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Beam theories

Beam theories are extensively used to analyze the structural behavior of
slender bodies, such as columns, arches, blades, aircraft wing, and bridges.

Cloister at San Zeno Maggiore, Verona The Gateway Arch in Saint Louis, Missouri

Aircraft wing
Blades

Tacoma Narrows Bridge
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Beam theories

The main advantage of beam models is that they reduce the 3D problem to a set
of variables that only depends on the beam-axis coordinate.

The 1D structural elements obtained are simpler and computationally more
efficient than 2D (plate/shell) and 3D (solid) elements. This feature makes beam
theories very attractive for the static and dynamic analysis of structures.

The classical, most frequently employed theories are those by Euler-Bernoulli
and Timoshenko.
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Euler-Bernoulli beam theory

Euler-Bernoulli beam theory

The Euler-Bernoulli beam theory was
established around 1750 with
contributions from Leonard Euler and
Daniel Bernoulli. Bernoulli provided
an expression for the strain energy in
beam bending, from which Euler
derived and solved the differential
equation. That work built on earlier
developments by Jacob Bernoulli. Jacob Bernoulli

1654–1705

Leonhard Euler

1707–1783

Daniel Bernoulli

1700–1782
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Euler-Bernoulli beam theory

Euler-Bernoulli beam theory

However, the beam problem had
been addressed even earlier. Galileo
Galilei attempted one formulation that
aimed at determining the capacity of
beams in bending, but misplaced the
neutral axis.
Earlier, Leonardo da Vinci also
seems to have addressed the
problem of beam bending. Jacob Bernoulli

1654–1705

Leonhard Euler

1707–1783

Daniel Bernoulli

1700–1782
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Euler-Bernoulli beam theory

Da Vinci-Euler-Bernoulli beam theory

Leonardo Da Vinci

1452–1519

Jacob Bernoulli

1654–1705

Leonhard Euler

1707–1783

Daniel Bernoulli

1700–1782
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Euler-Bernoulli beam theory

Da Vinci-Euler-Bernoulli beam theory

Folio 84 of Codex Madrid I

Da Vinci made a fundamental contribution to what is
commonly referred to as Euler-Bernoulli (engineering)
beam theory 200 years before Euler and Bernoulli.

Historians of mechanics did not cheat Leonardo; they
simply were not aware that he made the fundamental
hypothesis upon which Euler-Bernoulli beam theory rests in
Codex Madrid I, one of two remarkable notebooks that
were discovered in 1967 in the National Library of Spain
(Madrid), after being misplaced for nearly 500 years.

[R. Ballarini, Da Vinci-Euler-Bernoulli Beam Theory?, ASME Mechanical Engineering Magazine Online,

4/18/03. ]
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Euler-Bernoulli beam theory

Da Vinci-Euler-Bernoulli beam theory

The two key assumptions in the Euler-Bernoulli beam theory are:

The material is linear elastic according to Hooke’s law (“stress is directly
proportional to the strain”).

Plane sections remain plane and perpendicular to the neutral axis, neglecting
shear deformations.
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Euler-Bernoulli beam theory

Euler-Bernoulli beam theory

The motion of a beam can be described by the Euler-Beroulli beam equation
when the cross-sectional dimensions are small in comparison with the length of
the beam.

If the cross-sectional dimensions are not negligible, the effect of the rotatory
inertia should be considered and the motion is better described by the Rayleigh
beam equation.

If the deflection due to shear is also taken into account in addition to the rotatory
inertia, we arrive at a still more accurate model, which is called the Timoshenko
beam.
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Timoshenko beam theory

Timoshenko beam theory

Stephen Timoshenko

1878–1972

Timoshenko beam theory relaxes the
assumption that the sections remain
perpendicular to the neutral axis, thus
including shear deformation.
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Timoshenko beam theory

An example

For instance, a cantilever beam can be represented by
Timoshenko model

wtt (x , t)− [wx (x , t)− φ(x , t)]x = 0, in (0, `)× (0,+∞),

1
α
φtt (x , t)− 1

β
φxx (x , t) + wx (x , t)− φ(x , t) = 0, in (0, `)× (0,+∞),

with boundary conditions
w(0, t) = 0, φ(0, t) = 0, in (0,+∞),

wx (`, t)− φ(`, t) = φx (`, t) = 0 in (0,+∞).

