Control of the movement of a set or particles driven by the stationary Stokes equation

Olivier Glass (in collaboration with Thierry Horsin, CNAM)

> Ceremade Université Paris-Dauphine

Contrôle des EDP et applications Conférence en l'honneur de ..., à l'occassion de son ...ème anniversaire CIRM, Marseille, November 9th, 2015

# I. Introduction. Lagrangian controllability

- Lagrangian controllability is a natural notion for control systems modelling a fluid : instead of controlling the state of the system (e.g. the velocity field), one tries to control the flow associated to the system.
- ► Let us give an example on the incompressible Navier-Stokes system.
- We consider a smooth bounded domain  $\Omega \subset \mathbb{R}^n$ , n = 2, 3.
- Navier-Stokes equation for incompressible Newtonian fluids

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u + \nabla p = 0 \text{ in } [0, T] \times \Omega, \\ \text{div } u = 0 \text{ in } [0, T] \times \Omega. \end{cases}$$

Here, u : [0, T] × Ω → ℝ<sup>n</sup> is the velocity field, p : [0, T] × Ω → ℝ is the pressure field.

# Boundary control

- We consider a non empty open part  $\Sigma$  of the boundary  $\partial \Omega$ .
- Non-homogeneous boundary conditions can be chosen as follows :
  - on  $\partial \Omega \setminus \Sigma$ , the fluid sticks to the boundary, u = 0.
  - on Σ, we suppose that one can choose the boundary conditions, that is :

u(t,x) on  $[0,T] \times \Sigma$ .

This boundary condition is a control which we can choose to influence the system, in order to prescribe its behavior.



## The standard problem of controllability

Standard problem of exact/approximate controllability :

Given two possible states of the system, say  $u_0$  and  $u_1$ , and given a time T > 0, can one find a control such that the corresponding solution of the system starting from  $u_0$  at time t = 0 reaches the target  $u_1$  at time t = T? At least such that

$$\|u(T,\cdot)-u_1\|_X \le \varepsilon? \tag{AC}$$

► Alternative formulation : given  $u_0$ ,  $u_1$  and T, can we find a solution of the equation satisfying the constraint on the boundary :

$$u = 0$$
 on  $[0, T] \times (\partial \Omega \setminus \Sigma)$ ,

(under-determined system) and driving  $u_0$  to  $u_1$  at time T? Or to  $u(T, \cdot)$  satisfying (AC)?

See e.g. Fursikov-Imanuvilov,

Fernández-Cara-Guerrero-Imanuvilov-Puel, Coron, etc., for what concerns the boundary controllability of the Navier-Stokes equation.

# Another type of controllability

 Another type of controllability is natural for equations from fluid mechanics : is possible to drive a zone in the fluid from a given place to another by using the control? (Based on a suggestion by J.-P. Puel)



- One can think for instance to a polluted zone in the fluid, which we would like to transfer to a zone where it can be treated.
- It is natural, in order to control the fluid zone during the whole displacement to ask that it remains inside the domain during the whole time interval.

## Exact Lagrangian controllability

- Due to the incompressibility of the fluid, the starting zone and the target zone must have the same area.
- We have also to require that there is no topological obstruction to move a zone to the other one.
- In the sequel, we will consider fluids zones given by the interior (supposed to be inside Ω) of smooth (C<sup>∞</sup>) Jordan curves/surface.

#### Definition

We will say that the system satisfies the exact Lagrangian controllability property, if given two smooth Jordan curves/surface  $\gamma_0$ ,  $\gamma_1$  in  $\Omega$ , homotopic in  $\Omega$  and surrounding the same area/volume, a time T > 0and an initial datum  $u_0$ , there exists a control such that the flow given by the velocity fluid drives  $\gamma_0$  to  $\gamma_1$ , by staying inside the domain.

# Approximate Lagrangian controllability

Definition

We will say that the system satisfies the property of approximate Lagrangian controllability in  $C^k$ , if given two smooth Jordan curves/surface  $\gamma_0$ ,  $\gamma_1$  in  $\Omega$ , homotopic in  $\Omega$  and surrounding the same volume, a time T > 0, an initial datum  $u_0$  and  $\varepsilon > 0$ , we can find a control such that the flow of the velocity field maintains  $\gamma_0$  inside  $\Omega$  for all time  $t \in [0, T]$  and satisfies, up to reparameterization :

 $\|\Phi^{u}(T,0,\gamma_{0})-\gamma_{1}\|_{C^{k}}\leq\varepsilon.$ 

Here,  $(t, s, x) \mapsto \Phi^u(t, s, x)$  is the flow of the vector field u (the position at time t of the particle located at x at time s).

