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Introduction Setting Result

Incompressible Navier-Stokes equations in a 2-d channel:
Q=T x(0,1),where T = R/27Z.

oru+ (u-V)u—vAu+Vp=0, in(0,00)xQ,

div u =0, in (0,00) x Q,
u(t, x1,0) = (0,0), on (0,00) x T,
u(t,x1,1) = (0, v(t, x1)), on (0,00) x T,
u(0, x1,x2) = u®(x1, x2), in Q.

u=u(t,xi,x2) € R? is the velocity.
p = p(t, x1,x2) is the pressure.

v > 0 is the viscosity.

v = v(t,xy) is the control function, acting on the normal
component only.

Choose v to stabilize the state u. )

Sylvain Ervedoza November 2015 Stabilization in a channel



Introduction Setting Result

Motivation and related topics

Motivation: Controllability/Stabilization of fluid-structure models

with controls acting on the structure.
See Lions Zuazua '95, Osses Puel '99, '09, Lequeurre '13, ...

Related topics:

@ Controllability of incompressible Navier-Stokes equations....
Fursikov Imanuvilov '96, Fernandez-Cara Guerrero Imanuvilov
Puel '04, ...

@ ... with controls having zero components:

Coron Guerrero '09, Carreno Guerrero '13, Coron Lissy '15,...

@ Coupled parabolic systems with one boundary control:
Ammar-Khodja Benabdallah Gonzalez-Burgos de Teresa '11,
Duprez Lissy '15...

@ Stabilization for incompressible Navier-Stokes equations:
Krstic et al '01, Raymond '06, Barbu '07, Triggiani '07,
Vazquez Coron Trélat '08, Munteanu '12,...
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Introduction Setting Result

To be more precise....

Our goal
Get a local stabilization result around the state (u, p) = (0,0).

Linearized equations:

Oty —vAu+Vp =0, in (0,00) x Q,
div u =0, in (0,00) x Q,
u(t, x1,0) = (0,0), on (0,00) x T,
u(t,x1,1) = (0,v(t,x1)), on (0,00) x T,
u(0,x1,x0) = u%(x1,x2), inQ,

77?7 ~~ The linearized equations are already stable! Taking v = 0,

i(;/ﬂ]u(t,x)\2dx> +V/Q\vu(t,x)\2dx—o

~~ Exponential decay like t — exp(—v72t).
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Introduction Setting Result

To be more precise....

2

Get a local stabilization result around the state (u, p) = (0, 0)
At an exponential rate larger than v7~.

Linearized equations:

Oru —vAu+Vp =0, in (0,00) x Q,
div u =0, in (0,00) x Q,
u(t,x1,0) = (0,0), on (0,00) x T,
u(t,x1,1) = (0,v(t,x1)), on (0,00) x T,
U(O,X]_,X2) = uO(Xl,X2), in Q,

Difficulty: i
divu=0in (0,00) x Q = / v(t,x1) dx; =0 for all t > 0.
Jr
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Introduction Setting Result

To be more precise....

The 0-mode:
UO(t,X2) = / u(t,Xl,Xg) dxq
T

satisfies the uncontrolled heat equation

atuO,l — l/azzuO,l = 0, in (07 OO) X (0, 1),
Uo,l(t, 0) = UO,1(t, 1) =0, on (0, OO),
UO72(t,X2) =0, in (07 OO) X (0, 1).

Consequence

The solutions of the linearized equations decay like exp(—v7?t)
and, considering

2 .
u(t,x) = e_wrzt\UO(Xg) with Wo = Wo(x2) = 1/ = ( Sln((T)['XZ) > ’
T

this decay estimate is sharp whatever the control v is.
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Introduction Setting Result

Main result

Theorem (S. Chowdhury, S.E., J.-P. Raymond)

Let wg > 0 be such that 0 < wy < 4vn2.
There exists v > 0 such that for all up € V§(Q) with
||“0||vé(Q) < v, there exists v € L?((0,00) x T) satisfying

/ v(t,x1) dx; = 0 for all t > 0 such that the solution (u, p) of the

T
incompressible Navier-Stokes equation satisfies, for some constant
C > 0 independent of t,

Ve 20, [lu(t)lhagey < Ce .

