Deformation of *F*-injectivity

Linquan Ma, Karl Schwede, Kazuma Shimomoto

Higher Dimensional Birational Geometry and Characteristic p

Sep 14, 2016

Throughout the talk, all rings and schemes contain a field.

In characteristic 0, all rings and schemes are essentially finite type over \mathbb{C} .

Singularities in characteristic p > 0 and zero

Frobenius actions on local cohomology

Let *R* be a ring of characteristic p > 0. We have the Frobenius endomorphism of *R*, *F*: $R \rightarrow R$.

Let *R* be a ring of characteristic p > 0. We have the Frobenius endomorphism of *R*, *F*: $R \to R$. This can be identified with the natural inclusion $R \to R^{1/p}$ when *R* is reduced.

Let *R* be a ring of characteristic p > 0. We have the Frobenius endomorphism of *R*, *F*: $R \to R$. This can be identified with the natural inclusion $R \to R^{1/p}$ when *R* is reduced. The Frobenius induces an action on the Čech complex:

$$0 \to R \to \oplus R_{x_i} \to \cdots \to \oplus R_{x_1 \cdots \widehat{x_i} \cdots x_n} \to R_{x_1 \cdots x_n} \to 0,$$

hence it induces a natural map on each of the local cohomology modules $H_I^i(R)$.

Let *R* be a ring of characteristic p > 0. We have the Frobenius endomorphism of *R*, *F*: $R \to R$. This can be identified with the natural inclusion $R \to R^{1/p}$ when *R* is reduced. The Frobenius induces an action on the Čech complex:

$$0 o R o \oplus R_{x_i} o \cdots o \oplus R_{x_1 \cdots \widehat{x_i} \cdots x_n} o R_{x_1 \cdots x_n} o 0,$$

hence it induces a natural map on each of the local cohomology modules $H_I^i(R)$.

Another way to understand the Frobenius action on local cohomology:

$$H^i_I(R) \to H^i_I(R^{1/p}) \cong H^i_I(R).$$

F-split and F-injective singularities

Definition *R* is *F*-split if the Frobenius endomorphism $R \xrightarrow{F} R$ splits, or equivalently, $R \rightarrow R^{1/p}$ splits as *R*-modules.

11

Definition *R* is *F*-split if the Frobenius endomorphism $R \xrightarrow{F} R$ splits, or equivalently, $R \rightarrow R^{1/p}$ splits as *R*-modules.

Definition (Fedder) A local ring (R, m) is *F*-injective if the Frobenius acts injectively on $H_m^i(R)$ for every *i*. In general, *R* is *F*-injective if all its localizations are *F*-injective.

Definition *R* is *F*-split if the Frobenius endomorphism $R \xrightarrow{F} R$ splits, or equivalently, $R \rightarrow R^{1/p}$ splits as *R*-modules.

Definition (Fedder) A local ring (R, m) is *F*-injective if the Frobenius acts injectively on $H_m^i(R)$ for every *i*. In general, *R* is *F*-injective if all its localizations are *F*-injective.

Quite obviously, F-split implies F-injective, the converse is true if R is F-finite and Gorenstein. F-injective implies reduced.

Du Bois complex and Du Bois singularities

The Delign-Du Bois complex $\underline{\Omega}^{\bullet}_X$ is a generalization of the de Rham complex in the smooth case, it is a filtered complex with a natural $O_X \to \underline{\Omega}^0_X$.

The Delign-Du Bois complex $\underline{\Omega}_X^{\bullet}$ is a generalization of the de Rham complex in the smooth case, it is a filtered complex with a natural $O_X \to \underline{\Omega}_X^0$. The original construction uses simplicial resolution. Below is a simple way to define $\underline{\Omega}_X^0$:

Definition/Theorem (Schwede) Let X be a reduced scheme of characteristic 0. Suppose $X \subseteq Y$ such that Y is smooth. Take an embedded resolution of (Y, X) with E the reduced pre-image of X. Then $R\pi_*O_E \cong \underline{\Omega}^0_X$.

