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Metastases

Iwata et al., J Theor Biol 2000

Contrast-enhanced X-ray computed tomographies of the liver with
multiple metastatic tumors. Interval : 127 days.

+ some of the metastases are not visible.




Metastasis (uetd=change, otdoic=place)

e Secondary tumors colonizing a distant organ

e “Metastasis remains the cause of 90% of deaths from solid cancers"
Gupta and Massagué, Cell, 2006

o Exciting biological findings amenable to dynamical/mathematical
descriptions at the systemic scale in recent years:

>

>

>

Distant inhibition of angiogenesis by endogenous agents
(endostatin,...) O'Reilly, Folkman et al., Cell, 1994
Self-seeding Norton and Massagué, Nat Med, 2006
Pre-metastatic niche Kaplan et al., Nature 2005

e Clinical challenges

>

>

>

What is the burden of occult micro-metastases at diagnosis?

What should be the extent of post-surgery (“adjuvant") therapy?
What is the differential effect of therapies on the primary tumor and
the metastases? (AA therapies might accelerate mets? Ebos et al.,
Cancer Cell, 2009)

How to optimize the scheduling of anti-cancer agents?



Breast cancer epidemiology

e Most common invasive cancer in women (14% of new cancer cases)
e Overall 5-year survival: 89.2%

e However, about 28% will relapse within 15 years Brewster et al, J
Natl Cancer Inst, 2008

e 20 year survival is (only) 44% Litiere et al., Lancet Oncol, 2012
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Breast cancer therapy

o Classical paradigm before the 1970's: disease “diffuses" from its
primary location

= Extended mastectomy Halsted, Ann Surg, 1907

o In the 1970s, realization that locally diagnosed PT might very likely
have already disseminated (estimated incidence rate = 90%)
Fisher, Cancer, 1977

= Breast conservative surgery

= Generalization of adjuvant therapy (chemotherapy, hormone therapy
and more recently targeted therapies)



Clinical questions

e For early breast cancer (non-metastatic)

Q1: How to estimate the amount of residual distant disease at
diagnosis in order to personalize the adjuvant (chemo)-therapy?

e For metastatic breast cancer, no consensus on the utility of
surgery. Ongoing clinical trials.

Q2: What is the quantitative impact of PT size/age/stage at
resection on the time-course of the post-surgical metastatic burden?

Q3: How to optimize the scheduling of systemic anti-cancer
agents (cytotoxic therapies, bio-therapies)?



Objectives

e Design a minimally parameterized mathematical theory/model
able to describe the data with identifiable parameters

o Validate the model against preclinical and clinical data

¢ Qualitative and quantitative implications for primary tumor size
at diagnosis on survival

e Explore the effect of systemic therapies

e Define an optimal control problem



Theoretical modeling of metastatic development

An in vivo/in silico approach for postsurgical metastatic development
Bioluminescence preclinical data of breast xenografts
Clinical data of breast cancer metastatic relapse
Quantitative impact of surgery on future metastatic development and
survival

Therapy and scheduling optimization
Modeling therapy
An optimal control problem
Concentrating VS diluting the dose



A short view at metastasis biology

The Sequential Process of Metastasis

Transformation Angiogenesis Motility and invasion

Capillaries,
) venules, lymphatic vessels
Arrest in
capillary beds

Embolism and
circulation

Transport
~ Adherence

Multicell aggregates
(lymphocytes, platelets)

Extravasation
into organ Response to
parenchyma microenvironment

| Metastasis of
Tumor cell | metastases
proliferation and

angiogenesis Metastases

Talmadge and Fidler, Cancer Res, 2010



Mathematical models for metastasis

e Despite a large body of literature for tumor growth modeling,
relatively few models for mets

o Early statistical models for clinical data of metastatic relapse
probability Blumenson, 1968, then followed by Koscielny, Tubiana and
Guiguet, 1982, Retsky et al., 1997

o Biologically-based, low-parameterized and experimentally-validated
model for all the main steps of the metastatic process Liotta, Saidel
and Kleinerman, 1976

e Semi-mechanistic models for description of the metastatic
development at the organism scale Bartoszynski, 1981, Yorke et al.,
1993, Hanin 2006, lwata, Kawasaki and Shigesada, 2000 (further
studied and developed by Barbolosi, Benabdallah, Hartung, Hubert,
Verga, B. 2009- and Bethge, Schumacher and Wedemann, 2012).

e More recently, theoretical investigations by Scott, Gerlee et al., 2014
about the self-seeding and filter-flow approach