VHQ) = {u = (u1, ) € HY(Q) x HY(Q)| div u=0},
Vi(Q) = {u e VY(Q) | u(x1,0) = u(x1,1) = 0 for x; € T}.
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Introduction Setting Result

Comments

o Straightforward when w < vr?

~~ Interesting case w € (v72, 4vm?).

@ 4u7? is the second eigenvalue of the elliptic operator
generating the heat equation satisfied by the 0-mode:

atu()’l — V822U0’1 = 07 in (0, OO) X (0, 1)7
uoyl(t, 0) = U07]_(t, 1) = 0, on (0, OO),
U072(t,X2) =0, in (0, OO) X (O7 1).

@ The stabilization result cannot be true for the linearized model
= We have to use the non-linearity to improve the
exponential decay.

Strategy based on the so-called Power Series Expansion:
see Coron Crépeau '04, Cerpa '07, Cerpa Crépeau '09, Coron
Rivas '15.
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Strategy Roughly Notations Precise Lemmata

Strategy

Write u = ca + €23, v = £vq + £2vs, with

Ot —vAa+Vpr =0, in (0,00) x Q,

div a =0, in (0,00) x Q,
a(t,x1,0) = (0,0), on (0,00) x T,
a(t,x1,1) = (0,vi(t,x1)), on (0,00) x T,
(0, x1, x0) = a®(x1, x2), in Q,

OB —vAB+Vp = —(a+ef) - V(a+epB), in(0,00)xQ,

div 8 =0, in (0,00) x Q,
B(t, x1,0) = (0,0), on (0,00) x T,
B(t,x1,1) = (0, va(t, x1)), on (0,00) x T,
B(0, x1, %) = B°(x1, x2), in Q,
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Strategy Roughly Notations Precis

Strategy

@ « satisfies the linearized incompressible Navier-Stokes
equations.

= If & contains 0-modes decaying slower than exp(—wot), one
cannot achieve an exponential decay rate wy.

= The component of the solution u on the eigenfunction

Wo = Vo) = \/3( Sin((7)rX2) )

e Isin 5.
e Should be handled by constructing a suitable .
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Strategy g i emmata

Preliminaries

e The Stokes operator A is self-adjoint, positive definite, with
compact resolvent on the space

V2(Q) = {u e (L3(Q))?| div(u)=0on Qand u-n=0onT}
=- Sequences of positive eigenvalues \; < Ao <.+ — 00 and
corresponding orthonormal basis of eigenvectors (V;).

—VvAV +Vg= AV, inQ,
AV = )\V & div ¥V =0, in Q,
v =0, onl,

1
Adjoint of the control operator: B*W = q(xq, 1)_27r/ q(x1,1)dx.
T

AV = AV and B*W = 0 imply W(x) = W(xy).
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Strategy Roughly Notations Precise Lemmata

Decomposition of the space VI(Q):

@ A stable space: Z; = Span {® | A® = \d, with A > w}.

@ An unstable space: Z, = ZSL, itself decomposed as

e An unstable uncontrollable space Z,,, = Span V.
o An unstable detectable space Z,y = Z}, N Z,.

Corresponding (orthogonal) projections: Ps, Py, P, and Py,.
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Strategy Roughly Notations Precise Lemmata

Strategy

lterative strategy: (0,00) = Upen[nT,(n+ 1)T] for some T > 0.
(T =1).

