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o Control of degenerate parabolic equations
@ Locally distributed control
@ Boundary control

9 Control of degenerate hyperbolic equations
@ Boundary observability
@ Boundary controllability
@ Boundary stabilization
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Example: Budyko-Sellers model

ur— (1= x*)ux) , = q(t,x) B(u) —y(u) x€(-1,1)
(1= x®)uy,_ ., =0

@ u(t, x)= sea-level zonally averaged temperature
@ q(t, x)= solar input

=
@ ((u)= co-albedo
@ ~(u)= outgoing infrared radiation m

N
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Degenerate parabolic problems in 1D

ae C([0,1])nC'(J0,1]) and a>0 on ]0,1]

ur— (a(x)ux), =f inQr =(0,T) x (0,1)
u(0, x) = up(x) u(t,1)=0 + bc.at x=0

up € L3(0,1), f e L3(Qr)
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Degenerate parabolic problems in 1D

ae C([0,1])nC'(J0,1]) and a>0 on ]0,1]

ur— (a(x)ux), =f inQr =(0,T) x (0,1)
u(0, x) = up(x) u(t,1)=0 + bc.at x=0

up € L3(0,1), f e L3(Qr)

weakly degenerate case |1/a< L'(0,1)

u(t,0)=0
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Degenerate parabolic problems in 1D

ae C([0,1])nC'(J0,1]) and a>0 on ]0,1]

ur— (a(x)ux), =f inQr =(0,T) x (0,1)
u(0, x) = up(x) u(t,1)=0 + bc.at x=0

up € L3(0,1), f e L3(Qr)

weakly degenerate case |1/a< L'(0,1)

u(t,0)=0

strongly degenerate case |1/a¢ L'(0,1)

I)!?g a(x)ux(t,x)=0
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The space H}(0,1)
ac C([0,1)nC'(j0,1]) and a>0 on ]0,1]
1 2 ! 2
H;(0,1) = L5(0,1 , d.
0.1) = {ue ¥ )|/Oau x <o)

@ weakly degenerate case |1/a< L'(0,1)

Hz(0,1) c ¢([0,1])

with compact embedding

H.(0,1) = {ue L2(0,1) | /1 au? dx < oo & u(0) = 0 = u(1)}
0
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The space H}(0,1)
ac C([0,1)nC'(j0,1]) and a>0 on ]0,1]
1 2 ! 2
H;(0,1) = L5(0,1 , d.
0.1) = {ue ¥ )|/Oau x <o)

@ weakly degenerate case |1/a< L'(0,1)

Hz(0,1) c ¢([0,1])

with compact embedding

1
Hio(0,1) = {u e 12(0,1) | / au dx < 00 & u(0) = 0
0

@ strongly degenerate case |1/a¢ L'(0,1)

Ha(0,1) ¢ L(0,1) -
>
because for a(x) = x one has u(x) = log \ log(2x)| € H}(0,1) =

H;,o(o,n:{uef(o,m /1aufdx<oo&u(1):0} ‘f‘

u(1)}
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The degenerate operator as a generator

H3(0,1) = {u € Hi(0,1) | aux € H'(0,1)}

@ A:D(A)C L3(0,1) — L2(0,1)

D(-A) = Hg(oa 1) N H;,O(Ov 1)
Au = (aux)

is densely defined, self-adjoint, and dissipative

(x—0)
@ in the strongly degenerate case u € D(A) = aux — 0
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Hardy’s and Poincare’s inequalities

Let a(x) = x*,a € [0,2). Then any v € H} ((0, 1) satisfies

@ Hardy’s inequality
o 2 1 1
M/ X722 dx < / X V2 dx
4 0 J0
@ Poincare’s inequality
" "
/ v2 dx < min {4, L} / X*V2 dx
Jo 2—al Jy

Similar results for general a provided that "
>

g = limsup e <2

x10 a(x) M

N
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Well-posedness

@ A generates analytic semigroup in L2(0, 1)
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Well-posedness

