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The problem

We analyze the stability properties of viscoelastic models for

second–order evolution equations. In particular, we consider a model

combining memory damping and a “small” time delay feedback and a

model combining memory damping and on–off time delay feedback,

namely the time delay feedback is intermittently present.

It is well–known (see e.g. Giorgi, Muñoz Rivera and Pata 2001,

Alabau–Boussouira, Cannarsa and Sforza 2008) that, under appropriate

assumptions on the memory kernel, wave–type equations with viscoelastic

damping are exponentially stable, i.e. the energy of all solutions is

exponentially decaying to zero.

On the other hand, time delay effects appear in many applications and

practical problems and it is by now well–known that even an arbitrarily

small delay in the feedback may destabilize a system which is uniformly

exponentially stable in absence of delay.
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The problem

For some examples of this destabilizing effect of time delays we refer to

[Datko 1988, Datko, Lagnese and Polis 1986, Nicaise and P. 2006, Xu,

Yung and Li 2006] .

We want to show that under suitable conditions involving the delay

feedback coefficient and the memory kernel, the system is asymptotically

stable or exponentially stable, in spite of the presence of the time delay

term. We can obtain two complementary results. The first stability result

is obtained under a smallness condition on L∞-norm of the coefficient of

the delay damping, while the second one is guaranteed if the coefficient

belongs to L1(0,+∞) and the time intervals where the delay feedback is

off are sufficiently large.
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The general model

Let H be a real Hilbert space and let A : D(A) → H be a positive

self–adjoint operator with a compact inverse in H. Denote by

V := D(A
1
2 ) the domain of A

1
2 .

Let us consider the problem

utt(x, t) +Au(x, t)−
∫∞
0
µ(s)Au(x, t− s)ds

+b(t)ut(x, t− τ) = 0 t > 0,

u(x, t) = 0 on ∂Ω× (0,+∞), (P)

u(x, t) = u0(x, t) in Ω× (−∞, 0];

where the initial datum u0 belongs to a suitable space, the constant

τ > 0 is the time delay, and the memory kernel µ : [0,+∞) → [0,+∞)

satisfies

i)µ ∈ C1(IR+) ∩ L1(IR+);

ii) µ(0) = µ0 > 0;

iii)
∫ +∞
0

µ(t)dt = µ̃ < 1;

iv) µ′(t) ≤ −δµ(t), for some δ > 0.
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First model

Let Ω ⊂ IRn be an open bounded domain with a smooth boundary ∂Ω.

Let us consider the initial boundary value problem

utt(x, t)−∆u(x, t) +
∫∞
0
µ(s)∆u(x, t− s)ds

+kut(x, t− τ) = 0 in Ω× (0,+∞)

u(x, t) = 0 on ∂Ω× (0,+∞) (P1)

u(x, t) = u0(x, t) in Ω× (−∞, 0]

This problem enters into our previous framework, if we take H = L2(Ω)

and the operator A defined by

A : D(A) → H : u→ −∆u,

where D(A) = H1
0 (Ω) ∩H2(Ω).

The operator A is a self–adjoint and positive operator with a compact

inverse in H and is such that V = D(A1/2) = H1
0 (Ω).

Moreover, for simplicity we assume b(t) = k ∀ t > 0 .
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The models

We know that the above problem is exponentially stable for k = 0 (see

e.g. [Giorgi, Munõz Rivera & Pata, 2001]).

Since the viscoelastic damping is a stabilizing one, it is natural to

investigate if it prevails with respect the time delay term.

We will show, by using a perturbative approach introduced in [P. 2012],

that even if a time delay generates instability, an exponential stability

result still holds if the delay parameter k satisfies a suitable smallness

condition.

We first prove the exponential stability of an auxiliary problem having a

decreasing energy and then, regarding the original problem as a

perturbation of that one, we extend the exponential decay estimate to it.

Our analysis allows to determine an explicit upper bound on |k|.
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Well-posedness

As in [Dafermos, 1970], let us introduce the new variable

ηt(x, s) := u(x, t)− u(x, t− s).