II. Previous results on Lagrangian controllability : Euler equation

- Previous results. Results of Lagrangian controllability have been obtained for :
  - Burgers equation (Horsin),
  - 2D & 3D Euler Equation (G.-Horsin),
  - Other approach for the Euler Equation (Horsin-Kavian).
- The Euler equation corresponds to the high Reynolds number regime (v = 0 in Navier-Stokes above):

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla p = 0 \text{ in } [0, T] \times \Omega, \\ \operatorname{div} u = 0 \text{ in } [0, T] \times \Omega. \end{cases}$$

- Here again  $\Omega \subset \mathbb{R}^n$ , n = 2, 3, is a smooth domain.
- The control acts on an open part  $\Sigma$  of  $\partial \Omega$ , that is to say

$$u \cdot n = 0$$
 on  $\partial \Omega \setminus \Sigma$ .

## An objection in the case of Euler equation

The exact Lagrangian controllability does not hold in general for the Euler equation, indeed :

Let us suppose ω<sub>0</sub> := curl u<sub>0</sub> = 0. In that case if the flow Φ(t,x) maintains γ<sub>0</sub> inside the domain, then for all t, ω(t, ·) = curl u(t, ·) = 0 in the neighborhood of Φ(t, γ<sub>0</sub>), since

$$\partial_t \omega + (u \cdot \nabla) \omega = 0.$$

- Since div u = 0, locally around γ<sub>0</sub>, u is the gradient of a harmonic function; u is therefore analytic in a neighborhood Φ(t, γ<sub>0</sub>).
- Hence if  $\gamma_0$  is analytic, its analyticity is propagated over time.
- If  $\gamma_1$  is smooth but non analytic, the exact Lagrangian controllability cannot hold.

# Approximate Lagrangian controllability for 2D Euler

## Theorem (G.-Horsin)

Consider two smooth smooth Jordan curves  $\gamma_0$ ,  $\gamma_1$  in  $\Omega$ , homotopic in  $\Omega$ and surrounding the same area. Let  $k \in \mathbb{N}$ . We consider  $u_0 \in C^{\infty}(\overline{\Omega}; \mathbb{R}^2)$ satisfying

div 
$$u_0 = 0$$
 in  $\Omega$  and  $u_0 \cdot n = 0$  on  $[0, T] \times (\partial \Omega \setminus \Sigma)$ .

For any T > 0,  $\varepsilon > 0$ , there exists a solution u of the Euler equation in  $C^{\infty}([0, T] \times \overline{\Omega}; \mathbb{R}^2)$  with

 $u \cdot n = 0$  on  $[0, T] \times (\partial \Omega \setminus \Sigma)$  and  $u_{|t=0} = u_0$  in  $\Omega$ ,

and whose flow satisfies

$$\forall t \in [0, T], \ \Phi^u(t, \gamma_0) \subset \Omega,$$

and up to reparameterization

$$\|\gamma_1 - \Phi^u(T,\gamma_0)\|_{C^k} \leq \varepsilon.$$

Approximate Lagrangian controllability for 3D Euler

Theorem (G.-Horsin) Let  $\alpha \in (0,1)$  and  $k \in \mathbb{N} \setminus \{0\}$ . Consider  $u_0 \in C^{k,\alpha}(\Omega; \mathbb{R}^3)$  satisfying

div  $u_0 = 0$  in  $\Omega$  and  $u_0 \cdot n = 0$  on  $\partial \Omega \setminus \Gamma$ ,

and  $\gamma_0$  and  $\gamma_1$  two contractible  $C^\infty$  embeddings of  $\mathbb{S}^2$  in  $\Omega$  satisfying

 $|int(\gamma_0)| = |int(\gamma_1)|.$ 

Then for any  $\varepsilon > 0$ , there exist a time T > 0 and a solution (u, p) in  $L^{\infty}(0, T; C^{k,\alpha}(\Omega; \mathbb{R}^4))$  of the Euler equation on [0, T] with