@ A generates analytic semigroup in L2(0, 1)

@ | u(t) = e"up + [ e""4f(s)ds | unique solution

u € C(0, T;L3(0,1)) N L*(0, T; H3(0, 1))
ur— (a(x)ux), =f inQr=(0,T) x (0,1)
u(0,x) = to(x)
u(t,1) = 0 and u(t,0)=0 weakly degenerate
aux(t,-);x—=o = 0 strongly degenerate
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Well-posedness

@ A generates analytic semigroup in L2(0, 1)

@ | u(t) = e"up + [ e""4f(s)ds | unique solution

ue C(0, T; L3(0,1)) N L2(0, T; H3(0, 1))

ur— (a(x)ux), =f inQr=(0,T) x (0,1)
u(0, x) = uo(x)

= ki
u(t,1) = 0 and u(t,0)=0 weakly degenerate
aux(t,-);x—=o = 0 strongly degenerate
@ maximal regularity
Up € H1(0,1) = we H'(0,T;L3(0,1)) N L3(0, T; D(A))
(needed to justify integration by parts)
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Outline

o Control of degenerate parabolic equations
@ Locally distributed control
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Null controllability: locally distributed control
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Null controllability: locally distributed control

ur— (a(x)ux), = xof in Qr=(0,T) x (0,1)
IR u(0, x) = to(x)

u u(t,0)=0 weakly degenerate ©
u(t,1) =0 and N y deg
aux(t,-);x=o = 0 strongly degenerate
@ null controllable intime T > 0
5 5 u(T,)=0

Yup € L°(0,1) 3If e L(Qr) : 2 1 2

Jo, If2 < Cr f3 |uo]
=
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Null controllability: locally distributed control

ur— (a(x)ux), = xof in Qr=(0,T) x (0,1)
IR u(0, x) = to(x)

Y t,0)=0 weakly degenerat ©)
u(t,1) =0 and u(t,0) = eakly degenerate
aux(t,-);x=o = 0 strongly degenerate
@ null controllable in time T > 0
5 5 uf(T, =0
Yup € L°(0,1) 3If e L(Qr) : 2 1 2
Jo, |2 < Cr [ uol
@ observability on (0, T) X w
vi+ (a(x)vx), =0 in Qr
= c*
V(t.1) = 0 and v(t,0) =0 weakly degenerate ( 2’5
avx(t,-);x=0 = 0 strongly degenerate =
satisfies 1 . .y
/ V3(x,0) dx < Cr / / V3(x, t) dxalt <
0 0Jw
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degenerate parabolic equations distributed control

The simplest example of degeneracy
w=(a,b) cc (0,1)

ur— (x“ux), = xof inQr=(0,T) x(0,1)
u(0, x) = up(x)

= ki
u(t,1)=0 and {”g’o) 0 weakly degenerate

X“Ux(t,-)jx=0 = 0 strongly degenerate
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degenerate parabolic equations distributed control

The simplest example of degeneracy

w=(a,b) cc (0,1)

ur— (x“ux), = xof inQr=(0,T) x(0,1)
u(0, x) = up(x)

u(t,1)=0 and { N

Theorem (C — Martinez — Vancostenoble, 2008)

false « > 2 (— regional null controllability)

null

controllability true 0<a <2 {any b.c.

u(t,0)=0 weakly degenerate

Neumann b.c.

X“Ux(t,-)jx=0 = 0 strongly degenerate

weak

1<a<2 strong

T regional
_
0 . 1
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Lack of null controllability for o > 2

The classical Liouville change of variable

' ds
« sa/2

y(x) = U(y(x),t) = x*"*u(x, t)

transforms the equation into

U — Uy +ca(y)U = xaF 0<y<oo

with |& =]b, 3] bounded| and |c(y) = oe=bs | bounded for o > 2
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Lack of null controllability for o > 2