Moreover, as in [Nicaise & P.,2006], we introduce the function

z(x, ρ, t) := ut(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Using η and z we can rewrite (P1) as

utt(x, t) = (1− µ̃)∆u(x, t) +
∫∞
0
µ(s)∆ηt(x, s)ds

−kz(x, 1, t) in Ω× (0,+∞)

ηtt(x, s) = −ηts(x, s) + ut(x, t) in Ω× (0,+∞)× (0,+∞),

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),

u(x, t) = 0 on ∂Ω× (0,+∞)

ηt(x, s) = 0 in ∂Ω× (0,+∞), t ≥ 0,

z(x, 0, t) = ut(x, t) in Ω× (0,+∞),

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,

η0(x, s) = η0(x, s) in Ω× (0,+∞),

z(x, ρ, 0) = z0(x,−τρ) x ∈ Ω, ρ ∈ (0, 1),
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Well-posedness

where

u0(x) = u0(x, 0), x ∈ Ω,

u1(x) =
∂u0

∂t (x, t)|t=0, x ∈ Ω,

η0(x, s) = u0(x, 0)− u0(x,−s), x ∈ Ω, s ∈ (0,+∞),

z0(x, s) = ∂u0

∂t (x, s), x ∈ Ω, s ∈ (−τ, 0).

Let us introduce the vectorial unknown U := (u, ut, η
t, z)T ; then the

problem can be written as{
U ′ = AU , (PA)

U(0) = (u0, u1, η0, z
0)T ,

where the operator A is defined by

A


u

v

w

z

 :=


v

(1− µ̃)∆u+
∫∞
0
µ(s)∆w(s)ds− kz(·, 1)

−ws + v

−τ−1zρ

 ,
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Well-posedness

with domain

D(A) :=
{
(u, v, η, z)T ∈

H1
0 (Ω)×H1

0 (Ω)× L2
µ((0,+∞);H1

0 (Ω))×H1((0, 1);L2(Ω)) :

v = z(·, 0), (1− µ̃)u+
∫∞
0
µ(s)η(s)ds ∈ H2(Ω) ∩H1

0 (Ω),

ηs ∈ L2
µ((0,+∞);H1

0 (Ω))
}
,

where L2
µ((0,∞);H1

0 (Ω)) is the Hilbert space of H1
0− valued functions

on (0,+∞), endowed with the inner product

⟨φ,ψ⟩L2
µ((0,∞);H1

0 (Ω)) =

∫
Ω

(∫ ∞

0

µ(s)∇φ(x, s)∇ψ(x, s)ds
)
dx ,

in the Hilbert space

H := H1
0 (Ω)× L2(Ω)× L2

µ((0,∞);H1
0 (Ω))× L2((0, 1);L2(Ω)),
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Well-posedness

equipped with the inner product

⟨
u

v

w

z

 ,


ũ

ṽ

w̃

z̃


⟩

H

:= (1− µ̃)

∫
Ω

∇u∇ũdx+

∫
Ω

vṽdx

+

∫
Ω

∫ ∞

0

µ(s)∇w∇w̃dsdx+

∫ 1

0

∫
Ω

z(x, ρ)z̃(x, ρ) dxdρ.

Combining some ideas from [Pruss, 1993] with the ones from [Nicaise &

P., 2006], we can prove the next existence result.
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Well-posedness

PROPOSITION

For any initial datum U0 ∈ H there exists a unique solution

U ∈ C([0,+∞),H) of problem (PA). Moreover, if U0 ∈ D(A), then

U ∈ C([0,+∞),D(A)) ∩ C1([0,+∞),H).

Let us define the energy F of problem (P1) as

F (t) = F (u, t) :=
1

2

∫
Ω

u2t (x, t)dx+
1− µ̃

2

∫
Ω

|∇u(x, t)|2dx

+
1

2

∫ +∞

0

∫
Ω

µ(s)|∇ηt(s)|2dsdx+
θ|k|eτ

2

∫ t

t−τ

e−(t−s)

∫
Ω

u2t (x, s)dsdx,

where θ is any real constant satisfying θ > 1.
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Stability result

The following exponential stability result holds.