Model scheme

Injection (or first cell) Surgery
| Pre-surgical l Post-surgical

PT growth law: gp

Primary
Tumor o m=ip . e
(PT)

Dissemination law: d(V,,):% uVp

Metastases o ——e )

Vetastases growth law: g
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Mathematical formalism 1: growth

e Primary tumor V), grows with rate g,(V,,) (Exponential, Gompertz,
Gomp-Exp, power law,...)

t = 18 years
Primary tumor
d e
at Vo =8p(Vp), Vp(t=0)=V; 10°
e Population of metastases structured 3.
. . . Diagnosis
in volume v described by a density ” ’
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Time (years)

Metastases

e Tumors grow in size with rate g(v) :
20 |
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Mathematical formalism 2: dissemination

e Spread of new metastases with emission rate

d(V)=puVv?

i = per day probability of a cell to successfully establish a
distant colony, unit [cell~! - day 1]

vy = 3 of fractional dimension of the vasculature (non-

identifiable from real data, in applications v = 1)

o Entering flux of new metastases at Vj (size of one cell)

—+o0

g(Vo)olt, Vo) = d(V(1)) + / d(V)o(t,v)dv  [day]
N—— Vo

primary mets
secondary mets (often negligible)

lwata, Kawasaki and Shigesada, J Theor Biol, 2000



Model equations

Primary tumor
d
p Vo(t) = gp(Vp(t)), Vi(t=0)=V,

Metastases
Oep(t,v) + 0u(g(v)p(t,v)) =0 t €]0, + oo, v €] Vo, +00]
{ g(Vo)n(t, VO) = d(V,(t)) + [y, d(v)p(t, v)dv t €]0, +oof
(07 V) = P v G] Vo, +OO[

+oo
Number of metastases :/
Vo

p(t,v)dv = ,u/ot V,(s)ds

+o0
Metastatic burden :/

Vo

vp(t,v)dv = p/ot Vo(s)V(t — s)ds

e Existence and uniqueness of solutions Barbolosi, Benabdallah, Hubert,
Verga, Math Biosc 2009



Asymptotic behavior

p(t,v) ~ e*o(v)

Ao = valeur propre principale de |'opérateur, ® vecteur propre associé, ¥
vecteur propre adjoint

d

LV =g(V), V(0) = Vo

+oo
/ d(V(r))eoTdr = 1,

Met number
Tumor Burden
5]
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An in vivo/in silico approach for postsurgical metastatic development
Bioluminescence preclinical data of breast xenografts
Clinical data of breast cancer metastatic relapse
Quantitative impact of surgery on future metastatic development and
survival



Ortho-surgical animal models of metastasis

e Intra-vital process o Hard to generate

o Necessary to consider surgery of spontaneous metastases
the primary tumor (PT) for clinical .
P Y (PT) e Role of the immune system
relevance
Orthotopic Surgery
implantation (t=34)
PT VB
Orthotopic tumor ~ 10" 1: 100
implantation o - sefore
. surgery & 10° 10° __
3 : 3
' 0 g " 1 10° 2
i ; s 1 5
Ny mer <. @ 5 w0’ w3
¥ After % 10° E 10° g
surgeny| £ ' g
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metastatic diesase * + 3% - 1
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Time (days)

Ebos, Kerbel et al., EMBO 2014, Cancer Cell 2009



Statistical procedure: nonlinear mixed-effects modeling

Sparse longitudinal data from individuals belonging to the same

population
Usually
. o ) individual 1 <j < N
yi=f(t],0) + e time ¢;
,  Observation y/
For each j, & = m|n > (y’ (t,,ef)) Model f depending on 6 € RP

Error d ii.d ~N(0,0))

In mixed-effects modeling:
vl =f(t,0) + &)
¢ iid,~ LN(0,,6)
6, € RP, 0 € RPP = (6,,,0) = argmax LLH

Goes from p x N parameters to p? + p parameters and uses the data
from the entire population!