The Delign-Du Bois complex $\underline{\Omega}_X^{\bullet}$ is a generalization of the de Rham complex in the smooth case, it is a filtered complex with a natural $O_X \to \underline{\Omega}_X^0$. The original construction uses simplicial resolution. Below is a simple way to define $\underline{\Omega}_X^0$:

Definition/Theorem (Schwede) Let X be a reduced scheme of characteristic 0. Suppose $X \subseteq Y$ such that Y is smooth. Take an embedded resolution of (Y, X) with E the reduced pre-image of X. Then $R\pi_*O_E \cong \underline{\Omega}^0_X$. If X is not reduced, set $\underline{\Omega}^0_X = \underline{\Omega}^0_{X_{red}}$.

The Delign-Du Bois complex $\underline{\Omega}_X^{\bullet}$ is a generalization of the de Rham complex in the smooth case, it is a filtered complex with a natural $O_X \to \underline{\Omega}_X^0$. The original construction uses simplicial resolution. Below is a simple way to define $\underline{\Omega}_X^0$:

Definition/Theorem (Schwede) Let X be a reduced scheme of characteristic 0. Suppose $X \subseteq Y$ such that Y is smooth. Take an embedded resolution of (Y, X) with E the reduced pre-image of X. Then $R\pi_*O_E \cong \underline{\Omega}^0_X$. If X is not reduced, set $\underline{\Omega}^0_X = \underline{\Omega}^0_{X_{red}}$.

Definition X is Du Bois if $O_X \to \underline{\Omega}^0_X$ is an isomorphism.

Rough idea: after reduction mod $p \gg 0$, the induced Frobenius action on $h^i(\underline{\Omega}^0_X)$ is nilpotent for i > 0:

Rough idea: after reduction mod $p \gg 0$, the induced Frobenius action on $h^i(\underline{\Omega}^0_X)$ is nilpotent for i > 0: it can be identified with

$$R^i \pi_* O_{\widetilde{Y}}(-E) o R^i \pi_* O_{\widetilde{Y}}(-pE).$$

Rough idea: after reduction mod $p \gg 0$, the induced Frobenius action on $h^i(\underline{\Omega}^0_X)$ is nilpotent for i > 0: it can be identified with

$$R^{i}\pi_{*}O_{\widetilde{Y}}(-E)
ightarrow R^{i}\pi_{*}O_{\widetilde{Y}}(-pE).$$

If we pick a counter-example X = Spec(R, m) with minimal dimension, we can embed $h^i(\underline{\Omega}^0_X)$ into $H^{i+1}_m(R)$. Thus this will contradict the injectivity of Frobenius on local cohomology if $h^i(\underline{\Omega}^0_X) \neq 0$.

Conjecture (Weak ordinarity, Mustață-Srinivas) Let X be smooth projective over \mathbb{C} . Then for infinitely many p, the Frobenius acts injectively on $H^i(X_p, O_{X_p})$ for all i.

Conjecture (Weak ordinarity, Mustață-Srinivas) Let X be smooth projective over \mathbb{C} . Then for infinitely many p, the Frobenius acts injectively on $H^i(X_p, O_{X_p})$ for all i.

Theorem (Bhatt-Schwede-Takagi) The two conjectures are equivalent.

Conjecture (Weak ordinarity, Mustață-Srinivas) Let X be smooth projective over \mathbb{C} . Then for infinitely many p, the Frobenius acts injectively on $H^i(X_p, O_{X_p})$ for all i.

Theorem (Bhatt-Schwede-Takagi) The two conjectures are equivalent.

In general, both conjectures are wide open.

Deformation question

 X_T a flat family over T, X_0 has certain singularity, want to know the fibers near 0?

 X_T a flat family over T, X_0 has certain singularity, want to know the fibers near 0?

Locally X_0 is defined by a nonzerodivisor in X_T . Local algebra question: suppose R/xR has certain singularity, then does R have the same type singularity?

- X_T a flat family over T, X_0 has certain singularity, want to know the fibers near 0?
- Locally X_0 is defined by a nonzerodivisor in X_T . Local algebra question: suppose R/xR has certain singularity, then does R have the same type singularity?
- The deformation for F-singularity has been studied intensely: F-rationality deforms and this is quite easy to prove.

