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Rapid exponential stabilization in finite dimension

We consider the control system

(1) ẏ = f(y, u),

where the state is y ∈ R
n and the control is u ∈ R

m. We assume that
f(0, 0) = 0. We are interested in the following question (rapid exponential
stabilization). Is it true that, for every ν > 0, there exist a feedback law
y ∈ R

n 7→ u(y) ∈ R
m, C > 0 and r > 0 such that, for every solution of

the closed loop system ẏ = f(y, u(y)) such that |y(0)| 6 r, one has

(2) |y(t)| 6 Ce−νt|y(0)|, ∀t > 0?

If the answer is yes, one says that the rapid exponential stabilization
property holds for ẏ = f(y, u).



Rapid exponential stabilization of controllable linear systems

For a matrix M ∈ R
n×n, PM denotes the characteristic polynomial of M :

PM (z) := det (z Id−M). Let us denote by Pn the set of polynomials of
degree n in z such that the coefficients are all real numbers and such that
the coefficient of zn is 1. One has the following theorem.

Theorem (Pole shifting theorem, Wonham (1967))

Let us assume that the linear control system ẏ = Ay +Bu is controllable.
Then

(1)
{

PA+BK ; K ∈ R
m×n

}

= Pn.

In particular, if the linear control system ẏ = Ay +Bu is controllable, for
every real µ, there exists K ∈ R

m×n such that PA+BK = (z + µ)n. Hence,
if the linear control system ẏ = Ay +Bu is controllable, the rapid
exponential stabilization property holds for this control system.



Corollary on the rapid exponential stabilization in finite

dimension

Theorem (Rapid exponential stabilization when the linearized control
system is controllable)

If the linearized control system at (0, 0) ∈ R
n × R

m

ẏ =
∂f

∂y
(0, 0)y +

∂f

∂u
(0, 0)u(1)

is controllable, then the rapid exponential stabilization property holds for
ẏ = f(y, u).



Obstruction to the stabilizability

Theorem (R. Brockett (1983))

If the control system ẏ = f(y, u) can be locally asymptotically stabilized
then

(N) the image by f of every neighborhood of (0, 0) ∈ R
n × R

m is a
neighborhood of 0 ∈ R

n.

Sketch of proof. By a theorem due to Krasnosel′skĭı, the fact that 0 is
locally asymptotically stable for ẏ = X(y) = f(y, u(y)) implies de
existence of ε > 0 such that,

X(y) 6= 0, ∀y ∈ R
n such that 0 < |y| < ε,(2)

degree (X,Bε, 0) = (−1)n,(3)

with Bε := {(y ∈ R
n; |y| < ε} . Properties (2) and (3) imply that, for

every η ∈ (0, ε], X(Bη) is a neighborhood of 0.







The under-actuated satellite

ω̇ = J−1S(ω)Jω +

m
∑

i=1

uibi, η̇ = A(η)ω,(1)

with S(ω)y := y ∧ ω. One has A(0) = Id. The vectors b1, . . . , bm are
independent. If m = 3, the linearized control system around the equilibrium
(0, 0) ∈ R

6 × R
3 is controllable and the control system is locally

asymptotically stabilizable. We now turn to the case where m = 2. One
easily sees that (B) never holds. However, if

Span {b1, b2, S(ω)J−1ω; ω ∈ Span {b1, b2}} = R
3,(2)

then the control system (1) is small-time locally controllable at
(0, 0) ∈ R

6 × R
2. (This follows from a sufficient condition for local

controllability proved by H. Sussmann in 1987.) However, if m < 3, (1)
does not satisfy the Brockett condition (B).



A solution: Time-varying feedback laws

Instead of u(y), use u(t, y). Note that asymptotic stability for time-varying
feedback laws is also robust (there exists again a strict Lyapunov function).
First use of time-varying feedback laws:

n = 1: E. Sontag and H. Sussmann (1980).

For a driftless control system with n = 3 and m = 2: C. Samson
(1992).



Continuous reachability

In order to deal with systems for which the linearized system is not
controllable, we use the following definition.

Definition

The origin (of Rn) is locally continuously reachable in small time for the
control system ẏ = f(y, u) if, for every positive real number T , there exist
a positive real number ε and u : B̄ε → L1 ((0, T );Rm) such that

u ∈ C0
(

B̄ε;L
1 ((0, T );Rm)

)

(1)

Sup{|u(a)(t)|; t ∈ (0, T )} → 0 as a→ 0,(2)

((ẏ = f(y, u(a)(t)), y(0) = a) ⇒ (y(T ) = 0)),∀a ∈ B̄ε.(3)
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control system ẏ = f(y, u) if, for every positive real number T , there exist
a positive real number ε and u : B̄ε → L1 ((0, T );Rm) such that

u ∈ C0
(

B̄ε;L
1 ((0, T );Rm)

)

(1)

Sup{|u(a)(t)|; t ∈ (0, T )} → 0 as a→ 0,(2)

((ẏ = f(y, u(a)(t)), y(0) = a) ⇒ (y(T ) = 0)),∀a ∈ B̄ε.(3)

Open problem

Assume that f is analytic and that ẏ = f(y, u) is small-time locally
controllable at (0, 0) ∈ R

n × R
m. Is the origin (of Rn) locally continuously

reachable in small time for the control system ẏ = f(y, u)?