 $u \cdot n = 0$  on  $[0, T] \times (\partial \Omega \setminus \Sigma)$  and  $u_{|t=0} = u_0$  in  $\Omega$ ,

such that

$$\forall t \in [0, T], \phi^u(t, 0, \gamma_0) \subset \Omega,$$

and, up to reparameterization,

$$\|\phi^{\boldsymbol{u}}(\boldsymbol{T},\boldsymbol{0},\gamma_{0})-\gamma_{1}\|_{\boldsymbol{C}^{\boldsymbol{k}}(\mathbb{S}^{2})}<\varepsilon.$$

III. Lagrangian controllability for the stationary Stokes equation

- ► The Euler equation corresponds to the high Reynolds number regime (ν = 0 in Navier-Stokes above).
- Here we are concerned with the low Reynolds number regime  $(\nu \rightarrow +\infty)$ , which yields the stationary Stokes equation :

$$\begin{aligned} -\Delta u + \nabla p &= 0 \text{ in } \Omega, \\ \text{div } u &= 0 \text{ in } \Omega, \end{aligned}$$

with u = u(t, x) and p = p(t, x).

## Stationary Stokes control system

- ▶ We consider a smooth bounded domain  $\Omega \subset \mathbb{R}^n$ , n = 2, 3 and a non empty open part  $\Sigma$  of the boundary  $\partial \Omega$ .
- We end up with the following control system :

$$\begin{cases} -\Delta u + \nabla p = 0 \text{ in } [0, T] \times \Omega, \\ \text{div } u = 0 \text{ in } [0, T] \times \Omega. \end{cases}$$

- > The boundary conditions are as follows :
  - on  $\partial \Omega \setminus \Sigma$ , u = 0,
  - the value of u on  $\Sigma$  is the control.
- The standard controllability problems would not be very satisfying in this context, but Lagrangian controllability makes sense despite the fact that the equation is stationary.
- See for instance Alouges-Giraldi, Lohéac-Munnier, ... for other controllability results (micro-swimmers) relying on the stationary Stokes equation.

## An objection in the case of Stokes

The exact Lagrangian controllability does not hold in general, indeed :

- the properties of Stokes equation yield that u is real-analytic (in the variable x) inside Ω.
- Hence if  $\gamma_0$  is analytic, its analyticity is propagated over time.
- ► If *γ*<sub>1</sub> is smooth but non analytic, the exact Lagrangian controllability cannot hold.
- Consequently, we look for approximate Lagrangian controllability.

The 2-D case

## Theorem (G.-Horsin)

Consider two smooth smooth Jordan curves  $\gamma_0$ ,  $\gamma_1$  in  $\Omega$ , homotopic in  $\Omega$ and surrounding the same area. Let  $k \in \mathbb{N}$ . Then for any T > 0,  $\varepsilon > 0$ , there exists a solution (u, p) of the Stokes equation in  $C^{\infty}([0, T] \times \overline{\Omega}; \mathbb{R}^2)$  with

$$u = 0 \text{ on } [0, T] \times (\partial \Omega \setminus \Sigma),$$

and whose flow satisfies

$$\forall t \in [0, T], \ \Phi^u(t, 0, \gamma_0) \subset \Omega,$$

and up to reparameterization

$$\|\gamma_1 - \Phi^u(T, 0, \gamma_0)\|_{C^k} \leq \varepsilon.$$

## The 3-D case

## Theorem (G.-Horsin)

Let  $k \in \mathbb{N} \setminus \{0\}$ . Let  $\gamma_0$  and  $\gamma_1$  two  $C^{\infty}$  Jordan surfaces in  $\Omega$  such that

 $\gamma_0$  and  $\gamma_1$  are contractible in  $\Omega$  and  $|Int(\gamma_0)| = |Int(\gamma_1)|$ .