- X_T a flat family over T, X_0 has certain singularity, want to know the fibers near 0?
- Locally X_0 is defined by a nonzerodivisor in X_T . Local algebra question: suppose R/xR has certain singularity, then does R have the same type singularity?
- The deformation for *F*-singularity has been studied intensely: *F*-rationality deforms and this is quite easy to prove. In general, *F*-split does not deform (Fedder-Singh), *F*-regularity does not deform (Singh).

Deformation of F-injective and Du Bois singularities

This leaves an open question for *F*-injectivity. (R = (R, m) is local from now on)

This leaves an open question for *F*-injectivity. (R = (R, m) is local from now on)

Conjecture: If R/xR is *F*-injective for x a nonzerodivisor on R, then R is *F*-injective.

This leaves an open question for *F*-injectivity. (R = (R, m) is local from now on)

Conjecture: If R/xR is *F*-injective for x a nonzerodivisor on R, then R is *F*-injective.

This conjecture is supported by result from Du Bois singularities:

Theorem (Kovács-Schwede) If R/xR is Du Bois for x a nonzerodivisor, then R is Du Bois.

This leaves an open question for *F*-injectivity. (R = (R, m) is local from now on)

Conjecture: If R/xR is *F*-injective for x a nonzerodivisor on R, then R is *F*-injective.

This conjecture is supported by result from Du Bois singularities:

Theorem (Kovács-Schwede) If R/xR is Du Bois for x a nonzerodivisor, then R is Du Bois.

The crucial ingredient in the proof of Kovács-Schwede is the following injectivity condition on the dualizing complex:
Theorem (Kovács-Schwede) Let X be a reduced scheme. the canonical map $O_X \to \underline{\Omega}^0_X$ induces an injection $h^j(\underline{\omega}^\bullet_X) \to h^j(\omega^\bullet_X)$ for every j, where $\underline{\omega}^\bullet_X = R\underline{Hom}(\underline{\Omega}^0_X, \omega^\bullet_X)$.

Theorem (Kovács-Schwede) Let X be a reduced scheme. the canonical map $O_X \to \underline{\Omega}^0_X$ induces an injection $h^j(\underline{\omega}^\bullet_X) \to h^j(\omega^\bullet_X)$ for every j, where $\underline{\omega}^\bullet_X = R\underline{Hom}(\underline{\Omega}^0_X, \omega^\bullet_X)$.

Sketch: Reduce to X projective. Suffices to prove for all j, $H^0(h^j(\underline{\omega}_X^{\bullet}) \otimes L^n) \to H^0(h^j(\omega_X^{\bullet}) \otimes L^n)$ is injective for L ample and $n \gg 0$

Theorem (Kovács-Schwede) Let X be a reduced scheme. the canonical map $O_X \to \underline{\Omega}^0_X$ induces an injection $h^j(\underline{\omega}^\bullet_X) \to h^j(\omega^\bullet_X)$ for every j, where $\underline{\omega}^\bullet_X = R\underline{Hom}(\underline{\Omega}^0_X, \omega^\bullet_X)$.

Sketch: Reduce to X projective. Suffices to prove for all j, $H^0(h^j(\underline{\omega}_X^{\bullet}) \otimes L^n) \to H^0(h^j(\omega_X^{\bullet}) \otimes L^n)$ is injective for L ample and $n \gg 0$. Spectral sequence and duality show it suffices to prove for all i, $H^i(L^{-n}) \to \mathbb{H}^i(\underline{\Omega}_X^0 \otimes L^{-n})$ is surjective.

Theorem (Kovács-Schwede) Let X be a reduced scheme. the canonical map $O_X \to \underline{\Omega}^0_X$ induces an injection $h^j(\underline{\omega}^\bullet_X) \to h^j(\omega^\bullet_X)$ for every j, where $\underline{\omega}^\bullet_X = R\underline{Hom}(\underline{\Omega}^0_X, \omega^\bullet_X)$.