The classical Liouville change of variable

' ds
X So./2

y(x) = U(y(x),t) = x*"*u(x, t)

transforms the equation into

U — Uy +ca(y)U = xaF 0<y<oo

with |& =]b, 3] bounded| and |c(y) = oe=bs | bounded for o > 2

which is NOT null controllable
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Ref: Micu, Zuazuza (2001) and Escauriaza, Seregin, Sverak (2003, 2004)
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degenerate parabolic equations distributed control

Carleman estimate 0 < o < 2

wi+ (x*wy) =1f inQr
w(t,1) =0 and ) = weakly degenerate
x*wx(t,-)jx=0o = 0 strongly degenerate

let ‘go(t,x):&(t)w(x)‘ where

1 4 X2 2
0=(wr=n) 0o

Theorem (C — Martinez — Vancostenoble, 2008)
There exists 19,C >0 suchthat V7> 19

// (T@X“ w2 + 7203x2 2 WZ) €777 dxdt
Qr
;
< C// |f|26®™% dxdt + C/ {rawfezw}‘ at
OT O X=
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Observability on (0, T) x w

Vit (x*w), =0 inQr
v(t,1) =0 and {V(t’ 0)=0 weakly degenerate

e

X“vx(t,-)x=0 = 0 strongly degenerate
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Observability on (0, T) x w

Vit (x*w), =0 inQr
v(t,1) =0 and {V(t’ 0)=0 weakly degenerate

e

X“vx(t,-)x=0 = 0 strongly degenerate

ot f01 x®vZdx increasing

<o
Zz=
=

|

N

P. Cannarsa (Rome Tor Vergata) Control of degenerate evolution equations 11/11/2015 14/44



Observability on (0, T) x w

Vit (x*w), =0 inQr
v(t,1) =0 and {V(t’ 0)=0 weakly degenerate

e

X“vx(t,-)x=0 = 0 strongly degenerate

ot f01 x®vZdx increasing
@ integrate & use Carleman’s estimate

3T/4

)
/ X“VE(x,0)dx < /x VZ(x, t) dxdt
0

T/4

< CT/ 0(1)x*V3(x, t)e**™D dxait
Qr

.
< Cr//vz(x, t) dxat
0 Jw
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Observability on (0, T) x w

Vit (x*w), =0 inQr
v(t,1) =0 and {V(t’ 0)=0 weakly degenerate

e

X“vx(t,-)x=0 = 0 strongly degenerate

ot f01 x®vZdx increasing
@ integrate & use Carleman’s estimate
3T /4

)
/ X“VE(x,0)dx < /x VZ(x, t) dxdt
0

T/4

< CT/ 0(1)x*V3(x, t)e**™D dxait
Qr

;
< Cr//vz(x, t) dxat
0 Jw
@ use Hardy’s inequality

/1 x“2v3(x,0) dx < /1 Xx“V2(0,x) dx < C/ / (x, t)dxat B~

N
0 0
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Further results in 1D: locally distributed control

For general a

/
lim sup xX|@(x)| <2
x40 a(x)
@ divergence form

@ Martinez — Vancostenoble (2006)  d:u — dx (a(x)0xu) = xwf
@ Alabau — C — Fragnelli (2006)  9:u — dx(a(x)0xu) + g(u) = xwf
@ Flores —de Teresa (2010) Oiu — Oy (x*xu) + x b(t, xX)0xt = xuf

@ nondivergence form  C — Fragnelli — Rocchetti (2007, 2008)
At — a(x)02u — b(x)dxu = X f
@ degenerate/singular Vancostenoble — Zuazua (2008), Vancostenoble (2009)
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Ot — Ox (x“0xU) — x% U= xuf
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degenerate parabolic equations distributed control

Further results

@ C —de Teresa (2009) cascade 2 x 2

Ot — Ox(x*0xu) + c(t, x)u =&+ xuh

NO #o
w 7 {&v—@x(xa&(v)+d(t,x)v=xou

@ Ben Hassi — Ammar Khodja — Hajjaj — Maniar (2011, 2013)

