type, then X is Du Bois.

Rough idea: after reduction mod p � 0, the induced Frobenius action on
hi (Ω0

X ) is nilpotent for i > 0: it can be identified with

R iπ∗OỸ
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Weak ordinarity conjecture

Conjecture Suppose X is Du Bois, then X has dense F -injective type.

Conjecture (Weak ordinarity, Mustaţă-Srinivas) Let X be smooth
projective over C. Then for infinitely many p, the Frobenius acts
injectively on H i (Xp,OXp) for all i .

Theorem (Bhatt-Schwede-Takagi) The two conjectures are equivalent.

In general, both conjectures are wide open.

23



Weak ordinarity conjecture

Conjecture Suppose X is Du Bois, then X has dense F -injective type.

Conjecture (Weak ordinarity, Mustaţă-Srinivas) Let X be smooth
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Deformation question

XT a flat family over T , X0 has certain singularity, want to know the
fibers near 0?

Locally X0 is defined by a nonzerodivisor in XT . Local algebra question:
suppose R/xR has certain singularity, then does R have the same type
singularity?

The deformation for F -singularity has been studied intensely: F -rationality
deforms and this is quite easy to prove. In general, F -split does not
deform (Fedder-Singh), F -regularity does not deform (Singh).
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Deformation of F -injective and Du Bois singularities

This leaves an open question for F -injectivity. (R = (R,m) is local from
now on)

Conjecture: If R/xR is F -injective for x a nonzerodivisor on R, then R is
F -injective.

This conjecture is supported by result from Du Bois singularities:

Theorem (Kovács-Schwede) If R/xR is Du Bois for x a nonzerodivisor,
then R is Du Bois.
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Theorem (Kovács-Schwede) If R/xR is Du Bois for x a nonzerodivisor,
then R is Du Bois.

34



Deformation of F -injective and Du Bois singularities

This leaves an open question for F -injectivity. (R = (R,m) is local from
now on)

Conjecture: If R/xR is F -injective for x a nonzerodivisor on R, then R is
F -injective.

This conjecture is supported by result from Du Bois singularities:
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A key injectivity

The crucial ingredient in the proof of Kovács-Schwede is the following
injectivity condition on the dualizing complex:

Theorem (Kovács-Schwede) Let X be a reduced scheme. the canonical
map OX → Ω0

X induces an injection hj(ω•
X )→ hj(ω•

X ) for every j , where
ω•
X = RHom(Ω0

X , ω
•
X ).

Sketch: Reduce to X projective. Suffices to prove for all j ,
H0(hj(ω•

X )⊗ Ln)→ H0(hj(ω•
X )⊗ Ln) is injective for L ample and n� 0 .

Spectral sequence and duality show it suffices to prove for all i ,
H i (L−n)→ Hi (Ω0

X ⊗ L−n) is surjective. This follows by taking cyclic cover
Y of L and using the E1 degeneration of the Delign-Du Bois complex:
H i (Y ,C)→ H i (Y ,OY )→ H i (Y ,Ω0

Y ) is surjective for every i .
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Known cases of the conjecture

Conjecture: If R/xR is F -injective for x a nonzerodivisor on R, then R is
F -injective.

Easy to prove (and is well known) if R is Cohen-Macaulay.
Some recent progress:

Definition (Horiuchi-Miller-Shimomoto) A nonzerodivisor x ∈ R is called
a surjective element if H i

m(R/xnR)→ H i
m(R/xR) is surjective for every i

and every n > 0.

Theorem (Horiuchi-Miller-Shimomoto) Suppose R/xR is F -injective and
x is a surjective element, then R is F -injective. (We will generalize and
recover this result later)
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Surjective elements

When is x a surjective element?