Best model structure

Mechanistic assumptions

o Various structures tested for relationship of the PT and mets growth
for optimal trade-off between goodness-of-fit and identifiability

e Same growth between PT and mets

e Growth model = Gomp-Exp
Gomp(v) = (. — BIn(v)) v
8p(v) = g(v) = min(Gomp(v), Av)

e )\ = in vitro proliferation rate (measured)
Statistical assumptions

e PT and mets fitted together (3 parameters)

e Proportional statistical error model

e Lognormal population distribution of the parameters



Individual fits
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Fit and prediction of bioluminescence preclinical data

Fit Prediction
Orthotopic Surgery Orthotopic Surgery
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10 PT MB 100 o PT MB o0
L] o -]
— Pies — gl
z Sogfd 7 B 88— 2
8 10® 87 9g-c" 0% 8 8 10° ’ PO T
o e 5p 278 =g o /8 & =
N . . o) N o3 [}
2 ‘g 78 € o % 2
] 3° o 3 s o 2
-0
g 10° g’s o 10° 8 § 10° 10° &
> ‘ ° g > g
g o 2 & 8
£ o o £ o
I = a =
10* 10* 10* 10*
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time (days) Time (days)
* Data PT
——Median model PT
- — Model prct PT
O Data Met
——Model median Met
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Hartung et al., Cancer Research, 2014



Goodness-of-fit/Identifiability trade-off

Same growth Different growth alpha fixed

Orthotopic Surgery Orthotopic Surgery

implantation (t=34) implantation (t=34)

J

Pre-surgical | Post-surgical

Pre-surgical Post-surgical

100
@ 5 g @
3 108 ﬁ % 10° 8
c
= 3 3 a2
.% 10° ; § 10° g
g g
£ i ¢ g
£ o} £ 2
IS = o 10°
10*
30 40 50
Time (days) Time (days)
Model Par. Unit Median value (CV) NSE (%)
ap day™! 0.605 (9.83) 3.57
: ) Bp day~! 0.0786 (12.2) 4.86
Diff growth alpha fixed  * * ;=1 4,1 3.01e-09 (820) 72.1
day~! 0.0816 (15.7) 5.06
@ day™! 0.664 (16.3) 4.76
Same growth 8 day~" 0.0893 (21.3) 6.21

pocellday™'  4.43e-11(176) 265




Predicted versus experimental survival

80

Model survival
(2] [e2] ~ ~
o (8] o [6)]
(o) [e]

[4)]
)]
T
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Experimental survival

The model survival was defined as the time to reach a given lethal
burden of 4 x 10° p/s, i.e.

inf {t > 0; M(t) >4 x 10°}



Clinical data

20 year follow-up of 2648 breast
cancer patients

o Gompertz growth of PT, doubling
Koscielny, Tubiana et al., Br J Cancer,

time at 1 gram = 7 months and

1984 carrying capacity = 102 cells (1
_ kg)
Diameter of | Prop. of Prop. of
PT (cm) relapse relapse o Recover cancer inception time - T
(Data) (Model) from PT volume at diagnosis
1-25 27.1 255 e Lognormal distribution of y for
25—-35 42.0 42.3 . C e L L
inter-individual variability
3.5—-45 56.7 56.3
45—-55 66.5 65.9 o Probability of metastatic relapse
5.5 —6.5 72.8 74.3 = probability of having one at
6.5—7.5 83.8 80.8 diagnosis
75-8.5 81.3 85.7 Ta
P (Mets) = P (,u/ Vp(t) > 1)
0
p = 0.023 L

, , on =7 x 10" 2cell ™ - day™
Pearson’s x? test for goodness-of-fit Hmedian ce ¥



Parameters: quantification of metastatic potential

Data Growth Location | Par. Unit Estimate (CV) 95 % ClI
model
In vitro (Breast) Exp. A day~! 0.837 (-) (0.795 - 0.879)
V; cell 1.00 x 10° (-) -
T o day~1 0.664 (16.3) (0.605 - 0.729)
8 day=1 0.0893 (21.3) (0.0791 - 0.101)
Preclinical Breast | Gomp-Exp.
Vo p/s 10 (-) _
Met o cell™t-day~t 4.43 x 101 (176) (2.70 x 1071 - 7.27 x 10~11)
Vi /s 1.63 x 10° (45.5) (9.40 x 10 - 2.83 x 10%)
T a day=1 0.21 (60.3) (0.151 - 0.292)
Preclinical Kidney | Exp. Vo p/s 10 (-) -
Met o day~1 0.307 (201) (0.133 - 0.707)
4 cell "t day? 0.0415 (397) (0.0181 - 0.0948)
V; cell 1(-)
PT o day~1 0.013 (-)
8 day~1 0.000471 (-)
Clinical Breast Gomp.
Met Vo cell 1(-)

o cell™t-day=*  7.00 x 1072 (1.04 x 10%)




Simulation of the cancer history

Size distribution of metastases at diagnosis (D=4cm)

Median 4 Large p (90th percentile)
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For the simulations a stochastic version of the model is employed (inhomogeneous Poisson
process for the emission of new metastases).