Local continuous reachability and stabilization in finite time

Theorem (JMC (1995))

Assume f is analytic, that 0 ∈ R
n is locally continuously reachable in small

time for the control system ẏ = f(y, u), and that n 6∈ {2, 3}. Then, for
every positive real number T , there exist ε in (0,+∞) and u in
C0(R× R

n;Rm), of class C∞ on R× (Rn \ {0}), T -periodic with respect
to time, vanishing on R× {0} and such that, for every s ∈ R,

((ẏ = f(y, u(t, y)) and y(s) = 0) ⇒ (y(τ) = 0, ∀τ > s)) ,(1)

(ẏ = f(y, u(t, y)) and |y(s)| 6 ε) ⇒ (y(τ) = 0, ∀τ > s+ T )) .(2)



Step 1: Excite the system in order to have controllable

linearized systems around the trajectories

a

a



Step 1: Excite the system in order to have controllable

linearized systems around the trajectories

a

a

a

a



Step 2: Send a curve to 0 with a time-varying feedback
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If n 6 3, a small perturbation of the motion of the curve does not remove
the crossing. If n > 3, using the controllability of the linearized control
systems, one can perturb the motion of the curve in order to avoid the
crossing.



Step 3: A neighborhood of a curve in Rn \ {0} sent to 0
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0

The red neighborhood can be sent to 0 in finite time by means of a
time-varying feedback law.
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Step 4: A magic curve

00

The grey ball can be sent in finite time into the red neighborhood by
means of a time-varying feedback law.



Stabilization of the under-actuated satellite

ω̇ = J−1S(ω)Jω +

m
∑

i=1

uibi, η̇ = A(η)ω,(1)

We consider again the case where m = 2 and assume that

Span {b1, b2, S(ω)J−1ω; ω ∈ Span {b1, b2}} = R
3.

Then 0 ∈ R
6 is locally continuously reachable in small-time for the control

system the control system (1) and therefore can be locally asymptotically
stabilized by means of periodic time-varying feedback laws.



Stabilization of the under-actuated satellite

ω̇ = J−1S(ω)Jω +

m
∑

i=1

uibi, η̇ = A(η)ω,(1)

We consider again the case where m = 2 and assume that

Span {b1, b2, S(ω)J−1ω; ω ∈ Span {b1, b2}} = R
3.

Then 0 ∈ R
6 is locally continuously reachable in small-time for the control

system the control system (1) and therefore can be locally asymptotically
stabilized by means of periodic time-varying feedback laws. Construction of
explicit time-varying stabilizing feedback laws:

Special cases: G. Walsh, R. Montgomery and S. Sastry (1994); P.
Morin, C. Samson, J.-B. Pomet and Z.-P. Jiang (1995).

General case: JMC and E.-Y. Keraï (1996); P. Morin and C. Samson
(1997).



Damping and stabilization

For mechanical systems at least, a natural candidate for a control Lyapunov
function is given by the total energy, i.e., the sum of potential and kinetic
energies.



Damping and stabilization

For mechanical systems at least, a natural candidate for a control Lyapunov
function is given by the total energy, i.e., the sum of potential and kinetic
energies. Let us go back to spring-mass control system.

bc u

m



bc

y1

u

m

The control system is

ẏ1 = y2, ẏ2 = − k

m
y1 +

u

m
,(Spring-mass)

where, as already mentioned, m is the mass of the point attached to the
spring, y1 is the displacement of the mass (on a line), y2 is the speed of
the mass, k is the spring constant, and u is the external force applied to
the mass. The state is (y1, y2)

tr ∈ R
2 and the control is u ∈ R.



The total energy E of the system is

E =
1

2
(ky21 +my22).(1)

One has

Ė = uy2.(2)

Hence if y2 = 0, one cannot have Ė < 0. However it tempting to consider
the following feedback laws

u := −My2,(3)

where M > 0. Using the LaSalle invariance principle, one gets that these
feedback laws globally asymptotically stabilize the spring-mass control
system.



Application: Orbit transfer with low-thrust systems (JMC

and L. Praly (1996))

Electric propulsion is characterized by a low-thrust acceleration level but a
high specific impulse. They can be used for large amplitude orbit transfers
if one is not in a hurry.
The state of the control system is the position of the satellite (here
identified to a point: we are not considering the attitude of the satellite)
and the speed of the satellite. Instead of using Cartesian coordinates, one
prefers to use the “orbital” coordinates. The advantage of this set of
coordinates is that, in this set, the first five coordinates remain unchanged
if the thrust vanishes: these coordinates characterize the Keplerian elliptic
orbit. When thrust is applied, they characterize the Keplerian elliptic
osculating orbit of the satellite. The last component is an angle which
gives the position of the satellite on the Keplerian elliptic osculating orbit
of the satellite.



A usual set of orbital coordinates is

p := a(1− e2),

ex := e cos ω̃, with ω̃ = ω +Ω,

ey := e sin ω̃,

hx := tan
i

2
cos Ω,

hy := tan
i

2
sinΩ,

L := ω̃ + v,

where a, e, ω, Ω, i characterize the Keplerian osculating orbit:

1 a is the semi-major axis,

2 e is the eccentricity,

3 i is the inclination with respect to the equator,

4 Ω is the right ascension of the ascending node,

5 ω is the angle between the ascending node and the perigee,

and where v is the true anomaly.



ṗ = 2

√

p3

µ

1

Z
S,

ėx =

√

p

µ

1

Z
[Z(sinL)Q+AS − ey(hx sinL− hy cosL)W ] ,

ėy =

√

p

µ

1

Z
[−Z(cosL)Q+BS − ex(hx sinL− hy cosL)W ] ,

ḣx =
1

2

√

p

µ

X

Z
(cosL)W, ḣy =

1

2

√

p

µ

X

Z
(sinL)W,

L̇ =

√

µ

p3
Z2 +

√

p

µ

1

Z
(hx sinL− hy cosL)W,

where µ > 0 is a gravitational coefficient depending on the central
gravitational field, Q, S, W, are the radial, orthoradial, and normal
components of the thrust and where

Z := 1 + ex cosL+ ey sinL, A := ex + (1 + Z) cosL,

B := ey + (1 + Z) sinL, X := 1 + h2x + h2y.