Sketch: Reduce to X projective. Suffices to prove for all j, $H^0(h^j(\underline{\omega}_X^{\bullet}) \otimes L^n) \to H^0(h^j(\omega_X^{\bullet}) \otimes L^n)$ is injective for L ample and $n \gg 0$. Spectral sequence and duality show it suffices to prove for all i, $H^i(L^{-n}) \to \mathbb{H}^i(\underline{\Omega}_X^0 \otimes L^{-n})$ is surjective. This follows by taking cyclic cover Y of L and using the E_1 degeneration of the Delign-Du Bois complex:

Theorem (Kovács-Schwede) Let X be a reduced scheme. the canonical map $O_X \to \underline{\Omega}^0_X$ induces an injection $h^j(\underline{\omega}^\bullet_X) \to h^j(\omega^\bullet_X)$ for every j, where $\underline{\omega}^\bullet_X = R\underline{Hom}(\underline{\Omega}^0_X, \omega^\bullet_X)$.

Sketch: Reduce to X projective. Suffices to prove for all j, $H^0(h^j(\underline{\omega}_X^{\bullet}) \otimes L^n) \to H^0(h^j(\omega_X^{\bullet}) \otimes L^n)$ is injective for L ample and $n \gg 0$. Spectral sequence and duality show it suffices to prove for all i, $H^i(L^{-n}) \to \mathbb{H}^i(\underline{\Omega}_X^0 \otimes L^{-n})$ is surjective. This follows by taking cyclic cover Y of L and using the E_1 degeneration of the Delign-Du Bois complex: $H^i(Y, \mathbb{C}) \to H^i(Y, O_Y) \to H^i(Y, \underline{\Omega}_Y^0)$ is surjective for every i.

Theorem (Kovács-Schwede) Let X be a reduced scheme. the canonical map $O_X \to \underline{\Omega}^0_X$ induces an injection $h^j(\underline{\omega}^\bullet_X) \to h^j(\omega^\bullet_X)$ for every j, where $\underline{\omega}^\bullet_X = R\underline{Hom}(\underline{\Omega}^0_X, \omega^\bullet_X)$.

Sketch: Reduce to X projective. Suffices to prove for all j, $H^0(h^j(\underline{\omega}^{\bullet}_X) \otimes L^n) \to H^0(h^j(\omega^{\bullet}_X) \otimes L^n)$ is injective for L ample and $n \gg 0$. Spectral sequence and duality show it suffices to prove for all i, $H^i(L^{-n}) \to \mathbb{H}^i(\underline{\Omega}^0_X \otimes L^{-n})$ is surjective. This follows by taking cyclic cover Y of L and using the E_1 degeneration of the Delign-Du Bois complex: $H^i(Y, \mathbb{C}) \to H^i(Y, O_Y) \to H^i(Y, \underline{\Omega}^0_Y)$ is surjective for every i.

Easy to prove (and is well known) if R is Cohen-Macaulay.

Easy to prove (and is well known) if R is Cohen-Macaulay. Some recent progress:

Definition (Horiuchi-Miller-Shimomoto) A nonzerodivisor $x \in R$ is called a surjective element if $H^i_m(R/x^nR) \to H^i_m(R/xR)$ is surjective for every *i* and every n > 0.

Easy to prove (and is well known) if R is Cohen-Macaulay. Some recent progress:

Definition (Horiuchi-Miller-Shimomoto) A nonzerodivisor $x \in R$ is called a surjective element if $H^i_m(R/x^nR) \to H^i_m(R/xR)$ is surjective for every *i* and every n > 0.

Theorem (Horiuchi-Miller-Shimomoto) Suppose R/xR is *F*-injective and x is a surjective element, then *R* is *F*-injective. (We will generalize and recover this result later)

Easy to prove (and is well known) if R is Cohen-Macaulay. Some recent progress:

Definition (Horiuchi-Miller-Shimomoto) A nonzerodivisor $x \in R$ is called a surjective element if $H^i_m(R/x^nR) \to H^i_m(R/xR)$ is surjective for every *i* and every n > 0.

