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In shape optimization problems we have in

general a shape functional F (Ω) that has to

be optimized among domains Ω of Rd be-

longing to some suitable admissible class A.

Concerning the cost functional F (Ω) two types

are interesting and should be considered:

• integral functionals;

• spectral functionals.
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Integral functionals Given a fixed domain D
and a right-hand side f ∈ L2(D) we consider
the solution uΩ of the elliptic PDE

−∆u = f(x) in Ω, u ∈ H1
0(Ω).

The integral cost functionals we consider are
of the form

F (Ω) =
∫
D
j
(
x, uΩ(x),∇uΩ(x)

)
dx

where j is a suitable integrand that we as-
sume convex in the gradient variable and
bounded from below as

j(x, s, z) ≥ −a(x)− c|s|2
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with a ∈ L1(D) and c smaller than the first
eigenvalue of −∆ on H1

0(D). In particular,
the energy Ef(Ω) defined by

Ef(Ω) = inf
u∈H1

0(Ω)

∫
Ω

(
1

2
|∇u|2 − f(x)u

)
dx

belongs to this class since, integrating by
parts its Euler-Lagrange equation, we have

Ef(Ω) = −
1

2

∫
Ω
f(x)uΩ dx

which corresponds to the integral functional
above with

j(x, s, z) = −
1

2
f(x)s.
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Spectral functionals For every admissible

domain Ω we consider the spectrum λ(Ω) of

the Dirichlet Laplacian −∆ on H1
0(Ω).

If Ω has a finite measure −∆ has a com-

pact resolvent and so its spectrum λ(Ω) is

discrete:

λ(Ω) =
(
λ1(Ω), λ2(Ω), . . .

)
,

where λk(Ω) are the eigenvalues counted with

their multiplicity.
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The spectral cost functionals we consider are

of the form

F (Ω) = Φ
(
λ(Ω)

)
where Φ : RN → R is a given function. For

instance, taking Φ(λ) = λk we obtain

F (Ω) = λk(Ω).

We say that Φ is continuous (resp. lsc) if

λnk → λk ∀k =⇒ Φ(λn)→ Φ(λ)(
resp. Φ(λ) ≤ lim inf

n
Φ(λn)

)
.
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Concerning the admissible class A of com-

peting domains, we consider the one which

consists of all subdomains of a given domain

D of Rd, with a constraint on its Lebesgue

measure |Ω|, without other extra geometric

constraints.

It is known that the addition of extra condi-

tions on the competing domains (as convex-

ity, equi-Lipschitz condition, . . . ) introduces

an additional compactness that leads to the

existence of an optimal solution.
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The most studied case in the literature is the

one, in both the types of F (Ω) above, where

the Laplace operator −∆ is considered with

Dirichlet conditions on the free boundary ∂Ω.

In this case the most general available result

is when the competing domains are a priori

supposed inside a given bounded region D.

Here the word “domain” has to be intended

as “quasi-open set”. An interesting (and dif-

ficult) issue is to investigate about the reg-

ularity of the optimal solutions.
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Theorem (Buttazzo-Dal Maso, ARMA ’93):

assume that

• F is monotone decreasing for the set in-

clusion;

• F is γ-lower semicontinuous.

Then the shape optimization problem

min
{
F (Ω) : Ω ⊂ D, |Ω| ≤ m

}
admits a solution.

In general the solution is a quasi-open set

and very little is known about its regularity

in the case of particular shape functionals F .
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It has to be mentioned that, in the case

of spectral functionals, several recent results

are now available (Bucur, Mazzoleni, Pratelli,

Velichkov, . . . ):

• allowing the region D to be the whole Rd;

• showing that the optimal sets are bounded

and with finite perimeter;

• showing that in particular cases of func-

tionals F the optimal domains are actually

open sets.
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The monotonicity assumption in the exis-

tence theorem above is important, without it

in general the solution has to be found in the

relaxed class of capacitary measures, that is

Borel measures µ with values in [0,+∞] and

such that

µ(E) = 0 whenever cap(E) = 0.

On the other hand, the γ-l.s.c. assump-

tion is very light, since the γ-convergence

is rather strong and most of the interesting

shape functionals are actually γ-continuous.
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We consider now shape optimization prob-
lems where the boundary of the unknown set
Ω has a part where the Dirichlet condition is
imposed and the remaining part is subjected
to the Neumann condition. Two cases are
considered:

• The Neumann condition acts on a fixed
part and the Dirichlet condition acts on the
free boundary;

• The Dirichlet condition acts on a fixed part
and the Neumann condition acts on the free
boundary.
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Fixed Neumann, free Dirichlet

This case is quite similar to the previous

one where the Dirichlet condition was im-

posed on all the boundary ∂Ω. The precise

formulation of the problem requires a given

bounded set D ⊂ Rd and the Sobolev spaces

H1
0(Ω;D) =

{
u ∈ H1(D) : u = 0 q.e. on D\Ω

}
.

The minimization problem

min
{ ∫

D

(
1

2
|∇u|2−f(x)u

)
dx : u ∈ H1

0(Ω;D)
}
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then corresponds to the PDE−∆u = f in Ω

u = 0 on ∂Ω ∩D, ∂u
∂n = 0 on ∂Ω ∩ ∂D.