THEOREM 1 [Alabau-Boussouira, Nicaise & P., 2014]

For any θ > 1 in the definition of the energy F there exists a positive

constant k0 such that, for k satisfying |k| < k0, there is σ > 0 such that

F (t) ≤ F (0)e1−σt, t ≥ 0;

for every solution of problem (P1).

The constant k0 depends only on the kernel µ(·) of the memory term, on

the time delay τ and on the domain Ω.
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Stability

To prove our stability results we will make use of the following classical

result

LEMMA [Komornik, 1994]

Let V (·) be a non negative decreasing function defined on [0,+∞). If∫ +∞

S

V (t)dt ≤ CV (S) ∀S > 0 ,

for some constants C > 0, then

V (t) ≤ V (0) exp

(
1− t

C

)
, ∀ t ≥ 0 .
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Stability

Let us also recall the following classical perturbation result

THEOREM [Pazy (1983), Th. 1.1 of Ch. 3]

Let X be a Banach space and let A be the infinitesimal generator of a

C0 semigroup T (t) on X, satisfying

∥T (t)∥ ≤Meωt.

If B is a bounded linear operator on X then A+B is the infinitesimal

generator of a C0 semigroup S(t) on X, satisfying

∥S(t)∥ ≤Me(ω+M∥B∥)t .
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The auxiliary problem

In order to study the stability properties of problem (P1), we look at an

auxiliary problem (cf. [P. 2012]) which is near to this one and easier to

deal with. Namely,

utt(x, t)−∆u(x, t) +
∫∞
0
µ(s)∆u(x, t− s)ds

+θ|k|eτut(x, t) + kut(x, t− τ) = 0 in Ω× (0,+∞)

u(x, t) = 0 on ∂Ω× (0,+∞) (P̃1)

u(x, t) = u0(x, t) in Ω× (−∞, 0].

The energy of every solution of the auxiliary problem is not increasing:

F ′(t) ≤ 1

2

∫ ∞

0

∫
Ω

µ′(s)|∇ηt(x, s)|2dxds

−|k|(θeτ − 1)

2

∫
Ω

u2t (x, t)dx− |k|(θ − 1)

2

∫
Ω

u2t (x, t− τ)dx

−θ|k|e
τ

2

∫ t

t−τ

e−(t−s)

∫
Ω

u2t (x, s)dxds .

Remark Note that the energy F (·) of solutions of the original problem

(P1) is not in general decreasing.
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Stability of the auxiliary problem

THEOREM 2 [Alabau-Boussouira, Nicaise & P., 2014]

For any θ > 1 in the definition of the energy F there exist positive

constants C and k, depending on µ, Ω and τ , such that if |k| < k then

for any solution of problem (P̃1) the following estimate holds∫ +∞

S

F (t)dt ≤ CF (S) ∀S > 0 .

Our proof is based on multiplier arguments and it relies in many points

on [Alabau-Boussouira, Cannarsa & Sforza, 2008]. In order to extend the

exponential estimate related to the perturbed problem (P̃1) to the

original problem (P1), we need to determine carefully all involved

constants.

We note that we could not apply the same arguments directly to our

original problem since the energy is not decreasing.
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Coming back to the original problem

From Theorem 2 and Lemma [Komornik], it follows that for any solution

of the auxiliary problem (P̃1) if |k| < k, we have

F (t) ≤ F (0)e1−σ̃t, t ≥ 0,

with

σ̃ :=
1

C
,

where C is the constant in Theorem 2.