Theorem (Horiuchi-Miller-Shimomoto) Suppose R/xR is *F*-injective and x is a surjective element, then *R* is *F*-injective. (We will generalize and recover this result later)

1. Trivially holds if R is Cohen-Macaulay.

1. Trivially holds if R is Cohen-Macaulay.

2. Holds if R/xR is F-injective and Cohen-Macaulay on $Spec - \{m\}$ (HMS).

3. Holds if R/xR is F-split (HMS). Hence R/xR F-split \Rightarrow R F-injective.

1. Trivially holds if R is Cohen-Macaulay.

2. Holds if R/xR is F-injective and Cohen-Macaulay on $Spec - \{m\}$ (HMS).

3. Holds if R/xR is F-split (HMS). Hence R/xR F-split \Rightarrow R F-injective.

4. In fact, we do not know an example that R/xR is *F*-injective but *x* is not a surjective element.

1. Trivially holds if R is Cohen-Macaulay.

2. Holds if R/xR is F-injective and Cohen-Macaulay on $Spec - \{m\}$ (HMS).

3. Holds if R/xR is F-split (HMS). Hence R/xR F-split \Rightarrow R F-injective.

4. In fact, we do not know an example that R/xR is *F*-injective but *x* is not a surjective element.

Main theorem

Theorem (Ma-Schwede-Shimomoto) Suppose R/xR has (dense) *F*-injective type, then so does *R*.

Theorem (Ma-Schwede-Shimomoto) Suppose R/xR has (dense) *F*-injective type, then so does *R*. In fact, if R/xR has (dense) *F*-injective type, then for infinitely many p > 0, $x^{p-1}F$ acts injectively on $H^i_{m_p}(R_p)$ for every *i* (where (R_p, m_p) is the reduction mod $p \gg 0$ of (R, m) and *F* is the natural Frobenius action on $H^i_{m_p}(R_p)$). **Theorem** (Ma-Schwede-Shimomoto) Suppose R/xR has (dense) *F*-injective type, then so does *R*. In fact, if R/xR has (dense) *F*-injective type, then for infinitely many p > 0, $x^{p-1}F$ acts injectively on $H^i_{m_p}(R_p)$ for every *i* (where (R_p, m_p) is the reduction mod $p \gg 0$ of (R, m) and *F* is the natural Frobenius action on $H^i_{m_p}(R_p)$).

Proof strategy We will show R/xR has (dense) *F*-injective type $\Rightarrow x$ is a surjective element after reduction mod $p \gg 0$.

Step 1: R/xR dense *F*-injective type $\Rightarrow R/xR$ Du Bois (Schwede).

Step 1: R/xR dense *F*-injective type $\Rightarrow R/xR$ Du Bois (Schwede).

Step 2: (Surjectivity property of local cohomology for Du Bois) If R_{red} is Du Bois, then $H_m^i(R) \to H_m^i(R_{red})$ is surjective. In particular, $H_m^i(R/x^nR) \to H_m^i(R/xR)$ is surjective for every i, n > 0.

Step 1: R/xR dense *F*-injective type $\Rightarrow R/xR$ Du Bois (Schwede).

Step 2: (Surjectivity property of local cohomology for Du Bois) If R_{red} is Du Bois, then $H_m^i(R) \to H_m^i(R_{red})$ is surjective. In particular, $H_m^i(R/x^nR) \to H_m^i(R/xR)$ is surjective for every i, n > 0.

Step 3: (Uniformity in reduction mod $p \gg 0$) If $H_m^i(R/x^nR) \to H_m^i(R/xR)$ is surjective for every i, n > 0, then for all $p \gg 0$ (p independent of n), $H_{m_p}^i(R_p/x^nR_p) \to H_{m_p}^i(R_p/xR_p)$ is surjective for every i, n > 0. Hence x is a surjective element after mod $p \gg 0$.

Step 1: R/xR dense *F*-injective type $\Rightarrow R/xR$ Du Bois (Schwede).

Step 2: (Surjectivity property of local cohomology for Du Bois) If R_{red} is Du Bois, then $H_m^i(R) \to H_m^i(R_{red})$ is surjective. In particular, $H_m^i(R/x^nR) \to H_m^i(R/xR)$ is surjective for every i, n > 0.

Step 3: (Uniformity in reduction mod $p \gg 0$) If $H^i_m(R/x^nR) \to H^i_m(R/xR)$ is surjective for every i, n > 0, then for all $p \gg 0$ (p independent of n), $H^i_{m_p}(R_p/x^nR_p) \to H^i_{m_p}(R_p/xR_p)$ is surjective for every i, n > 0. Hence x is a surjective element after mod $p \gg 0$.