Starting point: u° = ea® 4 €249 with
0[2 0 0 _
0 gy + 120y <1 and Bua® =0
Initialization Step: On [0, T], choose

@ v; such that P,a(T) =0.

o V2:0.
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Strategy Roughly Notations Precise Lemmata

Strategy

lteration step: In each time interval [nT,(n+ 1) T], we design
controls v; and v, such that

P,a((n+1)T)=0, and P,8((n+1)T)=0,
where 8* is the solution of

0" —vAB*+Vp*=—a-Va, in(nT,(n+1)T)xQ,

div 8* =0, in (nT,(n+1)T) x Q,
B*(t, x1,0) = (0,0), on (nT,(n+1)T) x T,
B*(t,x1,1) = (0, va(t, x1)), on (nT,(n+1)T) x T,
B*(nTT,x)=pB(nT~,x), in Q.

Remark: 8* £ S, but || — B*|| S ¢
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Strategy Roughly Notations Precise Lemmata

Lemma for the initialization step

Given a® € V}(Q) and af € Z,4, there exists a control function
vi € H}(0, T; L3(T)) N L2(0, T; H*(T)) with / vi(t,x1)dx; =0
T

such that the solution « of

O — VAo + Vpr =0, in (0,00) x Q,
div a = 0, in (0,00) x Q,
a(t,x1,0) = (0,0), on (0,00) x T,
a(t,x1,1) = (0,vi(t,x1)), on (0,00) x T,
(0, x1, x0) = a®(x1, x2), in Q,

satisfies P qa(T) = of.
The projection P,,«(T) cannot be controlled, but satisfies
Puyc(T) = exp(—vm? T)Pual.
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Roughly Notations Precise Lemmata

Strategy

Key Lemma for the iteration process

Let 3° € Z,, and f € L2(0, T; H?(Q)) N HX(0, T; V°(Q )) Then
there exists a control function 7 € H}(0, T; H?(T) N L3(T)) such
that the solution & of

0:cv — VA& + VP = 0, in (0, T) x Q,
diva =0, in (0, 7) x Q,
a(t,x1,0) = (0,0), on (0, T) x T,
a(t,x1,1) = (0,%(t,x1)), on (0, T)xT
a(0,x) = 0, in Q,

satisfies &(T) = 0 in Q, and such that the solution 3 of

O —vAB+ V= —(f+a)-V(f+a), in(0,T)xQ,

div 3 =0, in (0, T) x Q,
B(t,%1,0) = A(t,x,1) = (0,0), on (0,00) x T,
6(07X17X2) = /Bo(xlaXQ)a in Qa

satisfies IP’UU[;’( T)=0.
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Strategy Roughly Notations Precise Lemmata

~~ These lemmata come with estimates which are needed to
conclude. For instance, we get

-2 ~
It raemnmno @y + ] o sy

vam) '

) o
<C (||f”L2(o,T;H2(Q))mH1(o,T;v0(Q)) + HBO‘
After tedious estimates, at each step,

lo((n+ D) Tllvay < e T la(nT)llvyay -

[P<5((n+ 1) T) vy ey IPsB(nT)llvy(e 2 <c>
(rw((nﬂmnvé(m =K\ BB (T gy ) 10T s e

—wT
where K. = ( € C—\%C\@ C(\:@ ) .

= Decay as exp(—wpt).
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Key Lemma

Let 3° € Z,, and f € L2(0, T; H?(Q)) N HX(0, T; V°(Q )) Then
there exists a control function 7 € H}(0, T; H?(T) N L3(T)) such
that the solution & of

0:cv — VA& + VP = 0, in (0, T) x Q,
diva =0, in (0, 7) x Q,
a(t,x1,0) = (0,0), on (0, T) x T,
a(t,x1,1) = (0,%(t,x1)), on (0, T)xT
a(0,x) = 0, in Q,

satisfies &(T) = 0 in Q, and such that the solution 3 of

O —vAB+ V= —(f+a)-V(f+a), in(0,T)xQ,

div 3 =0, in (0, T) x Q,
B(t,%1,0) = A(t,x,1) = (0,0), on (0,00) x T,
6(07X17X2) = /Bo(xlaXQ)a in Qa

satisfies IP’UU[;’( T)=0.
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Key Lemma Reformulation Proof

A slightly stronger Result

There exist control functions v2, v? € H}(0, T; H?(T) N L3(T))
such that, for all a, b € R, the solution « of