Ot — Ox (a1 (x)0xu) + c(t, X)u = € + xwh

NO #g
“ 7 {Btv — Ox(a2(x)0xv) + d(t,x)v = xou

@ inverse problems C — Tort — Yamamoto (2010)
@ interior degeneracy Fragnelli — Mugnai (2013)

@ Neumann boundary conditions and inverse problems =
Boutaayamou — Fragnelli — Maniar (2014)

N
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Outline

o Control of degenerate parabolic equations

@ Boundary control
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Boundary control at x = 1

o
Zz=
=

B~

N

P. Cannarsa (Rome Tor Vergata) Control of degenerate evolution equations

11/11/2015 18/44



degenerate parabolic equations boundary control

Boundary control at x = 1

0<a<2,T>0

ur— (x*x), =0 in(0,1) x (0, T)

u(1,t)=g(t) and u(t,0)=0 weakly degenerate
aux(t,-);x—=o = 0 strongly degenerate

U(X7 0) = UO(X)

T

u(t, 1) = 9g(t)

0 u(0,-) = W 1
follows from locally distributed result, but can also be derived by the flatness approach<g
@ Martin, Roiser, Rouchon (0 < a < 1) -
@ Moyano (1 < a < 2) .V

N
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Boundary control at x =0

O0<a<1,T>0
ur— (x*ux), =0 in(0,1)x (0, T)

u(0,t) = g(1)
u(1,t)=0
u(x,0) = up(x)
T
u(t,0) = g(1) u(t,1)=0
0 u(0,-) = w 1
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Boundary control at x =0

O0<a<1,T>0
ur— (x*ux), =0 in(0,1)x (0, T)
u(0,t) = g(t)

u(1,t)=0
u(x,0) = up(x)
T
u(t,0) = g(1) u(t,1)=0
0 u(0,-) = w 1

@ approximate controllability C — Tort — Yamamoto (2011)

@ null controllability M. Gueye (2014) =
by transmutation and spectral analysis for the wave equation .Y

N
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The associated eigenvalue problem

{—(x%'(x))’ = A\g(x) x € (0,1)

(1)

#(0)=0, ¢(1)=0
Let

Va=17%  and  ka=220

“T2-a T2
Denote by J, the Bessel function of first kind of order v:

B s (=1 y\2mtv
J”(y)’rnzz()m!r(m+u+1)(2) y €(0,+o0)

and by ju1 < ju2 < --- < jun<...the sequence of positive zeros of J,

<o
Zz=
=
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degenerate parabolic equations boundary control

The associated eigenvalue problem

—(x*¢'(x))" = Ap(x) x€(0,1) )
$(0) =0, ¢(1)=0
Let
Va=17%  and  ka=220
CT 22—« )
Denote by J, the Bessel function of first kind of order v:
- b (1) y\2mty
J”(y)’rnzz()m!r(m+u+1)(2) y €(0,+o0)
and by ju1 < ju2 < --- < jun<...the sequence of positive zeros of J,
Then the eigenvalues of problem (1) are given by
Xan = Kafoun YN 21 (2
and the corresponding normalized eigenfunctions take the form =
2K _ .
Pon(x) = —— _x(I=/2y (, x"e x € (0,1
vn( ) |JLa(jlfa,n)‘ u(j asn ) ( ) ‘%

Moreover the family (®.n)n>1 is an orthonormal basis of L2(0, 1)
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A sufficient condition for attainability

Forany v € L2(0,1) let Va,n =[5 v(X)®a.n(X) dx
For any K > 0 define P, x = {v € L2(0,1) = X ny N%/%|Va,nl€/ " < oo}

Theorem (C—Martinez-Vancostenoble)

There exists K* > 0 such that, given any o € [0,1), T > 0, up € L?(0,1), and
v € P,k one can find a control g € H'(0, T) such that the solution of

ur— (x*ux), =0 in(0,1) x (0, T)
u(0,t) = g(t), u(1,t)=0
u(x,0) = up(x)

satisfies u(T,-) = v

fiH
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A sufficient condition for attainability