Euler-Bernoulli model
wtt (x , t) + 1

β
wxxxx (x , t) = 0, in (0, `)× (0,+∞),

with boundary conditions
w(0, t) = 0, wx (0, t) = 0 in (0,+∞),

wxx (`, t) = wxxx (`, t) = 0, in (0,+∞).
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Our research topics

With respect to Timoshenko systems our research activity is focusing on three main
topics:

Contact between beams and obstacles: modeling and longtime behavior of the
associated energy.

Stabilization of beams by a boundary dissipation.

Long-term dynamics of coupled suspension bridge systems with localized
dissipation.
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joint work with

Alessia Berti
Ivana Bochicchio Jaime E. Muñoz Rivera

A. Berti, J. E. Muñoz Rivera, M.G. N., A contact problem for a thermoelastic Timoshenko beam, Z. Angew. Math. Phys., 66 (2015),
no. 4, 1969-1986.

I. Bochiocchio, J. E. Muñoz Rivera, M. G. N., Long-term dynamics of the coupled suspension bridge system with localized
Kelvin-Voigt dissipation, work in progress.

J. E. Muñoz Rivera, M. G. N., Exponential stability to Timoshenko system with one boundary dissipation, work in progress.
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Coupled suspension bridge system with localized dissipation

At the begin of our study, we addressed our attention to the pioneer
Glover-Lazer-McKenna approach in

J. Glover, A.C. Lazer, P.J. McKenna, Existence and stability of large
scale nonlinear oscillations in suspension bridges, Z. Angew. Math.
Phys. 40 (1989), no. 2, 172–200.

which firstly described the vertical vibrations of a non linear dynamical system
modeling a suspension bridge.
The non linear aspect is caused by the presence of supporting cable stays,
which restrain the movement of the center span of the bridge in a downward
direction, but have non influence on its behavior in the opposite direction.
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Coupled suspension bridge system with localized dissipation

We focus on the transmission problem of a suitable dynamical system which
models the motion of the deck coupled with the motion of the main cable holding
the suspending cables.
The deck can be modeled as a vibrating one-dimensional beam.
The main cable can be modeled as a vibrating string.
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Coupled suspension bridge system with localized dissipation

In our model, in describing the vibrations of a coupled suspension bridge, we
consider a linear problem since

on one hand we neglect the effect of elongation of the road-bed,
on other the main cable, modeled by an elastic string, is connected
to the road-bed by a distributed system of only linear springs.

Precisely, we let the road-bed be supported by a symmetrical system of
one-sided elastic ties (cable stays), each of which fastened on two symmetrically
placed main (suspension) cables, one above and one below the road bed .
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Coupled suspension bridge system with localized dissipation
Different kinds of localized dissipation

VEF Model

Viscolastic Part Elastic Part Frictional Part

� -� -� -
0 l0 l1 l

ϕ1,ψ1 ϕ2,ψ2 ϕ3,ψ3

Elastic Part

EVF Model

Viscoelastic Part Frictional Part

� -� -� -
0 l0 l1 l

ϕ1,ψ1 ϕ2,ψ2 ϕ3,ψ3

Elastic Part

EFV Model

Frictional Part Viscoelastic Part

� -� -� -
0 l0 l1 l

ϕ1,ψ1 ϕ2,ψ2 ϕ3,ψ3
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Some references

M.L. Santos, D.S. Almeida Júnior, J.H. Rodrigues, F.A. Falcão Nascimento,
Decay rates for Timoshenko system with nonlinear arbitrary localized damping,
Differential Integral Equations 27 (2014), no. 1–2, 1–26.