We study the case, useful in applications, where

Q = 0,

and, for some ε > 0,

|S| 6 ε and |W | 6 ε.

Note that ε is small, since the thrust acceleration level is low.
The goal: give feedback laws, which (globally) asymptotically stabilize a
given Keplerian elliptic orbit characterized by the coordinates
p̄, ēx, ēy, h̄x, h̄y.
In order to simplify the notations (this is not essential for the method), we
restrict our attention to the case where the desired final orbit is
geostationary, that is,

ēx = ēy = h̄x = h̄y = 0.



We start with a change of “time”. One describes the evolution of
(p, ex, ey, hx, hy) as a function of L instead of t. Then our system reads



































































dp

dL
= 2KpS,

dex
dL

= K[AS − ey(hx sinL− hy cosL)W ],

dey
dL

= K[BS − ex(hx sinL− hy cosL)W ],

dhx
dL

=
K

2
X(cosL)W,

dhy
dL

=
K

2
X(sinL)W,

dt

dL
= K

√

µ

p
Z,

with

(1) K =

[

µ

p2
Z3 + (hx sinL− hy cosL)W

]−1

.



Typically, one consider the following control Lyapunov function

V (p, ex, ey, hx, hy) =
1

2

(

(p− p̄)2

p
+

e2

1− e2
+ h2

)

,

with e2 = e2x + e2y < 1 and h2 = h2x + h2y. The time derivative of V along a
trajectory of our control system is is given by

V̇ = K(αS + βW ),

with

α := 2p
∂V

∂p
+A

∂V

∂ex
+B

∂V

∂ey
,

β := (hy cosL− hx sinL)

(

ey
∂V

∂ex
+ ex

∂V

∂ey

)

+
1

2
X

(

(cosL)
∂V

∂hx
+ (sinL)

∂V

∂hy

)

.



Following the damping method, one defines

S := −σ1(α),
W := −σ2(β)σ3(p, ex, ey, hx, hy),

where σ1 : R → R, σ2 : R → R and σ3 : (0,+∞)× B1 × R
2 → (0, 1] are

such that

σ1(s)s > 0, σ2(s)s > 0, ∀s ∈ R \ {0},
‖ σ1 ‖L∞(R)< ε, ‖ σ2 ‖L∞(R)< ε,

σ3(p, ex, ey, hx, hy) 6
1

1 + ε

µ

p2
(1− |e|)3

|h| .
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S := −σ1(α),
W := −σ2(β)σ3(p, ex, ey, hx, hy),

where σ1 : R → R, σ2 : R → R and σ3 : (0,+∞)× B1 × R
2 → (0, 1] are

such that

σ1(s)s > 0, σ2(s)s > 0, ∀s ∈ R \ {0},
‖ σ1 ‖L∞(R)< ε, ‖ σ2 ‖L∞(R)< ε,

σ3(p, ex, ey, hx, hy) 6
1

1 + ε

µ

p2
(1− |e|)3

|h| .

It works!



Comparison with optimal control

It is interesting to compare the feedback constructed here to the open-loop
optimal control for the minimal time problem (reach (p̄, 0, 0, 0, 0) in a
minimal time with the constraint |u(t)| 6M). Numerical experiments
show that the use of the previous feedback laws (with suitable saturations
σi, i ∈ {1, 2, 3}) gives trajectories which are nearly optimal if the state is
not too close to (p̄, 0, 0, 0, 0). Note that our feedback laws are quite easy
to compute compared to the optimal trajectory and provide already good
robustness properties compared to the open-loop optimal trajectory (the
optimal trajectory in a closed-loop form being, at least for the moment, out
of reach numerically). However, when one is close to the desired target,
our feedback laws are very far from being optimal.



ẏ1 = y2, ẏ2 = −y1 + u, |u| 6 2

u = −2

u = 2
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ẏ1 = y2, ẏ2 = −y1 + u, |u| 6 1

u = −1

u = 1
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ẏ1 = y2, ẏ2 = −y1 + u, |u| 6 1/2

u = −1/2

u = 1/2
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ẏ1 = y2, ẏ2 = −y1 + u, |u| 6 1/4

u = −1/4
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An important limitation of the damping method

Let us consider the spring-mass control system with normalized physical
constants (k = m = g = 1)

ẏ1 = y2, ẏ2 = −y1 + u.

Let V : R2 → R be defined by

V (y) = y21 + y22,∀y = (y1, y2)
tr ∈ R

2.

One has V̇ = 2y2u. and it is tempting to take u := −My2, where M is
some fixed positive real number. An a priori guess would be that, if we let
M be quite large, then we get a quite good convergence, as fast as we
want.



An important limitation of the damping method

Let us consider the spring-mass control system with normalized physical
constants (k = m = g = 1)

ẏ1 = y2, ẏ2 = −y1 + u.

Let V : R2 → R be defined by

V (y) = y21 + y22,∀y = (y1, y2)
tr ∈ R

2.

One has V̇ = 2y2u. and it is tempting to take u := −My2, where M is
some fixed positive real number. An a priori guess would be that, if we let
M be quite large, then we get a quite good convergence, as fast as we
want. But this is completely wrong. On a given [0, T ] time-interval, as
ν → +∞, y2 goes very quickly to 0 and y1 does not change. This is the
overdamping phenomenon.