Forany v € L2(0,1) let Va,n =[5 v(X)®a.n(X) dx
For any K > 0 define P, x = {v € L2(0,1) = X ny N%/%|Va,nl€/ " < oo}

Theorem (C—Martinez-Vancostenoble)

There exists K* > 0 such that, given any o € [0,1), T > 0, up € L?(0,1), and
v € P,k one can find a control g € H'(0, T) such that the solution of

ur— (x*ux), =0 in(0,1) x (0, T)
u(0,t) = g(t), u(1,t)=0
u(x,0) = up(x)

satisfies u(T,-) = v

@ Theorem implies approximate and null controllability

o=
@ P, k- is independent of T, see also Seidman (1979)
@ Similar results for the heat equation .Y

Fattorini-Russell (1971), Ervedoza-Zuazua (2011) ~
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degenerate parabolic equations boundary control

Regularity of attainable states

Fattorini and Russel (1971) noted that, for the heat equation, any attainable state is
the restriction to [0, 1] of an analytic function
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Regularity of attainable states

Fattorini and Russel (1971) noted that, for the heat equation, any attainable state is
the restriction to [0, 1] of an analytic function

Proposition (C—Martinez-Vancostenoble)
Let (1un)n>1 be such that, for some K > 0, the sequence (1un€*")n>1 is bounded. Then
V(x) =3 in®an(x)  (x€[0,1])
n=1

has the following property: there exists an even function F., holomorphic in the strip
{z eC : 927 < g} such that v(x) = x'~* Fo(x")
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degenerate parabolic equations boundary control

Regularity of attainable states

Fattorini and Russel (1971) noted that, for the heat equation, any attainable state is
the restriction to [0, 1] of an analytic function

Proposition (C—Martinez-Vancostenoble)
Let (1un)n>1 be such that, for some K > 0, the sequence (1un€*")n>1 is bounded. Then
V(x) =3 in®an(x)  (x€[0,1])
n=1

has the following property: there exists an even function F., holomorphic in the strip
{z eC : 927 < g} such that v(x) = x'~* Fo(x")

Corollary

Ifv e P, k+, then (v is attainable and) there exists an even function F.., holomorphic
inthe strip {z € C : |Sz| < £} such that

v(x) = x""Fo(x")  vx e0,1]

v
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The question of uniformly attainable targets

Recall that, for every o € [0, 1),

Poke = {v € L3(0,1) : 3 n*/¥Va o6 o™ < oo}

n>1

is attanable inany T > 0

<o
Zz=
=
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degenerate parabolic equations boundary control

The question of uniformly attainable targets

Recall that, for every o € [0, 1),

Poke = {v € L3(0,1) : 3 n*/¥Va o6 o™ < oo}

n>1
is attanable inany T > 0
Proposition

(| Pask- ={0}

a€l0,1)

fiH
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degenerate parabolic equations boundary control

The question of uniformly attainable targets

Recall that, for every o € [0, 1),

Poke = {v € L3(0,1) : 3 n*/¥Va o6 o™ < oo}

n>1
is attanable inany T > 0
Proposition

(| Pask- ={0}

a€l0,1)

However, the problem of establishing whether zero is the only target that can be
attained for all o € [0, 1) is widely open =

B~

N
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degenerate parabolic equations boundary control

The cost of null controllability

We want to measure the cost to steer any up to 0 in time T with respect to «
Given up € L?(0,1) let

G(a, u) :={g e H'(0,T) : u(T,) =0}
where

ur— (x*ux), =0 in(0,1) x (0, T)
u(0,t) = g(t), u(1,t)=0
u(x,0) = up(x)

Theorem (C—Martinez-Vancostenoble)

(a) There exists M;(up) and M, independent of «, such that

M1(Uo) . Mg
< f <
1—a = geg'?mu()) 9llt10,m) < 1_ aHUOHLZ
(b) There exist My, M> > 0, independent of «, such that
M sup inf Me