H.L. Zhao, K.S. Liu, C.G. Zhang, Stability for the Timoshenko beam system with
local Kelvin-Voigt damping, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 3,
655–666.
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Evolutionary system

The evolutionary system consists on a wave equation coupled to beam equations of
Timoshenko type and it is given by

ρvtt (x , t)− αvxx (x , t)− β [ϕ(x , t)− v(x , t)] = −γ0vt (x , t)

ρ1(x)ϕtt (x , t)− Sx + β [ϕ(x , t)− v(x , t)] = −γ1(x)ϕt (x , t)

ρ2(x)ψtt (x , t)−Mx + S = −γ2(x)ψt (x , t)

(1)

v = v(x , t) : [0, `]×[0,T ]→ R vertical displacement of the main cable

ϕ = ϕ(x , t) : [0, `]×[0,T ]→ R vertical deflection of the beam’s cross section

ψ = ψ(x , t) : [0, `]×[0,T ]→ R the angle of rotation of a cross section (that is
supposed to remain plane).
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Evolutionary system

Denoting by Ii = (`i−1, `i ), i = 1, 2, 3, where 0 = `0 < `1 < `2 < `3 = `, we have


ρvtt (x , t)− αvxx (x , t)− β [ϕ(x , t)− v(x , t)] = −γ0vt (x , t)

ρ1(x)ϕtt (x , t)− Sx + β [ϕ(x , t)− v(x , t)] = −γ1(x)ϕt (x , t)

ρ2(x)ψtt (x , t)−Mx + S = −γ2(x)ψt (x , t)

M stands for the bending moment and S for the shear force:

M = b(x)ψx (x , t)+ b0(x)ψxt (x , t) ,

S = κ(x) [ϕx (x , t) + ψ(x , t)] + κ0(x) [ϕxt (x , t) + ψt (x , t)] .

κ(x) = κi ∈ R+ , per x ∈ Ii , is related to the shear modulus of elasticity,

b(x) = bi ∈ R+ , per x ∈ Ii , is related to rigidity coefficients of cross section of the beam,

κ0(x) =

{
κ0, if x ∈ Ii

V ,
0, otherwise.

and b0(x) =

{
b0, if x ∈ Ii

V ,
0, otherwise.

, with κ0, b0 ∈ R+ account for the viscoelastic component .
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Evolutionary system

Moreover,

ρvtt (x , t)− αvxx (x , t)− β [ϕ(x , t)− v(x , t)] = −γ0vt (x , t)

ρ1(x) ϕtt (x , t)− Sx + β [ϕ(x , t)− v(x , t)] = − γ1(x) ϕt (x , t)

ρ2(x) ψtt (x , t)−Mx + S = − γ2(x) ψt (x , t)

(2)

ρj (x) =

{
ρi

j , if x ∈ Ii ,

0, otherwise.
, for j = 1, 2 and with ρi

j ∈ R+ .

γj (x) =

{
γ i

j , if x ∈ Ii
F ,

0, otherwise.
, for j = 1, 2 and with γ i

j ∈ R+ account for the frictional component.
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Evolutionary system

Initial data:
v(x , 0) = v0(x), vt (x , 0) = v1(x) in (0, `),

ϕ(x , 0) = ϕ0(x), ϕt (x , 0) = ϕ1(x) in (0, `),

ψ(x , 0) = ψ0(x), ψ(x , 0) = ψ1(x) in (0, `).

Boundary conditions:

v(0, t) = v(`, t) = 0, ϕ(0, t) = ψ(0, t) = 0, ϕ(`, t) = ψ(`, t) = 0.

Trasmission conditions:

ϕi (`i , t) = ϕi+1(`i , t), ψi (`i , t) = ψi+1(`i , t),

Si (`i , t) = Si+1(`i , t), M i (`i , t) = M i+1(`i , t).
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The semigroup approach

Introducing the state vector Z (t) =
(

v(t), ṽ(t), ϕ(t), ϕ̃(t), ψ(t), ψ̃(t)
)

, our system
becomes the linear ODE in H

d
dt

Z (t) = AZ (t).