Then for any  $\varepsilon > 0$ , for all T > 0, there is a solution (u, p) in  $C^{\infty}([0, T] \times \overline{\Omega}; \mathbb{R}^4)$  of the Stokes equation on [0, T] with u = 0 on  $\partial\Omega \setminus \Sigma$  such that

$$\forall t \in [0, T], \Phi^u(t, 0, \gamma_0) \subset \Omega,$$

and, up to reparameterization,

$$\|\Phi^{u}(T,0,\gamma_{0})-\gamma_{1}\|_{C^{k}(\mathbb{S}^{2})}<\varepsilon.$$

# IV. A related question of approximation

One of the main ideas to get to obtain the Lagrangian controllability in the case of the Euler equation was to use results from holomorphic/harmonic approximation, such as Runge's theorem, Mergelyan's theorem or Walsh's theorem :

## Theorem (Runge)

Let K a compact set in  $\mathbb{C}$ ,  $\Omega$  an open set such that  $K \subset \Omega$ . Let A a set such that any connected component of  $\overline{\mathbb{C}} \setminus \Omega$  contains at least a point of A. Then, for each holomorphic function u on  $\Omega$  and each  $\varepsilon > 0$ , there is a rational function v whose poles are in A, and such that  $||v - u||_{\infty} < \varepsilon$  on K.

#### Theorem (Mergelyan)

Let K a compact set in  $\mathbb{C}$  whose complement is connected. If u is a continuous complex function on K which is holomorphic in the interior of K, then for any  $\varepsilon > 0$  there is a polynomial function v such that  $\|v - u\|_{\infty} < \varepsilon$  on K.

## Walsh's theorem

Walsh's theorem is the equivalent of Runge's theorem for harmonic functions in dimension n:

#### Theorem (Walsh, Gardiner)

Let  $\mathcal{O}$  be an open set in  $\mathbb{R}^N$  and let K be a compact set in  $\mathbb{R}^N$  such that that  $\mathcal{O}^* \setminus K$  is connected, where  $\mathcal{O}^*$  is the Alexandroff compactification of  $\mathcal{O}$ . Then, for each function u which is harmonic on an open set containing K and each  $\varepsilon > 0$ , there is a harmonic function v in  $\mathcal{O}$  such that  $\|v - u\|_{\infty} < \varepsilon$  on K.

A weak Runge/Walsh theorem for stationary Stokes equation

Theorem (G.-Horsin)

Let K a compact set in  $\mathbb{R}^N$ , N = 2 or 3. Let  $\mathcal{V}$  and  $\Omega$  two bounded open sets such that  $K \subset \mathcal{V}$ ,  $\overline{\mathcal{V}} \subset \Omega$  and each connected component of  $\mathbb{R}^N \setminus K$ contains an interior point of  $\mathbb{R}^N \setminus \Omega$ . Then for any solution  $(u, p) \in C^{\infty}(\mathcal{V}; \mathbb{R}^{N+1})$  of the Stokes equation in  $\mathcal{V}$ :

$$\begin{cases} -\Delta u + \nabla p = 0, \\ \text{div } u = 0 \end{cases} \text{ in } \mathcal{V},$$

for any  $k \in \mathbb{N}$  and any  $\varepsilon > 0$  there exists  $(\overline{u}, \overline{p}) \in C_c^{\infty}(\mathbb{R}^N; \mathbb{R}^{N+1})$  a solution of the Stokes equation in  $\Omega$ :

$$\left\{ \begin{array}{ll} -\Delta \overline{u} + \nabla \overline{p} = 0, \\ \text{div } \overline{u} = 0 \end{array} \right. \quad \text{in } \Omega,$$

and

$$\|\overline{u}-u\|_{C^{k}(K)}\leq\varepsilon.$$

# V. Ideas of proof of the Runge-Walsh-type result

- We start from a solution (u, p) defined on V an open neighborhood of K, and want to construct (u, p) on Ω approximating well (u, p) on K.
- First, we can assume that K, V and  $\Omega$  have smooth boundaries and even that there is a regular intermediate domain  $V_0$ :

$$K \subset \mathcal{V}_0 \subset \overline{\mathcal{V}_0} \subset \mathcal{V} \subset \overline{\mathcal{V}} \subset \Omega.$$

Idea : introduce a function  $\varphi \in C^\infty(\mathbb{R}^n)$ ,  $\varphi \ge 0$  such that

 $\mathcal{K} = \varphi^{-1}(\{0\})$  (Whitney) and set

$$ilde{K} = \varphi^{-1}([0, \varepsilon_{\mathcal{K}}]), \quad ilde{V} = \varphi^{-1}([0, \varepsilon_{\mathcal{V}})),$$

for  $\varepsilon_{\mathcal{K}} < \varepsilon_{\mathcal{V}}$  regular values of  $\varphi$  (Sard).