Step 4: Conclude R_p is *F*-injective for infinitely many $p \gg 0$ by HMS.

Step 1: R/xR dense *F*-injective type $\Rightarrow R/xR$ Du Bois (Schwede).

Step 2: (Surjectivity property of local cohomology for Du Bois) If R_{red} is Du Bois, then $H_m^i(R) \to H_m^i(R_{red})$ is surjective. In particular, $H_m^i(R/x^nR) \to H_m^i(R/xR)$ is surjective for every i, n > 0.

Step 3: (Uniformity in reduction mod $p \gg 0$) If $H^i_m(R/x^nR) \to H^i_m(R/xR)$ is surjective for every i, n > 0, then for all $p \gg 0$ (p independent of n), $H^i_{m_p}(R_p/x^nR_p) \to H^i_{m_p}(R_p/xR_p)$ is surjective for every i, n > 0. Hence x is a surjective element after mod $p \gg 0$.

Step 4: Conclude R_p is *F*-injective for infinitely many $p \gg 0$ by HMS.

To get the stronger result, we generalize HMS: Step 4': If x is a surjective element, then R/xR F-injective implies $x^{p-1}F$ acts injectively on $H_m^i(R)$ for every *i*.

Recall the key injectivity theorem of Kovács-Schwede: If X is reduced, then $h^j(\underline{\omega}^{\bullet}_X) \to h^j(\omega^{\bullet}_X)$ is injective for every j.

Recall the key injectivity theorem of Kovács-Schwede: If X is reduced, then $h^{j}(\underline{\omega}_{X}^{\bullet}) \rightarrow h^{j}(\omega_{X}^{\bullet})$ is injective for every j.

We first generalize this to not necessarily reduced X (basically following the same strategy of Kovács-Schwede and observing the map $H^i(Y, \mathbb{C}) \to H^i(Y, O_Y) \to H^i(Y, \underline{\Omega}^0_{Y_{red}})$ is still surjective even when Y is not reduced).

Recall the key injectivity theorem of Kovács-Schwede: If X is reduced, then $h^j(\underline{\omega}^{\bullet}_X) \to h^j(\omega^{\bullet}_X)$ is injective for every j.

We first generalize this to not necessarily reduced X (basically following the same strategy of Kovács-Schwede and observing the map $H^i(Y, \mathbb{C}) \to H^i(Y, O_Y) \to H^i(Y, \underline{\Omega}^0_{Y_{red}})$ is still surjective even when Y is not reduced). Now for X = SpecR, local duality then tells us $H^i_m(R) \to \mathbb{H}^i_m(\underline{\Omega}^0_R)$ is surjective for every *i*.

Recall the key injectivity theorem of Kovács-Schwede: If X is reduced, then $h^j(\underline{\omega}^{\bullet}_X) \to h^j(\omega^{\bullet}_X)$ is injective for every j.

We first generalize this to not necessarily reduced X (basically following the same strategy of Kovács-Schwede and observing the map $H^i(Y, \mathbb{C}) \to H^i(Y, O_Y) \to H^i(Y, \underline{\Omega}^0_{Y_{red}})$ is still surjective even when Y is not reduced). Now for X = SpecR, local duality then tells us $H^i_m(R) \to \mathbb{H}^i_m(\underline{\Omega}^0_R)$ is surjective for every *i*. Consider the commutative diagram with R_{red} Du Bois:

67

Some natural questions: what about characteristic p > 0? Is *F*-injectivity suffices to guarantee this surjectivity?

Some natural questions: what about characteristic p > 0? Is *F*-injectivity suffices to guarantee this surjectivity? Is this surjectivity preserved after reduction mod $p \gg 0$?

Some natural questions: what about characteristic p > 0? Is *F*-injectivity suffices to guarantee this surjectivity? Is this surjectivity preserved after reduction mod $p \gg 0$? It turns out that both answers are no.

Some natural questions: what about characteristic p > 0? Is *F*-injectivity suffices to guarantee this surjectivity? Is this surjectivity preserved after reduction mod $p \gg 0$? It turns out that both answers are no.