ẏ1 = y2, ẏ2 = −y1 − (1/10)y2



ẏ1 = y2, ẏ2 = −y1 − (1/2)y2



ẏ1 = y2, ẏ2 = −y1 − y2



ẏ1 = y2, ẏ2 = −y1 − 2y2



ẏ1 = y2, ẏ2 = −y1 − 3y2



ẏ1 = y2, ẏ2 = −y1 − 4y2



ẏ1 = y2, ẏ2 = −y1 − 5y2



ẏ1 = y2, ẏ2 = −y1 − 6y2



ẏ1 = y2, ẏ2 = −y1 − 10y2



ẏ1 = y2, ẏ2 = −y1 − 20y2
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Linear transformations and rapid exponential stabilization

Let us now present a method which can be used to get rapid exponential
stabilization even for control systems modeled by means of partial
differential equations.
We first start with a linear control in finite dimension with a control of
dimension 1. We consider the following control system

ẏ = Ay +Bu,(1)

where the state is y ∈ R
n and the control is u ∈ R. We assume that

(2) the control system (1) is controllable.

Let λ ∈ R. Let GL(n,R) be the set of invertible elements of Rn×n. We are
looking for T ∈ GL(n,R) and K ∈ R

1×n such that, if y = Tz and
u = Kz + v, then (1) is equivalent to

(3) ż = (A− λId)z +Bv,

where Id is the identity matrix in R
n×n. Clearly, if such T and K exists for

every λ ∈ R the control system ẏ = Ay +Bu satisfies the rapid
exponential stabilization property.



Existence and uniqueness of T and K

The equivalence between ẏ = Ay +Bu and ż = (A− λId)z +Bv with
y = Tz and u = Kz + v holds if and only if

AT +BK = TA− λT,(1)

TB = B.(2)

One has the following theorem.

Theorem

If ẏ = Ay +Bu is controllable, there exists one and only one
(T,K) ∈ GL(n,R)× R

1×n such that (1) and (2) hold.
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A quick history on backstepping

1. Backstepping was initially a recursive method to stabilize finite
dimensional control system of the form ẋ = f(x, y), ẏ = u.
2. First application to PDE: JMC and B. d’Andréa-Novel (1998).
3. This method has been used on the discretization of partial differential
equations by D. Bošković, A. Balogh and M. Krstic in 2003.
4. A key modification of the method by using a Volterra transformation of
the second kind is introduced by D. Bošković, M. Krstic and W. Liu in
2001.
5. For a survey on this method with Volterra transformations of the second
kind, see the book by M. Krstic and A. Smyshlyaevin 2008.



For more details

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 p. Pdf
file freely available from my web
page.



A quick history on backstepping

1. Backstepping was initially a recursive method to stabilize finite
dimensional control system of the form ẋ = f(x, y), ẏ = u.
2. First application to PDE: JMC and B. d’Andréa-Novel (1998).
3. This method has been used on the discretization of partial differential
equations by D. Bošković, A. Balogh and M. Krstic in 2003.
4. A key modification of the method by using a Volterra transformation of
the second kind is introduced by D. Bošković, M. Krstic and W. Liu in
2001.
5. For a survey on this method with Volterra transformations of the second
kind, see the book by M. Krstic and A. Smyshlyaev in 2008.



The historical example for a heat equation

We consider the heat control system

(1) yt − yxx = 0, y(t, 0) = 0, y(t, 1) = u(t), t ∈ [0,+∞), x ∈ [0, 1],

where, at time t ∈ [0,+∞), the state is y(t) ∈ L2(0, 1),
x ∈ (0, 1) 7→ y(t)(x) := y(t, x) and the control is u(t) ∈ R. We are
interested in the rapid exponential stabilization of this linear (controllable)
control system. We try the the approach by means of linear transform. Let
λ ∈ R. Consider the following controlled system (called the target system)

(2) zt − zxx = −λz, z(t, 0) = 0, z(t, 1) = v(t), t ∈ [0,+∞), x ∈ [0, 1],

where, at time t ∈ [0,+∞), the state is z(t) ∈ L2(0, 1),
x ∈ (0, 1) 7→ z(t)(x) := z(t, x) and the control is v(t) ∈ R. We look for
two linear maps T−1 : L2(0, 1) → L2(0, 1) y 7→ z and K : L2(0, 1) → R,
z 7→ Kz such that the target system (2) is transformed into the initial
system (1) if u = Kz + v.



D. Bošković, M. Krstic and W. Liu in 2001 proposed to look for T−1 in the
class of Volterra transform of the second kind:

(1) z(x1) := y(x1)−
∫ x1

0
k(x1, x2)y(x2)dx2.

One of the advantages of the Volterra transforms of the second kind is that
there are invertible (if k is smooth enough, for example in
L2((0, 1) × (0, 1))). Note that, once T is defined, we must take

(2) Kz = −
∫ 1

0
k(1, x2)y(x2)dx2.

Moreover, the feedback law u(y) :=
∫ 1
0 k(1, s)y(s)ds leads for z to the

closed loop system

(3) zt − zxx = −λz, z(t, 0) = z(t, 1) = 0

which leads to exponential stability for z with an exponential decay rate of
λ (in L2(0, 1)).



Since y ∈ L2(0, 1) → z ∈ L2(0, 1) is an isomorphism the same holds for
the closed loop system

(1) yt − yxx = 0, y(t, 0) = 0, y(t, 1) =

∫ 1

0
k(1, s)y(s)ds,

which shows the rapid exponential stabilizability of the initial heat control
system (with a method to compute a feedback law leading to an
exponential stability with an exponential decay rate as large as we want).



Kernel equation

Straightforward computations show that the y system is equivalent to the z
system if and only if k satisfies the following equation, called the kernel
equation,

(1)











k11 − k22 = λk, 0 < x2 < x1 < 1,
k(x1, 0) = 0, 0 < x1 < 1,

k(x, x) = −λ
2
x, 0 < x < 1,

kii := ∂2xixi
k, i ∈ {1, 2}.