▶ Step 1. We first set

$$\hat{u} := u - \nabla \Delta^{-1} \tilde{p}$$
 in  $\mathcal{V}$ ,

with  $\Delta^{-1} := \cdot * G$ ,  $G(x) = \frac{1}{2\pi} \ln |x|$  for n = 2,  $G(x) = -\frac{1}{4\pi |x|}$  for n = 3, and  $\tilde{p}$  a smooth extension of p. Then

$$\operatorname{curl} \hat{u} = \operatorname{curl} u \text{ in } \mathcal{V}, \quad \Delta \hat{u} = 0 \text{ in } \mathcal{V}.$$

• Step 2. We use Walsh's theorem on  $\hat{u}$ . We obtain some  $\tilde{u}$  defined on  $\Omega$  such that

$$\Delta \tilde{u} = 0 \text{ in } \mathbb{R}^n \setminus \{A_1, \ldots, A_N\}, \ \|\hat{u} - \tilde{u}\|_{C^{k+1,\alpha}(\overline{\mathcal{V}_0})} \leq \varepsilon,$$

In particular we have

$$\left|\oint_{\gamma}(u-\tilde{u})\cdot\tau\right|\leq C\varepsilon \text{ and } \|\operatorname{curl} u-\operatorname{curl} \tilde{u}\|_{C^{\boldsymbol{k},\alpha}(\overline{\mathcal{V}_{\mathbf{0}}})}\leq C\varepsilon.$$

for all smooth loop  $\gamma \subset \mathcal{V}_0$ 

▶ Step 3. Now curl u − curl  $\tilde{u} = \mathcal{O}(\varepsilon)$  gives

$$u = \tilde{u} + \nabla \theta + H + \mathcal{O}(\varepsilon),$$

for some regular  $\theta$  on  $\mathcal{V}$  and H in the first de Rham cohomology space, but small since

$$\oint_{\gamma} (u - \tilde{u}) \cdot \tau = \mathcal{O}(\varepsilon).$$

We extend  $\theta$  to  $\Omega$  arbitrarily. Now  $\tilde{u} + \nabla \theta$  is a good candidate since

$$\Delta(\tilde{u}+\nabla\theta)=\nabla(\Delta\theta),$$

but the divergence is not 0! It is, however, of order  $\mathcal{O}(\varepsilon)$  on  $\mathcal{V}_0$ .

• Step 4. For that we introduce q and  $\tilde{q}$  solutions of

$$-\Delta q = \operatorname{div} \left( \tilde{u} + \nabla \theta \right) \text{ in } \Omega, \quad \tilde{q} = 0 \text{ on } \partial \Omega.$$
$$-\Delta \tilde{q} = \operatorname{div} \hat{U} \text{ in } \Omega, \quad \tilde{q} = 0 \text{ on } \partial \Omega,$$

where  $\hat{U}$  is constructed in order to have the same divergence as  $\tilde{u} + \nabla \theta$  in  $\mathcal{V}_0$  and is of order  $\mathcal{O}(\varepsilon)$ .

Then q - q̃ is harmonic on V<sub>0</sub>, and can be approximated by a harmonic function ψ defined on Ω.

► We set

$$\beta = \boldsymbol{q} - \boldsymbol{\psi},$$

and one checks that

$$\overline{u}:=\widetilde{u}+
abla heta-
ablaeta$$
 and  $\overline{p}:=\Delta(- heta+eta),$ 

is a solution to our problem.

- Step 4'. How to obtain  $\hat{U}$ ?
- We start from div (ũ + ∇θ) = O(ε) in V<sub>0</sub> and want to obtain Û of size O(ε) such that

$$\operatorname{div}\left(\tilde{u}+\nabla\theta\right)=\operatorname{div}\,\hat{U}.$$

• But from div  $(\tilde{u} - \nabla \theta) = \mathcal{O}(\varepsilon)$  one can obtain easily that

$$\tilde{u} - \nabla \theta = \operatorname{curl}(A) + h + R,$$

where

- A is some vector field,
- *h* belong to the *second* de Rham cohomology space of  $V_1$
- the remaining term satisfies  $R = \mathcal{O}(\varepsilon)$ .
- Extend R in  $\Omega$  keeping it size of  $\mathcal{O}(\varepsilon)$  and you are done.