An application of the classical Lumer-Phillips theorem shows that the operator A
is the infinitesimal generator of a contraction semigroup

S(t) = etA : H → H.
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Exponential stability

Recalling a standard and widely used technique for the investigation of the decay
properties of an abstract contraction semigroup S(t) = etA on a Hilbert space:

Lemma

Let (S(t))t≥0 be a C0-semigroup on a Hilbert space H generated by A. Then the
semigroup is exponentially stable if and only if

iR ⊂ ρ(A) and
∥∥∥(iλI −A)−1

∥∥∥
L(H)

≤ C ∀λ ∈ R.

(see J. Prüss, On the spectrum of C0-semigroups, Trans. AMS., 284 (1984), 847–857)

we can prove

Theorem

The semigroup associated to the transmission problem decays exponentially as time
goes to infinity if and only if the viscous (V) component is not in the middle of the beam.

This means that the VEF, EFV, VFE, and FEV models are exponentially stable.
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Sketch of the proof
In particular, in order to prove that the resolvent operator is uniformly bounded over the
imaginary axes, we apply some observability inequalities of the following type

Lemma

Any strong solution of the system

iλv − V = f1 in (a, b)

iλϕ − Φ =f12 in (a, b)

iλψ − Ψ =f22 in (a, b)

iλρV − αvxx + γ0V − β(ϕ − v) = ρf3 in (a, b)

iλρ1Φ − κ(ϕx + ψ)x + β(ϕ − v) + γ1Φ =ρ1 f14 in (a, b)

iλρ2Ψ + κ(ϕx + ψ) − bψxx + γ2Ψ =ρ2 f24 in (a, b)

verifies, in any elastic interval IE ,

|ϕx (a) + ψ(a)|2 + |ψx (a)| + |Φ(a)|2 + |Ψ(a)|2 + |ϕx (b) + ψ(b)|2 +

|ψx (b)| + |Φ(b)|2 + |Ψ(b)|2 ≤ C
∫

IE

(
|Φ|2 + |Ψ|2 + |ϕx + ψ|2 + |ψx |

2 )dx + C ‖Z‖H ‖F‖H ;

∫
IE

(
|Φ|2 + |Ψ|2 + |ϕx + ψ|2 + |ψx |

2 )dx ≤ C
(
|ϕx (a) + ψ(a)|2 + |ψx (a)| + |Φ(a)|2 + |Ψ(a)|2

)
+

C ‖Z‖H ‖F‖H∫
IE

(
|Φ|2 + |Ψ|2 + |ϕx + ψ|2 + |ψx |

2 )dx ≤ C
(
|ϕx (b) + ψ(b)|2 + |ψx (b)| + |Φ(b)|2 + |Ψ(b)|2

)
+

C ‖Z‖H ‖F‖H

where Z = (v, ϕ, ψ, V, Φ,Ψ) = (v, ϕ, ψ, vt , ϕt , ψt ) and F = (f1, f12 , f22 , f3, f14 , f24 )∈ H.
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The lack of exponential stabiliy

If elastic and frictional part are not contiguous, but divided by a viscoelastic ones,
namely EVF, FVE, the model is not exponential stable.

Theorem

The system, where elastic and frictional part are not contiguous, but separated by a
viscoelastic ones, is not exponential stable.

Theorem

The solution of the system in which each elastic part is not associated to a frictional
ones decays polynomially as t−2. Moreover the rate of decay is optimal over D(A).
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Polynomial decay

To show the polynomial decay and the optimality we use a result appeared in

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and
operator semigroups, Math. Ann., 347 (2009), pp. 455–478.

Lemma

Let (S(t))t≥0 be a bounded C0-semigroup on a Hilbert space H with generator A such
that iR ⊂ ρ(A). Then

1
|λ|α

∥∥∥(iλI −A)−1
∥∥∥
L(H)

≤ C ∀λ ∈ R ⇔
∥∥∥S(t)A−1

∥∥∥
D(A)

≤
C

t1/α
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Timoshenko beam with one boundary dissipation
Modeling

Let us consider the mechanical behaviour of a Timoshenko homogeneous beam
of length `.