1. Trivially holds if R is Cohen-Macaulay.
2. Holds if R/xR is F -injective and Cohen-Macaulay on Spec − {m}
(HMS).
3. Holds if R/xR is F -split (HMS). Hence R/xR F -split ⇒ R F -injective.
4. In fact, we do not know an example that R/xR is F -injective but x is
not a surjective element.
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Main theorem

Theorem (Ma-Schwede-Shimomoto) Suppose R/xR has (dense)
F -injective type, then so does R. In fact, if R/xR has (dense) F -injective
type, then for infinitely many p > 0, xp−1F acts injectively on H i

mp
(Rp) for

every i (where (Rp,mp) is the reduction mod p � 0 of (R,m) and F is
the natural Frobenius action on H i

mp
(Rp)).

Proof strategy We will show R/xR has (dense) F -injective type ⇒ x is a
surjective element after reduction mod p � 0.
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Proof sketch

Step 1: R/xR dense F -injective type ⇒ R/xR Du Bois (Schwede).

Step 2: (Surjectivity property of local cohomology for Du Bois)
If Rred is Du Bois, then H i

m(R)→ H i
m(Rred) is surjective. In particular,

H i
m(R/xnR)→ H i

m(R/xR) is surjective for every i , n > 0.

Step 3: (Uniformity in reduction mod p � 0)
If H i

m(R/xnR)→ H i
m(R/xR) is surjective for every i , n > 0, then for all

p � 0 (p independent of n), H i
mp

(Rp/x
nRp)→ H i

mp
(Rp/xRp) is surjective

for every i , n > 0. Hence x is a surjective element after mod p � 0.

Step 4: Conclude Rp is F -injective for infinitely many p � 0 by HMS.

To get the stronger result, we generalize HMS:
Step 4’: If x is a surjective element, then R/xR F -injective implies xp−1F
acts injectively on H i

m(R) for every i .
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Surjectivity of local cohomology

Recall the key injectivity theorem of Kovács-Schwede: If X is reduced,
then hj(ω•

X )→ hj(ω•
X ) is injective for every j .

We first generalize this to not necessarily reduced X (basically following
the same strategy of Kovács-Schwede and observing the map
H i (Y ,C)→ H i (Y ,OY )→ H i (Y ,Ω0

Yred
) is still surjective even when Y is

not reduced). Now for X = SpecR, local duality then tells us
H i
m(R)→ Hi

m(Ω0
R) is surjective for every i . Consider the commutative

diagram with Rred Du Bois:

H i
m(R)

��

// H i
m(Rred)

∼=
��

Hi
m(Ω0

R)
∼= // Hi

m(Ω0
Rred

)
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Surjectivity of local cohomology–continued

An obvious equivalent way to interpret the surjectivity: suppose R is
Du Bois, H i

m(S)→ H i
m(R) is surjective for every i and every thickening S

of R (i.e., Sred = R).

Some natural questions: what about characteristic p > 0? Is F -injectivity
suffices to guarantee this surjectivity? Is this surjectivity preserved after
reduction mod p � 0? It turns out that both answers are no.

In characteristic p > 0, F -split will imply this surjectivity, but we construct
an example F -injective local ring such that the surjective property fails
(based on an example of Enescu-Hochster).
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An example

The surjectivity condition does not pass to reduction mod p for all p � 0:

Let R = k[x ,y ,z]
x3+y3+z3

#k[s, t] be the Segre product. This is the affine cone of

E × P1 where E is the elliptic curve Proj k[x ,y ,z]
x3+y3+z3

. Let m denote the
unique homogeneous maximal ideal of R.

If char(k) = 0, R is Du Bois, so H i
m(S)→ H i

m(R) is surjective for every i
and every thickening S .

If char(k) = p ≡ 1 mod 3, R is F -split, so H i
m(S)→ H i

m(R) is surjective
for every i and every thickening S .

If char(k) = p ≡ 2 mod 3, the Frobenius kills H2
m(R) ∼= k, so the induced

H2
m(S)→ H2

m(R) is zero when S is the Frobenius thickening.

73



An example

The surjectivity condition does not pass to reduction mod p for all p � 0:

Let R = k[x ,y ,z]
x3+y3+z3

#k[s, t] be the Segre product. This is the affine cone of

E × P1 where E is the elliptic curve Proj k[x ,y ,z]
x3+y3+z3

. Let m denote the
unique homogeneous maximal ideal of R.