# VI. Ideas of proof. From the Runge-Walsh-type result to Lagrangian controllability

- One seeks a vector field satisfying Stokes' equation, fulfilling the boundary condition on ∂Ω \ Σ and whose flow drives γ<sub>0</sub> to γ<sub>1</sub> (approximately in C<sup>k</sup>).
- ► This is proven in two parts :
  - Part 1 : find a solenoidal (divergence-free) vector field driving  $\gamma_0$  to  $\gamma_1$ .
  - Part 2 : approximate (at each time) the above vector field on the curve (or to be more precise, its normal part), by a solution of Stokes' system defined on Ω and satisfying the constraint.

# Part 1

## Proposition

Consider  $\gamma_0$  and  $\gamma_1$  two smooth ( $C^\infty$ ) Jordan curves/surface isotopoic in  $\Omega$ . If  $\gamma_0$  and  $\gamma_1$  satisfy

 $|Int(\gamma_0)| = |Int(\gamma_1)|,$ 

then there exists  $v \in C_0^\infty((0,1) imes \Omega; \mathbb{R}^2)$  such that

 $div \ v = 0 \ in \ (0,1) \times \Omega,$ 

 $\Phi^{\nu}(1,0,\gamma_0)=\gamma_1.$ 

This was also used in the case of the Euler equation.

(Isotopic : one can deform  $\gamma_0$  to  $\gamma_1$  by a continuous family of smooth embeddings)

## Idea of proof for Part 1

▶ In 2-D, one can make moves like the ones described below.



• But it turns out that a very general result due to A. B. Krygin.

# Krygin's theorem

#### Theorem

Let W a contractible (to simplify) Jordan surface in an orientable manifold M. Consider a smooth family of embeddings  $f_t : W \to M$ ,  $t \in [0, 1]$ , satisfying the properties :  $f_0 = id$  and  $|Int(f_1(W))| = |Int(W)|$ . Then, there exists a family of volume-preserving diffeomorphisms  $F_t : M \to M$  such that  $F_0 = id$  and  $F_{1|\partial W} = f_1$ .

The proof relies on J. Moser's celebrated result on deformation of volume forms : on a manifold, one can deform a smooth volume form onto another one via a smooth diffeomorphism, provided they have same total mass. Part 2

#### Proposition

Let  $\gamma_0$  a smooth  $(C^{\infty})$  Jordan curve/surface; let  $X \in C^0([0,1]; C^{\infty}(\overline{\Omega}))$ a smooth solenoidal vector field, with X = 0 on  $[0,1] \times \partial \Omega$ . Then for all  $k \in \mathbb{N}$  and  $\varepsilon > 0$  there exists  $(u, p) \in C^{\infty}([0,1] \times \overline{\Omega}; \mathbb{R}^{3,4})$  such that

$$\begin{split} -\Delta u + \nabla p &= 0 \text{ in } \Omega, \text{ for all } t \in [0,1],\\ \text{div } u &= 0 \text{ in } \Omega, \text{ for all } t \in [0,1],\\ u &= 0 \text{ on } [0,1] \times (\partial \Omega \setminus \Sigma), \end{split}$$

and whose flow satisfies

$$\forall t \in [0,1], \ \Phi^u(t,0,\gamma_0) \subset \Omega,$$

and, up to reparameterization,

$$\|\Phi^{X}(t,0,\gamma_{0})-\Phi^{u}(t,0,\gamma_{0})\|_{\mathcal{C}^{k}}\leqarepsilon, \ orall t\in[0,1].$$

## Ideas of proof for Part 2

To construct a Stokes flow u transporting the fluid zone in the same way as X, we introduce for each time the solution of the following Stokes problem :

$$\begin{cases} -\Delta u(t, \cdot) + \nabla p = 0 \text{ in } \operatorname{Int}(\gamma(t)), \\ \operatorname{div} u(t, \cdot) = 0 \text{ in } \operatorname{Int}(\gamma(t)), \\ u(t, \cdot) = X(t, \cdot) \text{ on } \gamma(t). \end{cases}$$

The main issue here is that in general, u cannot be extended to Ω, not to mention in a way that fulfills Stokes equation and

u = 0 on  $\partial \Omega \setminus \Sigma$ .

## Ideas of proof for Part 2

- The idea is to use our Runge-Walsh-type theorem to obtain a suitable approximation.
- the problem being that ψ is not defined in a neighborhood of γ(t) and to obtain a approximation uniformly in time (γ is moving !)