A method to prove the existence of k

D. Bošković, M. Krstic and W. Liu in 2001 proposed the following iterative
scheme. Let us make the following change of variables
t = x1 − x2, s = x1 + x2 and define G(s, t) := k(x1, x2) on
T0 := {(s, t); t ∈ [0, 1], s ∈ [t, 2− t]}. Then k satisfies the kernel equation
if and only if

(1)



















Gst = −λ
4
G, in T0,

G(s, s) = 0, in [1, 2],

G(s, 0) =
λ

4
s, in [0, 2].

One integrates the first equation of (1) with respect to t from 0 to t. One
gets, using also the third equality of (1),

(2) Gs(s, t) = Gs(s, 0) −
λ

4

∫ t

0
G(s, t1)dt1 =

λ

4
− λ

4

∫ t

0
G(s, t1)dt1.

We integrate this equation with respect to s from t to s. Using also the
second equation of (1), we get



(1)
G(s, t) = G(t, t) +

λ

4
(s− t)− λ

4

∫ s

t

∫ t

0
G(s1, t1)dt1ds1

=
λ

4
(s− t)− λ

4

∫ s

t

∫ t

0
G(s1, t1)dt1ds1

One defines inductively Gn : T0 → R, n ∈ N \ {0}, by requiring

G1(s, t) = 0,(2)

Gn+1(s, t) =
λ

4
(s− t)− λ

4

∫ s

t

∫ t

0
Gn(s1, t1)dt1ds1(3)

One gets, by induction on n, that

(4) Gn(s, t) = −
n
∑

k=1

(s− t)sk−1tk−1(−λ)k
(k − 1)!k!4k

,

a sum which converges as n→ +∞.



Formulas for G and k

Let

(1) I(x) :=
+∞
∑

k=1

(−x)2k−1

(k − 1)!k!22k−1
.

Then

G(s, t) =
λ

2
(s− t)

I(
√
λst)√
λst

,(2)

k(x1, x2) =
λ

2
x2
I(
√

λ(x21 − x22))
√

λ(x21 − x22)
.(3)



How to recover the null controllability with the backstepping

method (JMC and H.-M. Nguyen (2015))

From now on we assume that λ > 1. Looking at the explicit expression of
the kernel k, one sees that

(1) |k|H1(∆) 6 CeC
√
λ,

where

(2) ∆ := {(x1, x2); 0 < x2 < x1 < 1}.
The inverse transform of

(3) z(x1) := y(x1)−
∫ x1

0
k(x1, x2)y(x2)dx2,

has the form

(4) y(x1) := z(x1)−
∫ x1

0
l(x1, x2)z(x2)dx2.

The exact expression of l shows that

(5) |l|H1(∆) 6 Cλ.



So if we apply the backstepping for λ and during the interval of time [0, τ ],
we have

(6) |y(τ)|L2 6 Cλ|z(τ)|L2 6 Cλe−λτ |z(0)|L2 6 Cλe−λτ eC
√
λ|y(0)|L2 .

Similar estimates holds for the control y(t, 1). Let T > 0, and for
n ∈ N \ {0, 1}, let tn = T (1− 1/n2) and λn = n8. Let t1 := 0 and
λ1 := 1. During the interval [tn, tn+1) we apply the feedback law coming
from the backstepping with λ := λn

Proposition (H.-M. Nguyen and JMC (2015))

lim
t→T−

|y(t, ·)|L2 = 0,(7)

lim
t→T−

u(t) = 0.(8)

Hence this is a new method to prove the null controllability of the heat
equation in small time.



The estimates

|k|H1(∆) 6 CeC
√
λ,(1)

|l|H1(∆) 6 Cλ.(2)

are crucial for this method. Note that one can find related estimates in G.
Lebeau and L. Robbiano (1995) (in every space dimension). Let us
consider the case of the control system

(3)







yt(t, x) = (a(x)yx(t, x))x + c(x)y(t, x) in (τ1, τ2)× [0, 1],

y(t, 0) = 0, y(t, 1) = u(t) for t ∈ (τ1, τ2),

and the target system

(4)

{

zt(t, x) = (a(x)zx(t, x))x + c(x)z(t, x) − λz in (τ1, τ2)× [0, 1],

z(t, 0) = 0, y(t, 1) = u(t) for t ∈ (τ1, τ2).

We assume that a ∈ H2(0, 1), a > 0 in [0, 1], and that c ∈ H1(0, 1).



Proposition (H.-M. Nguyen and JMC (2015))

There exists a kernel k which allows to transform the initial y system into
the z system and one has, for λ ∈ [1,+∞),

|k|H1(∆) 6 CeC
√
λ,(1)

|l|H1(∆) 6 Cλ.(2)

Remark

Our proof is different from the iterative scheme mentioned above. We
interpret the kernel equation on k (and l) as a wave equation defined in
[0, 1]2. Estimates (1) and (2) follow from an energy type estimate for the
wave equation which is somehow nonstandard in the sense that the energy
not only contains the gradient of the solutions but also the solutions; the
standard energy estimate only gives the exponent λ in (1).



Stabilization in finite time

However the above strategy do not lead to stabilization in finite time. This
is due to the fact that u(t, y) is small along the trajectories starting from
the time 0 but is quite large for a given y and t→ T−.



We look for time-varying feedback laws (t, y) ∈ R×L2(0, 1) 7→ u(t, y) ∈ R

satisfying the following three properties.

(P1). The feedback law u is T -periodic with respect to time:

(1) u(t, y) = u(t+ T, y) for every (t, y) ∈ R× L2(0, 1).