<
1
T-a™ lluoll=1 9EG (e, o) gl @N=91_q
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Higher dimension

VIEMOIRS

of the
American Mathematical Society

Volume 239 + Number 1135 + Forthcoming

Global Carleman Estimates for
Degenerate Parabolic Operators with
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Degenerate wave equations in 1D

From now on: joint work with F. Alabau-Boussouira and G. Leugering

ur — (a(x)ux), =0 t>0 xe(0,1)
u(0,x) = tp(x) w(0,x)=ui(x) xe€(0,1)

We keep using the degeneracy parameter ., as

. x|a'(x
1a = limsup EA09)

xo ax)

The above wave equation is
@ weakly degenerate if 0 < pa < 1
@ strongly degenerate if 1 < pua < 2
We can impose the boundary conditions  u(t,1) =0 and

u(f70):0 |f0< a<1
limxoa(x) ux(t,x) =0 if1<pa<?2
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Conservation of the energy
Given the solution u of

ur — (a(x)ux), =0 t>0 xe(0,1)
u(0,x) = tp(x) ui(0,x)=uw(x) xe(0,1)

with initial conditions (o, t1) € H2(0,1) x L2(0,1) and boundary conditions

u(t,0)=0 if 0
limypo a(x) ux(t,x) =0 if1

u(t,1)=0 and {
we define the energy of u by

Eu(t) = %/01 [UR(t,x) + a()U2(t, x) Y dx

P. Cannarsa (Rome Tor Vergata) Control of degenerate evolution equations 11/11/2015 27 /44



Conservation of the energy
Given the solution u of

ur — (a(x)ux), =0 t>0 xe(0,1)
u(0,x) = tp(x) ui(0,x)=uw(x) xe(0,1)

with initial conditions (o, t1) € H2(0,1) x L2(0,1) and boundary conditions

u(t,0)=0 if 0
limypo a(x) ux(t,x) =0 if1

u(t,1)=0 and {
we define the energy of u by

Eu(t) = %/01 [UR(t,x) + a()U2(t, x) Y dx

Proposition

Eu(t) = E,(0) Vt>0
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Direct inequality
Let u be the solution of

ur — (a(x)ux), =0 t>0 x¢c(0,1)
u(0,x) = to(x) w(0,x) =ui(x) xe(0,1)

with initial conditions (o, 1) € H1(0,1) x L2(0,1) and boundary conditions

pa <1

u(t,0) =0 if 0 <
1< pna<?2

u(t,1) =0 and {

limyo a(x) ux(t,x) =0 if
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Direct inequality
Let u be the solution of
{un(a(x)ux)x—o t>0 xe(0,1)
u(0,x) = to(x) w(0,x) =ui(x) xe(0,1)
with initial conditions (o, 1) € H1(0,1) x L2(0,1) and boundary conditions

pa <1

u(t,0) =0 if 0 <
1< pna<?2

u(t,1) =0 and {

limyo a(x) ux(t,x) =0 if

Lemma (direct inequality)
Forevery T >0

/T (1, 1)dt < Ca(T)Es(0)
0

for some constant Ca(T) > 0

The proof uses the multiplier xuy
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Outline

9 Control of degenerate hyperbolic equations
@ Boundary observability
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Observability

The degenerate wave system is said to be observable in time T > 0 if there exists a
constant C > 0 such that for any (uo, ur) € H3(0,1) x L2(0, 1) the solution satisfies

.
/ (1,1) dt > CE,(0)

0
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Observability

The degenerate wave system is said to be observable in time T > 0 if there exists a
constant C > 0 such that for any (uo, ur) € H3(0,1) x L2(0, 1) the solution satisfies

.
/ (1,1) dt > CE,(0)

0

Theorem

Assume
_ o XEX
Ha o<x<i  a(x)
Then, for every T > 0, the solution satisfies

<2

.
3(1)/0 uz(t,1)dt > {(Z—Ma)T— m —2ia m}Eu(O)

where C, is a positive constant which depends only on a
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Observability cost