Ora — vAa + Vp; =0, in (0, 7) x Q,
diva =0, in (0, T) x Q,
a(t,x1,0) = (0,0), on (0, T) x T,
a(t,x1,1) = (0, (av? + bv®)(t,x1)), on (0,T)x T,
a(0,x) =0, in Q,

satisfies a(T) = 0 in €, and such that the solution 3 of
OB —vAB+Vpr=—a-Va, in(0,T)xQ,

div 8 =0, in (0, T) x Q,
B(t,x1,0) = B(t,x1,1) = (0,0), on (0,00) x T,
,B(O,X) — 07 in Q7

satisfies P, 5(T) = ab V.
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Key Lemma Reformulation Proof

Ideas of the proof

e Take
va(t,x1) = ve(t) cos(x1), VvP(t,x1) = v(t)sin(xy).

~ a? and o are supported on the first mode of the equations:

A?(t, x1,%) = ( sin(x1)as(t, x2) )

cos(xy)as(t, x2)

e The equation satisfied by the first modes of the linear
incompressible Stokes equations is null-controllable.
~ Proof by spectral estimates and Miintz Theorem.

e Writing (5(T), Vo) in a suitable way.
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Key Lemma Reformulation Proof

e T(B(T), Wo) = 775/2/T v*(t)q(t, 1) dt,
0

where g is obtained by solving

-0 +vZ —vinZ+ ( aqq ) = F(t‘,Xz)7 in (0, T) X (0, 1),
2

—Z1+ 02, =0, in (0, T) X (0, 1),

Z(t,0) = Z(t,1) = (0,0), in (0, T),

Z( TaX2) =0, in (0, 1)

. _ w2t [ o5(t, x2) .
with F(t,x2) = cos(mxz)e ( a(t0) ) depending only on
va(t,x1) = vE(t) cos(x1).

~» Show the existence of v?/v® such that ||g(¢, 1)HL2(07T) # 0.
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Key Lemma Reformulation Proof

Construction of v¢, generation of a suitable trajectory

For 1 € R, introduce (a*(x2), p*(x2)) solving

poi +vai — vopnaj — p* =0, in (0,1),
posy + vas — vonas + 0ap* =0, in (0,1),
aj + Oaj =0, in (0,1),

ai(0) = aj(1) = a5(0) = 0, a3(1) = L.

Then a(t, x1, x2) = e”*(sin(x1)aj(x2), cos(x1)as(x2)), V(t) = ett,
solves the linear Stokes equations.

There exists a suitable © € R such that if a(t) = a@(t) on some
time interval then the boundary pressure q(t,1) given by the
aforementioned process cannot be identically 0 on that time
interval.

Reduction to the stationary case and numerically checked.
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Key Lemma Reformulation Proof

Construction of v/v¢ and v®/v*

Construction of v?/v€ in 4 steps:
e On (0, T/4), control a? to go from 0 to a(T /4).
e On (T/4,T/2), take v3(t) = eMt and o?(t) = a(t).
e On (T/2,3T/4), control a? goes from a(T /2) to 0.
@ On (3T7/4,T), take v3(t) =0, and a?(t) = 0, hence
q(t) =0.
Construction of v?/v:
3T/4
e On (0,37 /4), take v* such that / vi(t)q(t,1)dt = 1.
0

@ On (3T /4, T), control a’ to go from (3T /4) to 0.
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Further
Open Question

e Exponential stabilization result at a rate higher than 4v72?

Difficulty: One has to guarantee that we can enter the space of
missing directions

Span {( Si“(g’Q) ) ’< sin(207r><2) >}

in both directions independently.

Exponential stabilization at any given rate is open, so is the
controllability of the system.
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Thank you for your attention!

Comments Welcome

Reference:
Open loop stabilization of incompressible Navier-Stokes equations

in a 2d channel using power series expansion.
S. Chowdhury, S. Ervedoza, and J.-P. Raymond, in preparation.
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