Nonlinear impact of PT size at surgery on survival
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A biologically-based, minimally parameterized, mathematical
model for metastatic development links pre-surgical tumor growth
and post-surgical metastatic burden dynamics

¢ Validation against preclinical and clinical data sets

e Same growth law between PT and mets, equal probability among
the PT cells of successful establishment of a distant colony and no
secondary dissemination was a sufficient theory to explain the data

e Inter-animal/individual metastatic propensity can be reduced to
variability of one critical parameter p

e Nonlinear dependence of survival on primary tumor size at diagnosis
suggests existence of a threshold for efficacy of surgery and
provides a way to compute it



Theoretical modeling of metastatic development

An in vivo/in silico approach for postsurgical metastatic development

Therapy and scheduling optimization
Modeling therapy



Chemotherapy

Chemotherapy = reduction of the growth speed

g(V) = aVln (g) _C()V



Chemotherapy

Chemotherapy = reduction of the growth speed

g(V) = aVln (g) _C()V

Toward taking into account inter-individual variability
e Simulation of 10 virtual patients with breast cancer
o Chemotherapy : 6 cycles of 21 days Viens & al., 2001

o Number of visible metastases (> 102 cel.) 5 years after the end of
the treatment.

| Patient | m | # metastases | Patient | m | # metastases |

n°1 1.7x10°° 0 n°6 70x107°% 0
n°2 1.9x10°° n°7 1.3x 1077
n°3 27 x 1078 n°8 2.7 x 1077
n°4 50 x 1078 n°9 40x 10"
n°5 6.1 x 1078 n°10 | 6.1 x 10"

o|o|lo|o
BIW N =




Anti-angiogenic treatments

dv K
I =aVlin (V)

e
Angogenc capacty

H

Consider K as a variable
representing the vasculature

H

H

Size oo imeriAngiogeic capact)

9 _ cV —dViK =g
dt ~~ N—— - I o

Stimulation by the tumor Inhibition

Hahnfeldt et al., 1999



Anti-angiogenic treatments

dv K
I =aVln <V)

Consider K as a variable
representing the vasculature

K _ cV —dV3K
dt ~— N——
Stimulation by the tumor Inhibition
Treatment
dv K
— = In{—=)—f Vv
dt aVln <V> i(i/
cytotoxic
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Transport equation for the metastases population

o ( avin (4)

cV —dV3iK )

G =G — Bu(t)

u(t) = (C(1), A1)

Carrying capacity K (mm®)

p(t, V, K)
Size V (mm®)

Conservation law B



Boundary condition. Birth of new metastases

Birth rate of new metastases of parameter o € 9Q2 per meta of size V
and carrying capacity K per unit of time : b(o, V, K)

We assume that the metastases are born with size 1 cell (V) and same
carrying capacity Ky

b(O’, \/7 K) = 50:(\/0’;(0)(1( V, K)

We take :
d(V,K)=pV?



Metastatic model with angiogenesis

dep + div(Gp) =0
G (t.0) - U0)0(t.0) = Do) { oy d(V)(. V. K)AVAK + d( V(1) }

p(0) = p°

o Renewal equation in dimension 2 for the trait X = (V, K)

e Theoretical and numerical analysis has been performed :
well-posedness, regularity, asymptotic behavior, error estimate
B., JEE, 2011
B., M2AN, 2012



Anti-angiogenic monotherapy

Testing the drugs from Hahnfeldt et al., 99 (mice data)

Endostatin 20 mg/kg/day, Angiostatin 20 mg/kg/day, TNP-470 30
mg/kg/q.0.d

g
Number of metastases

Primary tumor size (mma)

70 s
Days Days

Primary tumor Metastases



CT/AA combination. Order of administration?

Etoposide (CT)/Bevacizumab (AA) combination

Bevacizumab DO Etoposide D8 VS Etoposide DO Bevacizumab D8

Tumor size (mm)

~—— Bevacizumab DO Etoposide D8]
—<— Etoposide DO Bevacizurab Da|
—— Without reatment
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In these two first examples, the best
protocol/drug is not the same for
the primary tumor and for

the number of metastases.