(P2). There exists a strictly increasing sequence (tn)n∈N of real numbers
such that

t0 = 0,(2)

lim
n→+∞

tn = T,(3)

u is of class C1 in [tn, tn+1)× L2(0, 1) for every n ∈ N.(4)

(P3). The map u vanishes on R× {0} and there exists a continuous
function M : [0, T ) → [0,+∞) such that

(5) |u(t, y2)− u(t, y1)| 6M(t)|y2 − y1|L2

∀ (t, y1, y2) ∈ [0, T ) × L2(0, 1) × L2(0, 1).



Proposition

Assume that F satisfies Properties (P1), (P2), and (P3). Let 0 6 s < T .
There exists T0 = T0(s) > 0 such that, for every y0 ∈ L2(0, 1), there exists
a unique solution y ∈ C0

(

[s, s+ T0);L
2(0, 1)

)

of

(1)















yt(t, x) = yxx(t, x) for (t, x) ∈ (s, τ)× [0, 1],

y(t, 0) = 0, y(t, 1) = u(t, y(t, ·)) for t ∈ (s, τ),

y(s, ·) = y0 for x ∈ [0, 1],

Moreover,

|y(t, ·)|L2 6 C|y0|L2 for t ∈ (s, s + T0),(2)

for some positive constant C = C(s) independent of y0 and the functions
T0 : [0, T ) → (0,+∞) and C : [0, T ) → [0,+∞) can be chosen such that,
for every δ ∈ (0, T ],

(3) inf{T0(s); s ∈ [0, T − δ]} > 0 and sup{C(s); s ∈ [0, T − δ]} < +∞.



Proposition

Assume that F satisfies Properties (P1), (P2), and (P3) and that there
exist C > 0 and T̄ ∈ (0, T ) such that

|u(t, y)| 6 C|y|1/2
L2 , ∀ (t, y) ∈ [T̄ , T )× L2(0, 1).(P4)

Then, for every s ∈ R and for every y0 ∈ L2(0, 1), there exists a unique
solution y ∈ C0

(

[s,+∞);L2(0, 1)
)

of

(1)















yt(t, x) = yxx(t, x) for (t, x) ∈ (s,+∞)× [0, 1],

y(t, 0) = 0, y(t, 1) = u(t, y(t, ·)) for t ∈ (s,+∞),

y(s, ·) = y0 for x ∈ [0, 1].

Notation φ(t, s, y0) := y(t, ·).



Theorem (JMC and H.-M. Nguyen (2015))

Let T > 0 and Γ > 0. There exists a time-varying feedback laws
(t, y) ∈ R× L2(0, 1) 7→ u(t, y) ∈ R satisfying Properties (P1), (P2), and
(P3) such that

(1) Φ(t+ 2T, t, y0) = 0 for every (t, y0) ∈ R× L2(0, 1)

such that |y0|L2 6 Γ,

and such that the following uniform stability condition

(2)

{

∀ ε > 0, ∃η > 0 such that, ∀ t′ ∈ R, ∀ t ∈ [t′,+∞),

and ∀ y0 ∈ L2(0, 1),
(

|y0|L2 6 η
)

⇒
(

|Φ(t, t′, y0)| 6 ε
)

holds.



Construction of u

For n ∈ N, let λn and tn be defined by

λn = (n+ 1)8 for every n ∈ N,(1)

t0 = 0,(2)

tn = T

(

1− 1

2n2

)

for every n ∈ N \ {0}.(3)

Let α be a real number such that

(4) 4 < α < 5.

Let (µn)n∈N be defined by

(5) µn := e−nα

, ∀n ∈ N.

For n ∈ N, we choose a function ϕn ∈ C1(R) such that 0 6 ϕn 6 1,
ϕn(s) = 1 for s 6 µn and ϕn(s) = 0 if s ≥ 2µn. Fix N a large positive
integer.



We define u in the following way for tn 6 t < tn+1,

u(t, y) :=

∫ 1

0
kn(1, x)y(x) dx, ∀ t ∈ [tn, tn+1) with n 6 N − 1,(1)

u(t, y) := ϕn

(

‖y‖L2

)

∫ 1

0
kn(1, x)y(x) dx, ∀ t ∈ [tn, tn+1) with n ≥ N.

(2)

Remark

Using G. Lebeau-L. Robbiano (1995) instead of the backstepping approach,
one can get the existence of the feedback law in dimension n > 1. Open
problem: Is it possible to stabilize in small time the heat equation by means
of stationary feedback laws? May be one can try to use the kernel kλ(y)
instead of the kernel kλ(t) with λ(y) converging to +∞ as y → 0.
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A KdV control system

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],(1)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ].(2)

where, at time t ∈ [0, T ], the control is u ∈ R and the state is
y(t, ·) ∈ L2(0, L).



Definition of the local controllability

Our control system is

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],(1)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ].(2)

Definition of the local controllability of (1)-(2)

Let T > 0. The control system (1)-(2) is locally controllable in time T if,
for every ε > 0, there exists η > 0 such that, for every y0 ∈ L2(0, L) and
for every y1 ∈ L2(0, L) satisfying |y0|L2(0,L) < η and |y1|L2(0,L) < η, there
exists u ∈ L2(0, T ) satisfying |u|L2(0,T ) < ε such that the solution
y ∈ C0([0, T ];L2(0, L)) of (1)-(2) satisfying the initial condition
y(0, x) = y0(x) is such that y(T, x) = y1(x).

Question: Let T > 0, is is true that (1)-(2) is locally controllable.



Controllability of the linearized control system

The linearized control system (around 0) is

yt + yx + yxxx = 0, t ∈ [0, T ], x ∈ [0, L],(1)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ].(2)

where, at time t ∈ [0, T ], the control is u ∈ R and the state is
y(t, ·) ∈ L2(0, L).