From this and the perturbation theorem of Pazy, we deduce that

Theorem 1 holds, with σ := σ̃ − eθ|k|eτ , if

−σ̃ + eθ|k|eτ < 0,

that is if the delay parameter k satisfies

|k| < g(|k|) := 1

Ceθeτ
(⋆),

with C := C(|k|) as before.
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Coming back to the original problem

Now observe that (⋆) is satisfied for k = 0 because g(0) > 0. Moreover,

by using the explicit (even if a bit involved) definition of the constant C,

we can prove that g : [0,∞) → (0,∞) is a continuous decreasing

function satisfying

g(|k|) → 0 for |k| → ∞.

Thus, there exists a unique constant k̂ > 0 such that k̂ = g(k̂). We can

then conclude that for any θ in the definition of the energy F (·),
inequality (⋆) is satisfied for every k with

|k| < k0 = min{k̂, k}.
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The model with on–off delay

Let H be a real Hilbert space and let A : D(A) → H be a positive

self–adjoint operator with a compact inverse in H. Denote by

V := D(A
1
2 ) the domain of A

1
2 .

Let us consider the problem

utt(x, t) +Au(x, t)−
∫∞
0
µ(s)Au(x, t− s)ds

+b(t)ut(x, t− τ) = 0 t > 0,

u(x, t) = 0 on ∂Ω× (0,+∞), (P)

u(x, t) = u0(x, t) in Ω× (−∞, 0];

where the initial datum u0 belongs to a suitable space, the constant

τ > 0 is the time delay, and the memory kernel µ : [0,+∞) → [0,+∞)

satisfies previous assumptions.
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The model with on–off delay

Moreover, the function b(·) ∈ L∞
loc(0,+∞) is a function which is zero

intermittently. That is, we assume that for all n ∈ IN, there exists tn > 0

with tn < tn+1 and such that

b(t) = 0 ∀ t ∈ I2n = [t2n, t2n+1),

|b(t)| < b2n+1 ̸= 0 ∀ t ∈ I2n+1 = [t2n+1, t2n+2).

Also, denoting by Tn the length of the interval In, that is

Tn = tn+1 − tn, n ∈ IN

we assume that τ ≤ T2n for all n ∈ IN.
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Previous literature

Models with viscoelastic damping and time delay feedback have been

studied by recent papers (e.g. [Alabau–Boussouira, Nicaise and P., 2014]

for infinite memory and [Dai and Yang, 2014] in the case of finite

memory).

In these papers the authors prove exponential stability results if the

(constant) coefficient of the delay damping is sufficiently small. These

stability results can be easily extended to a variable coefficient

b(·) ∈ L∞(0,+∞) under a suitable smallness assumption on the L∞−
norm of b(·) .
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Previous literature

Stability results for second–order evolution equations with intermittent

damping are first studied by [Haraux, Martinez and Vancostenoble, 2005]

without any time delay term. They consider a problem with intermittent

on–off or with positive–negative damping, and show that, under

appropriate conditions, the good behavior of the system in the time

intervals where only the standard dissipation, i.e. the damping with the

right sign, is present prevails over the bad behavior where the damping is

no present or it is present with the wrong sign, i.e. as anti–damping.

Thus, asymptotic/exponential stability results are obtained.

Recently [Nicaise and P., 2012 & 2014] considered second–order evolution

equations with intermittent delay feedback. More precisely, in the studied

models, when the (destabilizing) delay term is no present, a not–delayed

damping acts. Under suitable assumptions, stability results are obtained

(see also [Fragnelli and P., 2015] for a nonlinear extension/improvement).

Here, the good behavior in the time intervals where the delay feedback is

no present is ensured by a viscoelastic damping.
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Well–posedness

For the existence result let us consider the problem

utt(x, t) +Au(x, t)−
∫ ∞

0

µ(s)Au(x, t− s)ds = f(t) t > 0,

u(x, t) = 0 on ∂Ω× (0,+∞), (P2)

u(x, t) = u0(x, t) in Ω× (−∞, 0].

