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Source control for SCL: setting and results
(Feedback) source control: an abstract framework
Feedback source control for SCL: numerical approximation
Attainability for 1D scalar conservation law with source

2 Attainability for a class of triangular systems
of Keyfitz-Kranzer kind

Keyfitz-Kranzer system and some generalizations
Attainability for convex 1D scalar conservation law
The non-resonant case: attainability by isentropic solutions
The resonant case: exact and approximate attainability
Numerics for backward resolution of KK kind triangular systems
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Source control for SCL: setting and results

Setting of source control for scalar conservation law

Problem: given initial and terminal data u0,uT find a control f such
that {

ut + divxF (u) = f (t , x) u, f : the unknowns
u|t=0 = u0, u|t=T = uT (given data).

u is scalar ; PDE is defined on QT := (0,T )× RN ;
flux F ∈ Liploc(R;RN). Not necessarily N = 1; convexity not needed.

Setting: L∞ solutions in the Kruzhkov (entropy) sense.
Space for f : different options, e.g. C(QT ), L∞(QT ), L1(QT ),
L1(0,T ;L∞(RN)) ... we’ll have something a bit more special.
Recent result: [Corghi, Marson ’15] for continuous source.

Questions:
1. Which states uT are attainable with source

(and from which u0, with which f )?
2. Construction of f knowing u0,uT (including numerics) ?



Feedback source control of general scalar conservation law Attainability for a class of triangular systems of Keyfitz-Kranzer kind

Source control for SCL: setting and results

Setting of source control for scalar conservation law

Problem: given initial and terminal data u0,uT find a control f such
that {

ut + divxF (u) = f (t , x) u, f : the unknowns
u|t=0 = u0, u|t=T = uT (given data).

u is scalar ; PDE is defined on QT := (0,T )× RN ;
flux F ∈ Liploc(R;RN). Not necessarily N = 1; convexity not needed.

Setting: L∞ solutions in the Kruzhkov (entropy) sense.
Space for f : different options, e.g. C(QT ), L∞(QT ), L1(QT ),
L1(0,T ;L∞(RN)) ... we’ll have something a bit more special.
Recent result: [Corghi, Marson ’15] for continuous source.

Questions:
1. Which states uT are attainable with source

(and from which u0, with which f )?
2. Construction of f knowing u0,uT (including numerics) ?



Feedback source control of general scalar conservation law Attainability for a class of triangular systems of Keyfitz-Kranzer kind

Source control for SCL: setting and results

Main results on source control for scalar conservation law

Answers:
2. Construct f using a well-chosen feedback control to trajectories:

Assume ∃v : [s,T ] 7→ L∞(RN) ∃g
{

vt + divxF (v) = g(t , x)
v |t=s = vs, v |t=T = uT .

Then let u evolve freely (f ≡ 0) on [0, s],
take us := u(s) and solve the Cauchy problem on [s,T ]:{

ut + divxF (u) = singular “nudging” source
u|t=s = us,

singular “nudging” source := p(t)(v(t , x)− u) + g(t , x)

p ≥ 0, p ↗ +∞ as t ↗ T ,
∫ T p(t)dt = +∞.

Here p(t) = 1
T−t is a typical (optimal?) example.

Simplification: s = 0 in the sequel.

Analogies: [Barbu’91] ; Lueneberger’66 observers (for CL: cf.
[Auroux,Blum’05] , [Boulanger,Moireau,Perthame,Sainte-Marie’14] ).
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Source control for SCL: setting and results

Main results, contd

1. Any L∞ state uT is attainable from any u0 at any final time T ,
provided f ∈ L∞(0,T ;L1(RN))

⋂(
∩δ>0L∞(QT−δ)

)
.

Step I. Existence of a (forced) trajectory v
with uT as the terminal datum,
and some source g.

1/2 0

1/2

0

t=T

t=0

−1 1

−1

1

(Forced) backward construction: to be detailed in the sequel.