In characteristic p > 0, *F*-split will imply this surjectivity, but we construct an example *F*-injective local ring such that the surjective property fails (based on an example of Enescu-Hochster).

The surjectivity condition does not pass to reduction mod p for all $p \gg 0$:

The surjectivity condition does not pass to reduction mod p for all $p \gg 0$:

Let $R = \frac{k[x,y,z]}{x^3+y^3+z^3} \# k[s,t]$ be the Segre product. This is the affine cone of $E \times \mathbb{P}^1$ where *E* is the elliptic curve $\operatorname{Proj} \frac{k[x,y,z]}{x^3+y^3+z^3}$. Let *m* denote the unique homogeneous maximal ideal of *R*.

The surjectivity condition does not pass to reduction mod p for all $p \gg 0$:

Let $R = \frac{k[x,y,z]}{x^3+y^3+z^3} \# k[s,t]$ be the Segre product. This is the affine cone of $E \times \mathbb{P}^1$ where E is the elliptic curve $\operatorname{Proj} \frac{k[x,y,z]}{x^3+y^3+z^3}$. Let m denote the unique homogeneous maximal ideal of R.

If char(k) = 0, R is Du Bois, so $H^i_m(S) \to H^i_m(R)$ is surjective for every i and every thickening S.

The surjectivity condition does not pass to reduction mod p for all $p \gg 0$:

Let $R = \frac{k[x,y,z]}{x^3+y^3+z^3} \# k[s,t]$ be the Segre product. This is the affine cone of $E \times \mathbb{P}^1$ where *E* is the elliptic curve $\operatorname{Proj} \frac{k[x,y,z]}{x^3+y^3+z^3}$. Let *m* denote the unique homogeneous maximal ideal of *R*.

If char(k) = 0, R is Du Bois, so $H^i_m(S) \to H^i_m(R)$ is surjective for every i and every thickening S.

If $char(k) = p \equiv 1 \mod 3$, R is F-split, so $H^i_m(S) \to H^i_m(R)$ is surjective for every *i* and every thickening S.

The surjectivity condition does not pass to reduction mod p for all $p \gg 0$:

Let $R = \frac{k[x,y,z]}{x^3+y^3+z^3} \# k[s,t]$ be the Segre product. This is the affine cone of $E \times \mathbb{P}^1$ where *E* is the elliptic curve $\operatorname{Proj} \frac{k[x,y,z]}{x^3+y^3+z^3}$. Let *m* denote the unique homogeneous maximal ideal of *R*.

If char(k) = 0, R is Du Bois, so $H_m^i(S) \to H_m^i(R)$ is surjective for every i and every thickening S.

If $char(k) = p \equiv 1 \mod 3$, R is F-split, so $H^i_m(S) \to H^i_m(R)$ is surjective for every *i* and every thickening S.

If $char(k) = p \equiv 2 \mod 3$, the Frobenius kills $H^2_m(R) \cong k$, so the induced $H^2_m(S) \to H^2_m(R)$ is zero when S is the Frobenius thickening.

The surjectivity condition does not pass to reduction mod p for all $p \gg 0$:

Let $R = \frac{k[x,y,z]}{x^3+y^3+z^3} \# k[s,t]$ be the Segre product. This is the affine cone of $E \times \mathbb{P}^1$ where *E* is the elliptic curve $\operatorname{Proj} \frac{k[x,y,z]}{x^3+y^3+z^3}$. Let *m* denote the unique homogeneous maximal ideal of *R*.

If char(k) = 0, R is Du Bois, so $H_m^i(S) \to H_m^i(R)$ is surjective for every i and every thickening S.

If $char(k) = p \equiv 1 \mod 3$, R is F-split, so $H^i_m(S) \to H^i_m(R)$ is surjective for every *i* and every thickening S.

If $char(k) = p \equiv 2 \mod 3$, the Frobenius kills $H^2_m(R) \cong k$, so the induced $H^2_m(S) \to H^2_m(R)$ is zero when S is the Frobenius thickening.

We suspect, if R is Du Bois, assuming the weak ordinarity conjecture, then R_p has the surjective property on local cohomology (called *F*-full) for infinitely many p > 0.

Thank you!