By using the variable ηt(x, s) := u(x, t)− u(x, t− s), problem (P2) may

be rewritten as
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Well–posedness

utt(x, t) = −(1− µ̃)Au(x, t)−
∫ ∞

0

µ(s)Aηt(x, s)ds

+f(t) in Ω× (0,+∞)

ηtt(x, s) = −ηts(x, s) + ut(x, t) in Ω× (0,+∞)× (0,+∞), (P̃2)

u(x, t) = 0 on ∂Ω× (0,+∞)

ηt(x, s) = 0 in ∂Ω× (0,+∞), t ≥ 0,

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,

η0(x, s) = η0(x, s) in Ω× (0,+∞),

where

u0(x) = u0(x, 0), x ∈ Ω,

u1(x) =
∂u0
∂t

(x, t)|t=0, x ∈ Ω,

η0(x, s) = u0(x, 0)− u0(x,−s), x ∈ Ω, s ∈ (0,+∞).
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Well–posedness

Set L2
µ((0,∞);V ) the Hilbert space of V− valued functions on (0,+∞),

endowed with the inner product

⟨φ,ψ⟩L2
µ((0,∞);V ) =

∫ ∞

0

µ(s)⟨A1/2φ(s), A1/2ψ(s)⟩Hds .

Denote by H the Hilbert space

H = V ×H × L2
µ((0,∞);V ),

equipped with the inner product

⟨ u

v

w

 ,

 ũ

ṽ

w̃

⟩
H

:= (1− µ̃)⟨A1/2u,A1/2ũ⟩H + ⟨v, ṽ⟩H

+

∫ ∞

0

µ(s)⟨A1/2w,A1/2w̃⟩Hds
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Well–posedness

Let us recall the following well–posedness result (see [Giorgi, Muñoz

Rivera and Pata, 2001]).

Definition.

Set I = [0, T ], for T > 0, and let f ∈ L1(I,H). A function

U := (u, ut, η) ∈ H is a solution of problem (P̃2) in the interval I, with

initial data U(0) = U0 = (u0, u1, η0) ∈ H, provided

⟨utt, ṽ⟩ = −(1− µ̃)⟨A1/2u,A1/2ṽ⟩H
−
∫ ∞

0

µ(s)⟨A1/2η(s), A1/2ṽ⟩Hds+ ⟨f, ṽ⟩H ;

∫ ∞

0

µ(s)⟨ηt(s) + ηs(s), Aη̃(s)⟩Hds =
∫ ∞

0

µ(s)⟨ut, Aη̃(s)⟩Hds ;

for all ṽ ∈ V and η̃ ∈ L2
µ(IR

+,D(A)), and a.e. t ∈ I.
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Well–posedness

THEOREM [Giorgi, Munõz Rivera & Pata, 2001]

For given T > 0, problem (P̃2) has a unique solution U in the time

interval I = [0, T ], with initial datum U0.

Under the above assumptions, we obtain the following result

THEOREM [P. 2015]

Under the above assumptions, for any U0 ∈ H, the system (P ) has a

unique solution U ∈ C([0,∞);H).
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Well–posedness

Proof.

We prove the existence and uniqueness result on the interval [0, t2]; then

the global result follows by translation.

First, in the interval [0, t1], since b(t) = 0 ∀ t ∈ [0, t1), we can apply the

theorem of [Giorgi, Munõz Rivera & Pata, 2001] with f ≡ 0 . Then we

obtain a solution U, in the sense of previous definition, on the interval

[0, t1].

The situation is more delicate in the time interval [t1, t2] where the delay

feedback is present. In this case, we decompose the interval [t1, t2] into

the successive intervals [t1 + jτ, t1 + (j + 1)τ), for j = 0, . . . , N − 1,

where N is such that t1 + (N + 1)τ ≥ t2 . The last interval is then

[t1 +Nτ, t2] .
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Well–posedness

Now, look at the problem on the interval [t1, t1 + τ ] . Here ut(t− τ) can

be considered as a known function. Indeed, for t ∈ [t1, t1 + τ ] , then

t− τ ∈ [0, t1], and we know the solution U on [0, t1] by the first step.