Definition of the controllability of (1)-(2)

Let T > 0. The linear control system (1)-(2) is controllable in time T if,
for every y0 ∈ L2(0, L) and for every y1 ∈ L2(0, L), there exists
u ∈ L2(0, T ) such that the solution y ∈ C0([0, T ];L2(0, L)) of (1)-(2)
satisfying the initial condition y(0, x) = y0(x) is such that y(T, x) = y1(x).



Controllability of the linearized control system

Theorem (L. Rosier (1997))

For every T > 0, the linearized control system is controllable in time T if
and only

L 6∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗

}

.



Application to the nonlinear system

Theorem (L. Rosier (1997))

For every T > 0, the KdV control system is locally controllable in time T if
L 6∈ N .

Question: Does one have controllability if L ∈ N ?



Controllability when L ∈ N

Theorem (JMC and E. Crépeau (2004))

If L = 2π (which is in N : take k = l = 1), for every T > 0 the KdV
control system is locally controllable in time T .

Theorem (E. Cerpa (2007), E. Cerpa and E. Crépeau (2008))

For every L ∈ N , there exists T > 0 such that the KdV control system is
locally controllable in time T .



Stabilization and damping

Let us consider the linear KdV control system

yt + yx + yxxx = 0, y(t, 0) = y(t, L) = 0, yx(t, L)− yx(t, 0) = u(t),(1)

where, at time t > 0, the state is y(t, ·) ∈ L2(0, L) and the control is
u(t) ∈ R. Simple integrations by parts show that, along the solution of (1),
one has

(2)
d

dt

∫ L

0
y2dx = u(yx(t, L) + yx(t, 0)).

Hence it is tempting to consider the feedback law

(3) u(y) = −M(yx(t, L) + yx(t, 0)),

with M > 0. It has been proved by G.P. Menzala, C.F. Vasconcellos and
E.Zuazua in 2002 that this feedback law leads to exponential stability of the
closed loop system if the length is not critical even for the nonlinear KdV
equation. Unfortunately letting M → +∞ do not lead to rapid exponential
stabilization, i.e. to an exponential decay rate as large as one wants.



A second KdV control system

(1)

{

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = u(t), y(t, L) = 0, yx(t, L) = 0, t ∈ (0, T ).

The control system (1) is locally null controllable: L. Rosier (2004).

Theorem (E. Cerpa and JMC (2013))

For every λ > 0, there exist C > 0, r > 0 and a feedback law y 7→ u(y)
such that, for this feedback law,

(

|y(0)|L2(0,L) 6 r
)

⇒
(

|y(t)|2L2(0,L) 6 Ce−λt|y(0)|2L2(0,L), ∀t > 0.
)

(2)



Proof: With M. Krstic’s backstepping approach

We look for a transformation y ∈ L2(0, L) 7→ z ∈ L2(0, L) defined by

(1) z(x1) := y(x1)−
∫ L

x1

k(x1, x2)y(x2)dx2,

such that the trajectory y of

(2) yt + yx + yxxx = 0, y(t, 0) = u(t), y(t, L) = 0, yx(t, L) = 0,

with the feedback law u(t) :=
∫ L
0 k(0, x2)y(t, x2)dx2 is mapped into the

trajectory z = z(t, x), solution of the linear system

(3) zt + zx + zxxx + λz = 0, z(t, 0) = 0, z(t, L) = 0, zx(t, L) = 0.

Note that, for (3), one has (just multiply (3) by z and do some integrations
by parts):

(4) |z(t)|2L2(0,L) 6 e−λt|z(0)|2L2(0,L), ∀t > 0.



Kernel equation

This property for the transformation y 7→ z holds if (and only if)

(1)



















k111 + k1 + k222 + k2 = −λk, for 0 < x1 < x2 < L,
k(x1, L) = 0, in [0, L],
k(x1, x1) = 0, in [0, L],

k1(x1, x1) =
λ

3
(L− x1), in [0, L].

with ki := ∂xi
k, kiii := ∂3xixixi

k. Moreover, if k is smooth enough
(Lipschitz is sufficient), one can check that the same feedback law provides
for the initial nonlinear KdV control system (local) asymptotic stability
with an exponential decay rate at least equal to λ.



Proof of the existence of k

Let us make the following change of variables t = x2 − x1, s = x1 + x2
and define G(s, t) := k(x1, x2) on T0 := {(s, t); t ∈ [0, L], s ∈ [t, 2L− t]}.
Then k satisfies the kernel equation if and only if

(1)



















6Gtts + 2Gsss + 2Gs = −λG, in T0,
G(s, 2L− s) = 0, in [L, 2L],

G(s, 0) = 0, in [0, 2L],

Gt(s, 0) =
λ

6
(s− 2L), in [0, 2L].

We transform this equation by integrating twice with respect to t and then
once with respect to s. We get that (1) is equivalent to

(2) G(s, t) = −λt
6
(2L− t− s)

+
1

6

∫ 2L−t

s

∫ t

0

∫ τ

0

(

2Gsss + 2Gs + λG
)

(η, ξ)dξdτdη.



To prove that such a function G = G(s, t) exists, we use a method of
successive approximations. We define

(1) g1(s, t) = −λ(2L− t− s)/6

and define the recursive formula as follows,

(2) gn+1(s, t) =

(1/6)

∫ 2L−t

s

∫ t

0

∫ τ

0

(

2gnsss + 2gns + λgn
)

(η, ξ)dξdτdη.