Step II. The above nudging feedback strategy

f (t , x) = g(t , x) +
1

T − t
(v(t , x)− u(t , x)),

to attain uT from any u0 at any time T .
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Source control for SCL: setting and results

Idea of the argument

Why singular nudging works:
The result relies upon L1 contraction for entropy solutions of SCL .
“Multiply PDE(u)-PDE(v ) by sign(u − v)”, integrate on [0, t ]× RN ⇒

∀t ∈ [0,T ]

∫
RN
|u − v |(t) ≤

∫
RN
|u0 − v0|+

∫ t

0

∫
RN

sign(u − v)(f − g)

⇔ ‖u − v‖1(t) +
∫ t

0
p(τ)‖u − v‖1(τ) dτ ≤ ‖u0 − v0‖1.

NB: analogously, one gets ‖u − v‖1(t) := ‖u(t , ·)− v(t , ·)‖L1(RN ) ↘ with t .

Gronwall inequality and the assumption
∫ T p(τ) dτ = +∞⇒

‖u−v‖1 ≤ ‖u0−v0‖1 exp
(
−
∫ t

0 p(τ) dτ
)
⇒ ‖u − v‖1(t)→ 0, t → T .

Moreover: if p(t) = 1
T−t , then ‖u − v‖1 ≤ T−t

T ‖u0 − v0‖ (optimality?)
and (assuming g ≡ 0 for simplicity)

‖f (t , ·)‖1 ≤ p(t)‖u − v‖1(t) ≤ 1
T ‖u0 − v0‖ ⇒ f ∈ L∞(0,T ; L1(RN)).

Finally: maximum principle⇒ supτ∈[0,t] ‖u‖∞(τ) ≤ supτ∈[0,t] ‖v‖∞(τ)

⇒ f ∈ L∞(QT−δ), ∀δ > 0.
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(Feedback) source control: an abstract framework

m-accretive operators in Banach spaces and generation of contraction
semigroups

Abstract framework: (X , ‖ · ‖) Banach space.

General source control problem: find a control f ∈ L1(0,T ;X )
and a (mild) solution u ∈ C([0,T ];X ) such that{

u′ + Au 3 f
u(0) = u0, u(T ) = uT

where A is an m-accretive operator on X , i.e,
the resolvent (Id + λA)−1 is non-expansive, λ > 0
the resolvent is densely defined in X .

Well-posedness of the Cauchy problem:
Crandall, Liggett, Bénilan in 1970ies
Applications: (schools of Brézis, Crandall, Bénilan,... )
– (fractional) heat eqn, porous medium and fast diffusion eqns,
parabolic p-laplacian, Stefan and Hele-Shaw problems, total variation
flow, scalar Hamilton-Jacobi equations,..., scalar conservation laws.
– viscosity, entropy, renormalized, kinetic solutions to the above PDEs
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(Feedback) source control: an abstract framework

Control to trajectories of contractions semigroups

Result: “singular nudging” feedback source⇒ control to trajectories.

Main Theorem (almost immediate from [Bénilan,Igbida’96] )

Let A be an m-accretive operator, D(A) = X.
Given v a mild solution on [0,T ] with source g and final datum uT ,
given p ∈ L1

loc([0,T )), p ≥ 0,
∫ T p(t)dt = +∞,

for all u0 there exists a unique u ∈ C([0,T ];X ) mild solution of

u′ + Au 3 f , u(0) = u0 and u(T ) = uT

with f (t) = p(t)(u − v) + g(t).

For p(t) = 1
T−t , one has in particular

‖u − v‖(t) ≤ T − t
T
‖u0 − v0‖ and (f − g) ∈ L∞(0,T ;X ).