Definition
@ Any constant C satisfying the observability inequality is called an observability
constant for the degenerate wave equation in time T

@ The supremum of all observability constants for the degenerate wave system is
denoted by Cr

@ The inverse cr = 1/Cr is sometimes called the cost of observability (or the cost
of control) in time T

Remark
From this definition we have also that the degenerate wave system is observable if

i B, 1) ot

Cr= inf
"7 woum#00  Eu(0)

v
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Observability time

By the lower bound

i
at) [ et 1)t > {(2 - )T — s 21 VG E(O)

we obtain

Corollary
Assume ua < 2. Then the degenerate wave system is observable in time T if

1 4
T>T,:= ( +2,u,a\/Ca>

(2 — pa) \min{1, a(1)}

In this case

Or> g {(@ = pa)T = s — 200 V/Ca)

- min{1,a(1)}
Optimal observability time for a(x) = x’ =
@ Gueye 2014: 0 < 6 < 1 and observation at x = 0 1SS

@ M. Zhang-H. Gao: 0 < 6 < 2 and observation at x = 1 h
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Failure of observability

Example

Assume that a(x) = x°, x € [0,1] with 6 > 2. Then pa =6 > 2.

Consider the degenerate wave system

ur — (x°ux) , =0 in]0, T[x]0,1[

u(t,1) =0 and limyox® ux(t,x)=0 0<t<T
u(0, x) = uo(x)

{ut(07x) = u(x)

where uy and uy are smooth functions with compact support in]0, 1]

x €]0,1[

Assume that T > 0 is given. Then the above system is not observable, that is there
exist nonvanishing initial data in the energy space for which ux(.,1) =0
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Sketch of the proof

Again by the Liouville transform
u(t,x) = x %%v(t, p(x)) t>0x€]o,1]
with the new space variable

In(1) ifg=2
e(x) =
2020 g > 2
the wave equation takes the form
Vie = Vyy +P(y)v =0 in ]0, T[x]0, oo
v(t,0) =0 t€]o, T[

(V7 v[)(O,y) = (Vo, V1)(y) y G]0,00[
where p is a bounded positive potential, and vy, v4 are also smooth functions with
compact support in ]0, oo, and the observation point is y = 0 for the unknown v
Since vy, v have compact support, the finite speed propagation of the support for the=
wave equation with bounded potential implies that v, (-,0) = 0 on [0, T] when the,
supports of v, vi are sufficiently far away from y = 0 .

Thus, there is non unique observability, and the original problem-in u is not-observable
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degenerate hyperbolic equations boundary observability

Blow-up of observability time

Let 0 < 0 < 2 be given and consider the degenerate wave system

ur — (x°ux) =0 in]0, T[x]0,1[
u(t,1) =0 and limyox®ux(t,x)=0 0<t<T
U(O,X):Uo(x)7U1(O,X):U1(X) X€]071[

Then thanks to our previous results, the above system is observable through the
boundary x = 1 for all

1 . 1
T>To=5— (4+20m|n {2, ﬁ})
For any C > 0 denote by T (C) the infimum of all times T > 0 such that C is an
observability constant for the above wave system in time T
(T3 (C) = < if no such time exists)
Then =

s < T(C) 2

Therefore the minimal control time blows up as 6 — 2~ with the same order as Ty ~
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9 Control of degenerate hyperbolic equations

@ Boundary controllability
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Boundary controllabity

We consider the following controlled degenerate system
yie = (a(x)yx), =0 in ]0,00[x]0, 1]

B y(t,0)=0 if pa e [0,1]
y(t,1) = f(t) and {“mxw A p(t ) =0 if e [.2] 0<t<oo
{y(o,x) = Yo(x)

¥:(0,x) = y1(x) ’
Theorem
Assume 0 < pa < 2. Then forany T > T, and
(Yo, 1) € L3(0,1) x H;'(0,1) and (yq,y{) € L3(0,1) x Hy'(0,1)

there exists a control f € L?(0, T) such that the solution of the above system (in the
sense of transposition) satisfies (y, y:)(T,-) = (0,0).