Performing some computations, we get for instance

(3) g2(s, t) = 1/(108)
{

t3
(

λ− λ2L+
λ2t

4

)(

2L− t− s
)

+
t3λ2

4

[

(2L− t)2 − s2
]

}

,



More generally, one has the following formula

(1) gk(s, t) =
k

∑

i=1

(

aikt
2k−1 + bikt

2k
)[

(2L− t)i − si
]

,

where the coefficients satisfy bkk = 0 and, more importantly, there exist
positive constants M,B such that, for any k ≥ 1 and any (s, t) ∈ T0

(2)
∣

∣gk(s, t)
∣

∣ 6M
Bk

(2k)!
(t2k−1 + t2k).

This implies that the series
∑∞

n=1 g
n(s, t) is uniformly convergent in T0.

Therefore the series defines a continuous function G : T0 → R

(3) G(s, t) =

∞
∑

n=1

gn(s, t).

Then, one checks that G is a solution of our integral equation and that is
C1 on T0.



Return to the initial KdV control system

(1)

{

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = 0, y(t, L) = 0, yx(t, L) = u(t) t ∈ (0, T ).

We assume that

(2) L 6∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗

}

.

Then the linearized control system around 0 is controllable and the
nonlinear control system is locally controllable in small-time. We are
interested in the rapid exponential stabilization of the nonlinear system.
Unfortunately the backstepping approach is not working.



Rapid exponential stabilization of the initial KdV-control

system
Theorem (JMC and Q. Lü (2013))

Let us assume that L 6∈ N For every λ > 0, there exist C > 0, r > 0 and a
feedback law y 7→ u(y) such that, for this feedback law,

(

|y(0)|L2(0,L) 6 r
)

⇒
(

|y(t)|2L2(0,L) 6 Ce−λt|y(0)|2L2(0,L), ∀t > 0.
)

(1)

Remarks 1. For the linearized KdV-Rosier control system, such a result was
obtained before by E. Cerpa and E. Crépeau in 2009 for the H1 norm. But
it seems that, due to some regularity issues, this does not allow to get the
rapid exponential stabilization for the nonlinear KdV-Rosier system.
2. The feedback law u = 0 already provides (local) exponential stability if
L 6∈ N : G. Perla Menzala, C. Vasconcellos and E. Zuazua (2002).
3. If L = 2π (the first critical length) and u = 0, one does not have
asymptotic stability for the linearized system; however, one has asymptotic
stability for the nonlinear system: JMC, J. Chu and P. Shang (2012). The
decay rate is not exponential (it is 1/

√
t).



Proof of the rapid exponential stabilizability

The backstepping approach does not work. We need to use more general
transformations: y ∈ L2(0, L) 7→ z ∈ L2(0, L) is now defined by

(1) z(x1) := y(x1)−
∫ L

0
k(x1, x2)y(x2)dx2.

(Every linear transformation y ∈ L2(0, L) 7→ z ∈ L2(0, L) can been written
in this form). Again, we want that the trajectory y of

(2) yt + yx + yxxx = 0, y(t, 0) = 0, y(t, L) = 0, yx(t, L) = u(t),

with the feedback law u(t) :=
∫ L
0 kx1

(0, x2)y(t, x2)dx2 is mapped into the
trajectory z = z(t, x), solution of the linear system

(3) zt + zx + zxxx + λz = 0, z(t, 0) = 0, z(t, L) = 0, zx(t, L) = 0.



Kernel equation

This property for the transformation y 7→ z holds if (and only if)

(1)







k111 + k1 + k222 + k2 + λk = λδ(x1 − x2), on (0, L)2,
k(x1, 0) = k(x1, L) = k2(x1, 0) = k2(x1, L) on (0, L),
k(0, x2) = k(L, x2) = 0 on (0, L),

where δ(x1 − x2) is the Dirac mass on the diagonal of the square
[0, L]× [0, L].
Next step: Prove the existence of a solution to the kernel equation (1).



How to prove the existence of k

Let us define an unbounded linear operator A : D(A) ⊂ L2(0, L)
→ L2(0, L) as follows.

D(A) := {ϕ; ϕ ∈ H3(0, L), ϕ(0) = ϕ(L) = 0, ϕx(0) = ϕx(L)},(1)

Aϕ := −ϕxxx − ϕx.(2)

The operator A is a skew-adjoint operator and has compact resolvent.
Furthermore, since L 6∈ N , L 6∈ 2πN, which, as one easily checks, implies
that 0 is not an eigenvalue of A. Denote by {iµj}j∈Z, µj ∈ R, the
eigenvalues of A, which are organized in the following way:

. . . 6 µ−2 6 µ−1 < 0 < µ0 6 µ1 6 µ2 6 . . . .(3)

Since the control is of dimension 1 and the linearized control system is
controllable, all these eigenvalues are simple. Let us write {ϕj}j∈Z for the
corresponding eigenfunctions with |ϕj |L2(0,L) = 1 (j ∈ Z). It is well known
that {ϕj}j∈Z constitutes an orthonormal basis of L2(0, L).



For j ∈ Z, let ψj : [0, L] → C be the solution of

(1)







ψ′′′
j + ψ′

j + λψj − iµjψj = 0 in (0, L),

ψj(0) = ψj(L) = 0,
ψ′
j(L)− ψ′

j(0) = 1.

The idea is to search k in the following form

(2) k(x1, x2) =
∑

j∈Z

cjψj(x1)ϕj(x2).

...
Then prove that y ∈ L2(0, L) 7→ z ∈ L2(0, L) defined by

(3) z(x1) := y(x1)−
∫ L

0
k(x1, x2)y(x2)dx2.

is invertible.



An open problem and a work in progress

An open problem: Try to get a good enough estimate on k (and on
the l for the inverse transform) in order to recover the local
controllability in small time and prove the stabilizability in finite time
by means of time-varying feedback laws.

Work in progress: One dimensional Schrödinger control systems (JMC
L. Gagnon, M. Morancey)
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