Theoretical modeling of metastatic development

An in vivo/in silico approach for postsurgical metastatic development

Therapy and scheduling optimization

An optimal control problem



On the primary tumor

Xp = (Vp, Kp), Xp(t? u) = G(X,) — B(Xp)u(t)
Two possible criteria to be minimized for the primary tumor size

Jr(u) = V,(T;u) and Jy(u)= tre’rfci)nT]Vp(t; u)

Tumor size

. & = 3




On the primary tumor

Xp = (Vp, Kp), Xp(t? u) = G(X,) — B(Xp)u(t)
Two possible criteria to be minimized for the primary tumor size

Jr(u)=V,(T;u) and J,(u)= tg['(l)r]l']v ()

Toxicity constraints

uad:{<g>§u(t)§(§:z>Vtand/ t)dt<( )}
<J

Optimal control problem : find u* € Us,q such that J,(u*) < Jp(u) for
all u € U,y, studied in
U. Ledzewicz and H. Schittler, SIAM J. on Control and Optimization, 2007
A. d’Onofrio, U. Ledzewicz, H. Maurer and H. Schattler, Math. Biosc., 2009

A. Ergun, K. Camphausen, L. M. Wein, Bull. Math. Biol., 2003



On the metastases

e Two new criteria

J(u) = /Qp( T,V,K; u)dVdK

Total number of metastases

Iu(u) = / Vo(T,V,K; u)dVdK
Q

Metastatic mass

e Optimal control problem
Find (u*, uyy) € Uag such that

J(u*) = minueuad J(u) and JM(u;\*/,) = minueuad JM(U)



s there a difference in the optimal

minimizer between the
metastatic

and primary tumor criteria?



Existence of an optimal solution

Theorem

Under some regularity assumptions there exists (u*, uy,) € U,q such
that

J(U*) < J(U), Vu € z/{ada JM(U;\k/]) < JM(U), Yu e Z/lad

The proof is based on the following proposition

Proposition

Under some regularity assumptions p(u) € W1>°(Q) and there exists a
continuous function C such that, for all u € U,y

llo(u)llwao (@) < C([|ullL=(q))



Optimality system for J

Let u* be a solution of the optimal control problem. We have the
following optimality system :

Orp* + div(p*G(u*)) =0
—G - vp*(t,0,U%) = Sy (vo, ko) {de(X)p(tXu)dX—l-d (t;u*)}
p*(0,X; u*) = p°

{ —0:p* — G(u*)Vp* —d [, N(o)p*(t,0)do =0
pi(T) =~

.
/ / pdiv(p*B(X) - (v — u*)) dX dt <0, W € Usa.
0 Q



Theoretical modeling of metastatic development

An in vivo/in silico approach for postsurgical metastatic development

Therapy and scheduling optimization

Concentrating VS diluting the dose



Concentrating VS diluting the dose

Simpler situation: constant administration then 0 Ledzewicz & al., 10

Same total AUC = (Cpax; Amax)
Variable = durations = (tc, ta)

80 1800
70 —=4
==10 1600
60
50 6; 1400
g £
o> 40 o
g 5 1200
S 3 3
20
1000
10
0 800
0 2 4 6 8 10
Days

Drug administration Primary tumor



AA monotherapy. Primary tumor

1700)

—5— Minimal tumor size J,
—&— Tumor size at the end J._

1600) 1000
1500)

1400)

1a00)

Criterion

1200)

850

Growth time curves Criteria

o Better short term tumoral reduction J,, with MTD (Maximum
Tolerated Dose, ta = 4)

o Better long term tumoral reduction J1 with metronomic (ta = 4)
(for these values of parameters and initial conditions)



AA monotherapy. Metastases

Criterion

Time curves Criteria

e Nontrivial optimal scheduling for the number of mets

o Metastatic mass Jy is qualitatively the same as tumor size Jt

Benzekry and Hahnfeldt, J Theor Biol, 2013



Quantification of the effect of scheduling optimization

Criterion Min size | End size Nb mets Mass

Im Jr J Ju
Min /Max -19/0 +10/+470 | +132/4138 | +33/+154
reduction in %

o The scheduling has a strong impact on the tumoral criteria and on
the metastatic mass

e Impact on the number of metastases is much smaller

Benzekry and Hahnfeldt, J Theor Biol, 2013



e Scheduling is important

o Number of metastases and primary tumor criteria yield
different optimal strategies : strong dose/short time
(Maximum Tolerate Dose), small dose/large time
(metronomic), nontrivial minimum value

« Optimal schedule can differ between primary tumor
and metastases (parallels experimental findings: Ebos et
al. EMBO 2014, Cancer Cell, 2009).



Thank you for listening!

This work was done in collaboration with

e Dominique Barbolosi Pr
Université Aix-Marseille

e Assia Benabdallah Pr
Université Aix-Marseille

e Florence Hubert McF
Université Aix-Marseille

Preclinical study in collaboration with

e John ML Ebos lab
Roswell Park Cancer Institute, Buffalo, NY, USA
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