—
The proof is based on our observability result and the HUM <
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9 Control of degenerate hyperbolic equations

@ Boundary stabilization
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degenerate hyperbolic equations boundary stabilization

Boundary stabilization

Let p: R — R be a nondecreasing continuous function such that p(0) = 0 and
assume there exist constants ¢; > 0, ¢; > 0 and an odd, continuously differentiable,
strictly increasing function g on [—1, 1] such that

cig(Isl) < lo(s)l < cag™'(Isl) Vsl <1,
cils| <lp(s)| < cels| Vs >1

As before, let a satisfy the above assumptions with u, € [0, 2]
We consider the degenerate wave equation

ur — (a(x)ux) , =0 in 0, T[x]0,1[
with the nonlinear boundary damping

u(t,0)=0 if pae[0,1]
limyoa(x)ux(t,x) =0 if nae[1,2] =

B~

where 8 > 0 is given 4
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Energy dissipation

We define the space Hz = W7 (0, 1) x L?(0,1) where
; :
wi,1)={ =1 S
{UGH3(071)7U(0):0} If/_,LaE[O,1[

Then one can show that the above nonlinear system is well-posed in the framework of
nonlinear semigroups in Hz

Moreover the natural energy of the solutions, defined by

Eu(t) = % [/01 (uf + auf) dx + Ba(1)uP(t, 1 )]
is dissipative:

dftU(l‘) = —a()u(t, Np(u(t,1)) <0 Vi>0 =

B~

N
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Optimal-weight convexity method

We follow the framework of the optimal-weight convexity method
(Alabau-Boussouira 2005, 2010)
@ Introduce the function H : [0, rZ] — [0, co) by
H(x) = Vxg(vx) x€[0,r],
where rp < 1 is assumed to be sufficiently small

@ Assume that H is strictly convex on [0, r¢] and extend H to Hon [0, c0) by setting
H(x) = +oo when x ¢ [0, rg]

@ Then define a function L on [0, oo) by

H(y) .
L(y) = { y ify >0

0 ify=0

@ where H* stands for the convex conjugate of H defined by

= 4 =
H*(y) = supyer{xy — H(x)}
@ Define a function Ay on [0, 8]  Au(x) = H(X) .Y

XxH'(x) h
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Stabilization result

Theorem

We assume the above hypotheses on a and on p, g and H, and that 8 > 0 is given.
Let (uo, u1) € Hp be given such that E,(0) > 0, and u be the corresponding solution
of the above nonlinear system. Let~ > max( £u(0) C™), then the energy E, of u

2L(H'(12))’
satisfies the following estimate:

1 M
Eu(t) < 27’1-(@()—1(&)) viz H'(r)
where H'(12)
1 o 1
Yo(X) = H(12) +/1/X y3(1 = Au((H)71(6))) v

Furthermore, if limsup,_, .+ An(X) < 1, then E satisfies the following simplified decay

rate M
0 <) ()

for t sufficiently large, and where k > 0 is a constant independent of E(0), C* is an
explicit constant depending on the data

v
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Examples of decay rates

Same decay rates for the degenerate and nondegenerate damped wave equation
Let us now give some examples of the resulting decay rates

@ For the polynomial case for which g(x) = |x|°~"x in a neighborhood of x = 0

with p > 1,
Eu(t) < Ce,ot -1 for sufficiently large ¢
@ Forg(x) = |x|"“x|n‘7(|‘7‘) in a neighborhood of x =0 withp > 1,9 > 0,
Eu(1) < Ce,vt 77 (In(1)) ~2%®=" for sufficiently large ¢

@ For g(x) = sign(x)e”/x2 in a neighborhood of x = 0,

o=

|

N

Eu(1) < Ce,0pve """ for sufficiently large
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Happy Birthday!
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