Thus, problem (P) may be rewritten on [t1, t1 + τ ] as

utt(x, t) +Au(x, t)−
∫ ∞

0

µ(s)Au(x, t− s)ds = f1(t) t ∈ [t1, t1 + τ ],

u(x, t) = 0 on ∂Ω× [t1, t1 + τ ],

u(x, t) = u10(x, t) in Ω× (−∞, t1];

where f1(t) = b(t)ut(t− τ) the initial datum is u10(x, t) = u0(x, t) in

Ω× (−∞, 0] and u10(x, t) = u(x, t) in Ω× [0, t1] .

Then we can apply once more the theorem of [Giorgi, Munõz Rivera &

Pata, 2001] obtaining a unique solution U on [0, t1 + τ) . Proceedings

analogously in the successive time intervals [t1 + jτ, t1 + (j + 1)τ), we

obtain a solution on [0, t2] .
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Stability result

By using the variable

z(x, ρ, t) := ut(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

and the variable ηt, we can rewrite problem (P) as

utt(x, t) = −(1− µ̃)Au(x, t)−
∫∞
0
µ(s)Aηt(x, s)ds

−b(t)z(x, 1, t) in Ω× (0,+∞)

ηtt(x, s) = −ηts(x, s) + ut(x, t) in Ω× (0,+∞)× (0,+∞),

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),

u(x, t) = 0 on ∂Ω× (0,+∞)

ηt(x, s) = 0 in ∂Ω× (0,+∞), t ≥ 0,

z(x, 0, t) = ut(x, t) in Ω× (0,+∞),

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,

η0(x, s) = η0(x, s) in Ω× (0,+∞),

z(x, ρ, 0) = z0(x,−τρ) x ∈ Ω, ρ ∈ (0, 1),
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Stability result

where

u0(x) = u0(x, 0), x ∈ Ω,

u1(x) =
∂u0

∂t (x, t)|t=0, x ∈ Ω,

η0(x, s) = u0(x, 0)− u0(x,−s), x ∈ Ω, s ∈ (0,+∞),

z0(x, s) = ∂u0

∂t (x, s), x ∈ Ω, s ∈ (−τ, 0).

Let us now introduce the energy functional:

E(t) = E(u, t) :=
1

2
∥ut(t)∥2H +

1− µ̃

2
∥u(t)∥2V

+
1

2

∫ +∞

0

µ(s)∥A1/2ηt(s)∥2Hds+
1

2

∫ t

t−τ

|b(s+ τ)|∥ut(s)∥2Hds .

Then,

E(t) = ES(t) +
1

2

∫ t

t−τ

|b(s+ τ)|∥ut(s)∥2Hds ,

where ES(·) denotes the standard energy for wave equation with

viscoelastic damping.
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Stability result

Let us now recall the following result.

THEOREM [Giorgi, Munõz Rivera & Pata 2001, Pata 2009]

Assume b ≡ 0 . Then, for every solution of problem (P), the energy ES(·)
is not increasing and

E′
S(t) ≤

1

2

∫ ∞

0

µ′(s)∥A1/2ηt(s)∥2Hds .

Moreover, there are two positive constant C,α, C > 1, α > 0, depending

only on Ω and on the memory kernel µ(·), such that for every solution of

problem (P ) it results

ES(t) ≤ Ce−αtES(0) .
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Stability result

Now, let T0 be the time such that

T0 :=
1

α
lnC ,

that is the time for which Ce−αT = 1 .

As an immediate application we have the following result.

PROPOSITION

Assume T2n > T0 . Then, there exists a constant cn ∈ (0, 1) such that

ES(t2n+1) ≤ cnES(t2n) . (O)
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Stability result

On the bad interval we have the following estimate.