Remark. Here instead of relying on the Runge-Walsh type theorem, we could use the following statement.

Theorem. Assume that  $\gamma$  is a  $C^{\infty}$  Jordan surface included in  $\Omega$ , then the set  $\{u_{|\gamma}, (u, p) \text{ is a solution of Stokes in } \Omega \text{ such that } u_{|\partial\Omega} \in H_m^{1/2}(\Sigma)\}$ , is dense in  $H_m^{1/2}(\gamma)$ .

This result can be proved by a duality argument and using the results of Fabre-Lebeau on the unique continuation for the Stokes operator.

## Three steps

► The proof follows three successive steps of growing generality.

- The case where X and \u03c6<sub>0</sub> are analytic,
- The case where  $\gamma_0$  is analytic but X is merely  $C^{\infty}$ ,
- The case where X and  $\gamma_0$  are  $C^{\infty}$ .

First step : when the data are real analytic :  $\gamma_0 \in C^{\omega}(\mathbb{S}^{n-1}; \mathbb{R}^2)$  and  $X \in C^0([0,1]; C^{\omega}(\overline{\Omega})).$ 

In that case, the curve γ(t) is an analytic curve and so is the Dirichlet boundary data u(t, ·) = X(t, ·) on γ(t)!

## First step, sequel

- As γ(t) and X on γ(t) are analytic, we can extend the solution u across the boundary γ(t) (this is a "classical" analyticity result for the Stokes equation).
- Using the continuity in time of X and γ with values in C<sup>ω</sup>, we see that the size of the neighborhood of γ(t) where this solution can be extended can be estimated from below.
- With the Runge-Walsh-type theorem we can obtain approximations defined on Ω, and which satisfy

u = 0 on  $\partial \Omega \setminus \Sigma$ .

• We obtain the function the final *u* as :

$$u(t,x) = \sum_{k=1}^{N} \rho_i(t) u(t_i, \cdot),$$

with  $\rho_i$  a certain partition of unity of [0, 1].

## Second step

- Second step : when only the vector field is real analytic :  $X \in C^0([0,1]; C^{\omega}(\overline{\Omega}))$  but  $\gamma_0 \in C^{\infty}(\mathbb{S}^{n-1}; \mathbb{R}^2)$ .
- We can approach γ<sub>0</sub> (and γ<sub>1</sub>) by real analytic curves, from the outside. This comes from a general result by H. Whitney.
- Next, we apply the process of Part 1 on the ν-approximations γ<sub>0</sub><sup>ν</sup> and γ<sub>1</sub><sup>ν</sup> of γ<sub>0</sub> and γ<sub>1</sub>. We obtain a function u<sup>ν</sup>.
- ► The central point is to show that, on  $\Phi^{u^{\nu}}(t, \gamma_0)$ , we have uniform estimates on  $u^{\nu}$  as  $\nu \to 0^+$ .
- This comes from the construction and the fact that the constants in elliptic estimates in Int(γ<sup>ν</sup>) are bounded independently from ν.
- We conclude then by Gronwall's lemma.

## Third step

- Third step : when both data are merely C<sup>∞</sup> : γ<sub>0</sub> ∈ C<sup>∞</sup>(S<sup>n-1</sup>; ℝ<sup>2</sup>) and X ∈ C<sup>0</sup>([0,1]; C<sup>∞</sup>(Ω̄)).
- We use Whitney's analytic approximation theorem : X can be approached arbitrarily for the C<sup>0</sup>([0, 1]; C<sup>∞</sup>(Ω̄))-topology by X<sup>ν</sup> ∈ C<sup>0</sup>([0, 1]; C<sup>ω</sup>(Ω̄)).
- ▶ We conclude by using the previous step and Gronwall's lemma.

## Open problems

Navier-Stokes equations. Can we obtain a similar result for incompressible Navier-Stokes equations?

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \Delta u + \nabla p = 0 \text{ in } [0, T] \times \Omega, \\ \text{div } u = 0 \text{ in } [0, T] \times \Omega. \end{cases}$$

With Dirichlet's boundary conditions? With Navier's (cf. Coron, Chapouly)?

This is also open for the evolutionary Stokes equation !

Stabilization. Can we find a feedback control :

 $\operatorname{control}(t) = f(\gamma(t), u(t)),$ 

stabilizing a fluid zone at a fixed place?