We denote by ϕ = ϕ(x , t) : (0, `)× (0,+∞)→ R the transverse displacement
(vertical deflection) of the cross section at x ∈ (0, `) and at time t ∈ (0,+∞).

Assuming that plane cross sections remain plane, the angle of rotation of a cross
section is defined by ψ = ψ(x , t) : (0, `)× (0,+∞)→ R.

The evolution of the system is given by

ρ1 ϕtt − κ (ϕx + ψ)x = 0 in (0, `)× (0,+∞),

ρ2 ψtt − bψxx + κ (ϕx + ψ) = 0 in (0, `)× (0,+∞),

where ρ1 = ρA, ρ2 = ρI, κ = KAG, b = EI. Here S = κ (ϕx + ψ) stands for the shear
force, M = bψx the bending moment, ρ denotes the density, A the cross-sectional
area, I is the area moment of inertia, K the shear coefficient for measuring the stiffness
of materials (K < 1), E and G are elastic constants.
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Timoshenko beam with one boundary dissipation
Modeling

We supplement our system with initial conditions

ϕ(x , 0) = ϕ0(x), ϕt (x , 0) = ϕ1(x), ψ(x , 0) = ψ0(x) in (0, `),

with boundary conditions

ϕ(0, t) = 0, ϕx (`, t) = 0, ψ(`, t) = 0 in (0,+∞),

and with a boundary dissipation acting only at x = 0, namely

bψx (0, t) = κψt (0, t) in (0,+∞).
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Some references

J.U. Kim, Y. Renardy, Boundary control of the Timoshenko beam, SIAM J.
Control Optim. 25 (1987), no. 6, 1417–1429.

The Timoshenko beam can be uniformly stabilized by means of a boundary
control.
The boundary control corresponds to a control mechanism which monitors ϕt
and ψt at x = `, and transforms them into the lateral force and moment applied
ad x = `, respectively, namely

Kψ(`, t)− K ϕx (`, t) = αwt (`, t)

EIψx (`, t) = −β ψt (`, t).

F. Ammar-Khodja, S. Kerbal, A. Soufyane, Stabilization of the nonuniform
Timoshenko beam, J. Math. Anal. Appl. 327 (2007), no. 1, 525–538.

The authors consider a Timoshenko beam with variable physical parameters.
Exploiting the fact that the Timoshenko beam consists of two weakly coupled
waves, the authors show that if the two wave speeds are the same, then the
beam can achieve uniform stability with a feedback acting only on the rotation
angle or under the following boundary conditions:

ψx (0, t) = c ψt (0, t), ψx (`, t) = −d ψt (`, t), c, d > 0.
In particular, the uniform stability under boundary dissipation has been proved up
to a finite-dimensional space of initial data.
Moreover, if the wave speeds are different, then it can at most get asymptotic
stability under one damping.
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Timoshenko beam with one boundary dissipation
Main aim

Our main aim is to prove that the exponential stability holds if and only if the two
wave speeds are the same and the coefficients of the beam satisfy the following
property

ρ1κ

ρ1b + ρ2κ

(
2`
π

)2
6=

(j21 − j22 )2

(j21 + j22 )
, with j1, j2 ∈ Z \ {0}.
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Timoshenko beam with one boundary dissipation
Sketch of the proof

We appeal to the frequency domain approach:

Theorem

Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space. Then S(t) is
exponentially stable if and only if

(i) iR ⊂ ρ(A), where ρ(A) denotes the resolvent set of A, and

(ii) lim
|λ|→∞

‖(iλI− A)−1‖L(H) < +∞.
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Timoshenko beam with one boundary dissipation
Sketch of the proof

The following Lemma is fundamental to obtain the exponential decay of the
related energy.

Lemma

Let us suppose that the two wave speeds are the same. Then, iR ⊂ ρ(A), if and only if

ρ1κ

ρ1b + ρ2κ

(
2`
π

)2
6=

(j21 − j22 )2

(j21 + j22 )
, with j1, j2 ∈ Z \ {0}.
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