PROPOSITION

Assume T2n ≥ τ, ∀ n ∈ IN. Then,

E′(t) ≤ b2n+1∥ut(t)∥2H , t ∈ I2n+1 = [t2n+1, t2n+2], ∀ n ∈ IN . (B)

By using these estimates on the bad and good intervals we obtain our

stability result.
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Asymptotic stability

THEOREM [P., 2015]

Assume T2n ≥ τ and T2n > T0, for all n ∈ IN, where T0 is the time

defined before. Then, if

∞∑
n=0

ln
[
e2b2n+1T2n+1(cn + T2n+1b2n+1)

]
= −∞ , (⋆)

the system (P) is asymptotically stable, that is any solution u of (P)

satisfies ES(u, t) → 0 for t→ +∞ .
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Asymptotic stability

Proof.

Note that (B) implies

E′(t) ≤ 2b2n+1E(t), t ∈ I2n+1 = [t2n+1, t2n+2), n ∈ IN.

Then we have

E(t2n+2) ≤ e2b2n+1T2n+1E(t2n+1), ∀ n ∈ IN. (E1)

From the definition of the energy E,

E(t2n+1) = ES(t2n+1) +
1

2

∫ t2n+1

t2n+1−τ

|b(s+ τ)|∥ut(s)∥2Hds .

Note that, for t ∈ [t2n+1 − τ, t2n+1), then

t+ τ ∈ [t2n+1, t2n+1 + τ) ⊂ I2n+1 ∪ I2n+2 . Now, if t+ τ ∈ I2n+2, then

b(t+ τ) = 0. Otherwise, if t+ τ ∈ I2n+1, then |b(t+ τ)| ≤ b2n+1 .
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Asymptotic stability

Then, we deduce

E(t2n+1) = ES(t2n+1) +
1

2
b2n+1

∫ min(t2n+2−τ,t2n+1)

t2n+1−τ

∥ut(s)∥2Hds ,

since if t2n+1 > t2n+2 − τ, then b(t) = 0 for all

t ∈ [t2n+2, t2n+1 + τ) ⊂ [t2n+2, t2n+3).

Then, since the energy ES(·) is decreasing in the intervals I2n,

E(t2n+1) ≤ ES(t2n+1) + T2n+1b2n+1ES(t2n+1 − τ)

≤ ES(t2n+1) + T2n+1b2n+1ES(t2n) (E2) .

Using (E2) in (E1), we deduce

ES(t2n+2) ≤ E(t2n+2) ≤ e2b2n+1T2n+1(cn + T2n+1b2n+1)ES(t2n), ∀ n ∈ IN, (E3)

where we have used once more the observability estimate (O).
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Asymptotic stability

Iterating this procedure we arrive at

ES(t2n+2) ≤ Πn
p=0e

2b2p+1T2p+1(cp + T2p+1b2p+1)ES(0), ∀ n ∈ IN,

Then, we have asymptotic stability if

Πn
p=0e

2b2p+1T2p+1(cp + T2p+1b2p+1) −→ 0, for n→ ∞,

or equivalently

ln
[
Πn

p=0e
2b2p+1T2p+1(cp + T2p+1b2p+1)

]
−→ −∞, for n→ ∞ .

This concludes the proof.
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Asymptotic stability

REMARK

Clearly (⋆) is verified if the following conditions are satisfied:

∞∑
n=0

b2n+1T2n+1 < +∞ and
∞∑

n=0

ln(cn + b2n+1T2n+1) = −∞ ,

and therefore if

∞∑
n=0

b2n+1T2n+1 < +∞ and
∞∑

n=0

ln cn = −∞ .

In particular, from (⋆) we have stability e.g. when b ∈ L1(0,+∞) and

when the length of the good intervals I2n is greater then a fixed time T̄ ,

T̄ > T0 and T̄ ≥ τ, namely

T2n ≥ T̄ , ∀ n ∈ IN .

Indeed, in this case there exists c̄ ∈ (0, 1) such that 0 < cn < c̄ .
39 / 45



Exponential stability

We now show that under additional assumptions on the coefficients

Tn, b2n+1, cn an exponential stability result holds.