Similarly, the first eigenvalue is

λ1(Ω;D) = min
u∈H1

0(Ω;D)

{ ∫
D
|∇u|2 dx :

∫
D
u2 dx = 1

}
and the spectrum σ(Ω;D) is defined accord-

ingly. The γD-convergence is also defined

in a similar way. The result in this case is

similar to the Buttazzo-Dal Maso one:
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Theorem. Assume that
• F is monotone decreasing for the set in-
clusion;
• F is γD-lower semicontinuous.
Then the shape optimization problem

min
{
F (Ω) : Ω ⊂ D, |Ω| ≤ m

}
admits a solution.

In [B.-Velichkov] we studied this problem and
we called it spectral drop problem, since it
reminds the classical drop problems, where
the total variation functional replaces the
shape functional F .
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Take now F (Ω) = λ1(Ω;D). The following
properties for an optimal domain Ω hold.

• Ω must touch the boundary of D; precisely,
Hd−1(∂Ω ∩ ∂D) > 0.

• ∂Ω intersects ∂D orthogonally.

• Similar if D is the complement of a bounded
set and if D is an unbounded convex domain.

• Nonexistence for general unbounded do-
mains D, for instance if D is the complement
of an unbounded strictly convex set.

15



• Another variant consists in adding the term

k

2

∫
∂D

u2 dHd−1

in the energy, similarly to what is made in
the classical drop problem; the constant k

has to be not too negative, precisely

k > − inf
u∈H1

0(Ω;D)

|Ω|≤1

{ ∫
D
|∇u|2 dx : ‖u‖L2(∂D) = 1

}
.

In this way the Neumann condition becomes
the Robin one, and the properties above still
hold, except of course the one of orthogonal
intersection with ∂D.
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Fixed Dirichlet, free Neumann

This is a quite different type of problem, pre-

senting several additional difficulties, mainly

due to the fact that, even for the simple

situation of a shape functional like the first

eigenvalue, the monotonicity assumption does

not hold. Let us consider as before a given

domain D and a fixed Dirichlet region K; the

corresponding Sobolev space is

H1(D;K) =
{
u ∈ H1(D) : u = 0 q.e. on K

}
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and the first eigenvalue is

µ1(Ω;K) = inf
u∈H1(D;K)

{ ∫
Ω
|∇u|2dx :

∫
Ω
|u|2dx = 1

}
.

Note that if Ω is smooth the related PDE is−∆u = µ1u in Ω

u = 0 on K, ∂u
∂n = 0 on ∂Ω.

From now on let us take, for simplicity, the
case of the shape functional F (Ω) = −µ1(Ω;K),
so that the question is to maximize µ1(Ω;K)
under a volume constraint. In fact, minimiz-
ing µ1(Ω;K) is trivial, since a disconnected
domain Ω gives zero as its first eigenvalue.
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We consider then the problem

max
{
µ1(Ω;K) : Ω ⊂ D, |Ω| ≥ m

}
or, more conveniently, its analogous

max
{
|Ω| : Ω ⊂ D, µ1(Ω;K) ≥ µ

}
where µ is a given positive number. Since

inf
{ ∫

Ω

(
|∇u|2−µ|u|2

)
dx : u ∈ H1(D;K)

}

=

0 if µ1(Ω;K) ≥ µ
−∞ if µ1(Ω;K) < µ

the shape optimization problem above can
be written as
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max
Ω⊂D

min
u∈H1(D,K)

(
|Ω|+

∫
Ω

(
|∇u|2 − µ|u|2

)
dx

)
.

Since

max
Ω⊂D

min
u∈H1(D,K)

≤ min
u∈H1(D,K)

max
Ω⊂D

a larger quantity is

min
u∈H1(D,K)

max
Ω⊂D

(
|Ω|+

∫
Ω

(
|∇u|2 − µ|u|2

)
dx

)
.

Enlarging the class of admissible choices from
the domains Ω to the relaxed class of density
functions 0 ≤ θ(x) ≤ 1 a still larger quantity
is
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min
u∈H1(D,K)

max
0≤θ≤1

( ∫
D
θ dx+

∫
D
θ
(
|∇u|2−µ|u|2

)
dx

)
.

The max in θ is easy to compute and gives∫
D

(
|∇u|2 − µ|u|2 + 1

)+
dx

so that the problem is reduced to

min
u∈H1(D,K)

∫
D

(
|∇u|2 − µ|u|2 + 1

)+
dx.

If ū is a solution to this last problem a can-
didate optimal domain Ω̄ is the set

Ω̄ =
{
|∇ū|2 − µ|ū|2 + 1 > 0

}
.
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Theorem. The auxiliary problem

min
u∈H1(D,K)

∫
D

(
|∇u|2 − µ|u|2 + 1

)+
dx.

is equivalent to a double obstacle problem

min
0≤w≤1

{ ∫
D

(
1

µ
|∇w|2−w2+1

)
dx : w ∈ H1(D;K)

}
.

whose solution w̄ identifies the optimal do-

main through Ω̄ = {w̄ < 1}.

The properties of the solution are:
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• If K is the ball of radius r0, then Ω̄ is

the ball of radius R(r0) for a suitable R(r0)

explicitly computable.

• If k is bounded, then Ω̄ is bounded.

• The solution w̄ is continuous and so the

optimal set Ω̄ is open.

• The regularity of Ω̄ is the same than for

double obstacle problem and depends on K.
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Similar results for the torsion shape func-
tional

E(Ω) = inf
{ ∫

Ω

(
1

2
|∇u|2 − u

)
dx

}
and (hopefully...) for the energy shape func-
tional

Ef(Ω) = inf
{ ∫

Ω

(
1

2
|∇u|2 − f(x)u

)
dx

}
.

Work(s) in progress with D. Bucur and
B. Velichkov.

24