If char(k) = 0, R is Du Bois, so H i
m(S)→ H i

m(R) is surjective for every i
and every thickening S .

If char(k) = p ≡ 1 mod 3, R is F -split, so H i
m(S)→ H i

m(R) is surjective
for every i and every thickening S .

If char(k) = p ≡ 2 mod 3, the Frobenius kills H2
m(R) ∼= k, so the induced

H2
m(S)→ H2

m(R) is zero when S is the Frobenius thickening.

74



An example

The surjectivity condition does not pass to reduction mod p for all p � 0:

Let R = k[x ,y ,z]
x3+y3+z3

#k[s, t] be the Segre product. This is the affine cone of

E × P1 where E is the elliptic curve Proj k[x ,y ,z]
x3+y3+z3

. Let m denote the
unique homogeneous maximal ideal of R.

If char(k) = 0, R is Du Bois, so H i
m(S)→ H i

m(R) is surjective for every i
and every thickening S .

If char(k) = p ≡ 1 mod 3, R is F -split, so H i
m(S)→ H i

m(R) is surjective
for every i and every thickening S .

If char(k) = p ≡ 2 mod 3, the Frobenius kills H2
m(R) ∼= k, so the induced

H2
m(S)→ H2

m(R) is zero when S is the Frobenius thickening.

75



An example

The surjectivity condition does not pass to reduction mod p for all p � 0:

Let R = k[x ,y ,z]
x3+y3+z3

#k[s, t] be the Segre product. This is the affine cone of

E × P1 where E is the elliptic curve Proj k[x ,y ,z]
x3+y3+z3

. Let m denote the
unique homogeneous maximal ideal of R.

If char(k) = 0, R is Du Bois, so H i
m(S)→ H i

m(R) is surjective for every i
and every thickening S .

If char(k) = p ≡ 1 mod 3, R is F -split, so H i
m(S)→ H i

m(R) is surjective
for every i and every thickening S .

If char(k) = p ≡ 2 mod 3, the Frobenius kills H2
m(R) ∼= k, so the induced

H2
m(S)→ H2

m(R) is zero when S is the Frobenius thickening.

76



An example

The surjectivity condition does not pass to reduction mod p for all p � 0:

Let R = k[x ,y ,z]
x3+y3+z3

#k[s, t] be the Segre product. This is the affine cone of

E × P1 where E is the elliptic curve Proj k[x ,y ,z]
x3+y3+z3

. Let m denote the
unique homogeneous maximal ideal of R.

If char(k) = 0, R is Du Bois, so H i
m(S)→ H i

m(R) is surjective for every i
and every thickening S .

If char(k) = p ≡ 1 mod 3, R is F -split, so H i
m(S)→ H i

m(R) is surjective
for every i and every thickening S .

If char(k) = p ≡ 2 mod 3, the Frobenius kills H2
m(R) ∼= k, so the induced

H2
m(S)→ H2

m(R) is zero when S is the Frobenius thickening.

77



An example

The surjectivity condition does not pass to reduction mod p for all p � 0:

Let R = k[x ,y ,z]
x3+y3+z3

#k[s, t] be the Segre product. This is the affine cone of

E × P1 where E is the elliptic curve Proj k[x ,y ,z]
x3+y3+z3

. Let m denote the
unique homogeneous maximal ideal of R.

If char(k) = 0, R is Du Bois, so H i
m(S)→ H i

m(R) is surjective for every i
and every thickening S .

If char(k) = p ≡ 1 mod 3, R is F -split, so H i
m(S)→ H i

m(R) is surjective
for every i and every thickening S .

If char(k) = p ≡ 2 mod 3, the Frobenius kills H2
m(R) ∼= k, so the induced

H2
m(S)→ H2

m(R) is zero when S is the Frobenius thickening.

78



Further question

We suspect, if R is Du Bois, assuming the weak ordinarity conjecture, then
Rp has the surjective property on local cohomology (called F -full) for
infinitely many p > 0.
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Thank you!
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