THEOREM [P., 2015]

Assume

T2n = T ∗ ∀ n ∈ IN,

with T ∗ ≥ τ and T ∗ > T0, where the time T0 is as before. Assume also

that

T2n+1 = T̃ ∀ n ∈ IN.

Moreover, assume that

sup
n∈IN

e2b2n+1T̃ (c+ b2n+1T̃ ) = d < 1,

where c = cn, n ∈ IN, is as in (O). Then, there exist two positive

constants γ, β such that

ES(t) ≤ γe−βtES(0), t > 0,

for any solution of problem (P).
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Finite memory

REMARK

Analogous result could be obtained for the case of finite memory, namely

if system (P) is replaced by

utt(x, t) +Au(x, t)−
∫ t

0

µ(s)Au(x, t− s)ds+ b(t)ut(x, t− τ) = 0 t > 0,

u(x, t) = 0 on ∂Ω× (0,+∞),

u(x, t) = u0(x, t), ut(x, t) = u1(x)(in Ω;

with memory kernel µ(·) and delay coefficient b(t) satisfying the same

assumptions that before.

Indeed, also for such a problem it is well-known that an exponential

decay estimate holds on the time intervals where the delay feedback is

null (see e.g. [Alabau–Boussouira, Cannarsa and Sforza, 2008]).

Therefore, in such intervals an observability type estimate like (O) is

available if the length of the intervals is sufficiently large.
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Stability under the restriction T2n+1 ≤ τ

Now, assume that the length of the delay intervals is lower than the time

delay, that is

T2n+1 ≤ τ, ∀n ∈ IN .

This allows to work directly with the standard energy ES(·).
PROPOSITION

Assume T2n+1 ≤ τ and T2n ≥ τ . Then, for t ∈ I2n+1,

E′
S(t) ≤ b2n+1ES(t) + b2n+1ES(t2n) .

Proof: By differentiating ES(t) we get

E′
S(t) ≤ b(t)⟨ut(t), ut(t− τ)⟩H .

Hence,

E′
S(t) ≤

b2n+1

2
∥ut(t)∥2H+

b2n+1

2
∥ut(t−τ)∥2H ≤ b2n+1ES(t)+b2n+1ES(t−τ) .

Now, to conclude it suffices to observe that since T2n+1 ≤ τ and

T2n ≥ τ , then for t ∈ I2n+1 it is t− τ ∈ I2n. Then, since ES(·) is
decreasing in I2n , the estimate in the statement is proved.
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Stability under the restriction T2n+1 ≤ τ

THEOREM [P., 2015]

Assume T2n+1 ≤ τ and T2n ≥ τ , ∀ n ∈ IN . Then, if

∞∑
n=0

ln
[
eb2n+1T2n+1(cn + 1− e−b2n+1T2n+1)

]
= −∞ , (⋆⋆)

the system (P) is asymptotically stable, that is any solution u of (P)

satisfies ES(u, t) → 0 for t→ +∞ .

43 / 45



Stability under the restriction T2n+1 ≤ τ

• Note that, in case of bad intervals I2n+1 with length lower or equal

than the time delay τ , the assumption (⋆⋆) is a bit less restrictive than

(⋆).

Indeed, since b2n+1T2n+1 > 0, it results

eb2n+1T2n+1(cn+1−e−b2n+1T2n+1) < e2b2n+1T2n+1(cn+b2n+1T2n+1), ∀n ∈ IN .

For instance if b2n+1T2n+1 = 1/4 and cn = e−1/2 − 1/4 for every n ∈ IN,

then

e2b2n+1T2n+1(cn + b2n+1T2n+1) = 1, ∀ n ∈ IN ,

and

eb2n+1T2n+1(cn + 1− e−b2n+1T2n+1) = α ∈ (0, 1), ∀ n ∈ IN .

Therefore (⋆) does not hold while (⋆⋆) is clearly satisfied.

• Also in this case, under additional assumptions on the coefficients

Tn, b2n+1, cn an exponential stability result holds.
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Thank you for your attention!
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