Proof: uses a fixed-point to deal with feedback source.
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(Feedback) source control: an abstract framework

Constructive approximation schemes for nudging control

An example of semi-discretization for the nugding:
Take T = 1, N ∈ N, set δt = 1/N. Pick (αn)n=1..N ∈ (0,+∞).
A mild solution v (for simplicity, with source g ≡ 0) is approximated by

vn + (δt)Avn 3 vn−1 for n = 1..N, given v0.

Consider the following approximation of the nudging control problem:

un + (δt)Aun 3 (1− αn)un−1 + αnvn−1 = un−1 + (δt)gn, given u0.

where gn := Nαn(vn−1 − un−1) is the associated discretized source.

Lemma (“Discrete Gronwall”)

‖un−vn‖ ≤
n∏

k=1

(1−αk )‖u0−v0‖ and ‖gn‖ ≤ Nαn
n−1∏
k=1

(1−αk )‖u0−v0‖.

For αn := ((N + 1)− n)−1, one has in particular

∀n = 1..N ‖un − vn‖ ≤ (N+1)−n
N

‖u0 − v0‖ and ‖gn‖ ≤ 1.
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(Feedback) source control: an abstract framework

Constructive approximation schemes for nudging control, contd

Another example of approximation: using the semigroup S(·), set

vn = S(δt)vn−1 and un = (1− α)S(δt)un−1 + αnS(δt)vn−1.

Same stability estimates hold as for the previous scheme !!
In all cases, we get a piecewise constant in time approximation:

uN : t 7→
N∑

n=1

un11
[ n−1

N , n
N )
(t), gN : t 7→

N∑
n=1

gn11
[ n−1

N , n
N )
(t).

Convergence ? Compactness is needed...
The thing to prove is that (uN)N is pre-compact (in C([0, 1];X )? weaker?).
Convergence would follow since (gN)N would be pre-compact (e.g. locally, in
C([0, 1);X )), and since mild solutions are integral solutions [Bénilan’72]
⇒ easy passage to the limit in the formulation of integral solution.

general semigroup theory should apply for compactness...?
if (Id + λA)−1 (resp., S(.)) is compact, compactness of (uN)N is easier...
in applications to parabolic equations/to SCL, the PDE formulations
possess their own (weaker) compactness frameworks
(energy estimates + Aubin-Lions-Simon, for parabolic problems;
BV estimates, translation estimates or velocity averaging, for SCL)
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Feedback source control for SCL: numerical approximation

Feedback source control of SCL:
fully discrete approximation
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Feedback source control for SCL: numerical approximation

Fully discrete Finite Volume approximation of the nudging for SCL

Standard (explicit in operator) FV scheme for SCL ut + divF (v) = source:
Given F : R× R 7→ R consistent with F , monotone, Lipschitz numerical flux,
with δt

δx ≤ CFL , discretize the trajectory v (with g ≡ 0) and the “nudged” u by

vn
i − vn−1

i

δt
+
F(vn−1

i , vn−1
i+1 )−F(vn−1

i−1 , v
n−1
i )

δx
= 0,

un
i − un−1

i

δt
+
F(un−1

i , un−1
i+1 )−F(un−1

i−1 , u
n−1
i )

δx
=

αn

δt
(v∗i − u∗i ), ∗ ∈ {n−1, n}

Properties of these FV discretizations:

maximum principle, control of L1, L∞ and BV norms (decrease in time)

discrete contraction (and discrete entropy inequalities) [Crandall,Tartar]

Implicit nudging Explicit nudging
Like for the continuous case, Like for above semi-discretizations,

‖un−vn‖+
n∑

k=1

αk‖uk−v k‖ ≤ ‖u0−v0‖ ‖un−vn‖ ≤ (N+1)−n
N ‖u0−v0‖,

‖sourcen‖ ≤ 1, for αn := 1
(N+1)−n .

Compactness: (⇒ convergence (e.g. [Eymard,Gallouët,Herbin] )
from BV estimates, if BV data; from non-linearity of the flux F , if L∞ data.
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Attainability for 1D scalar conservation law with source

Attainability
for 1D conservation law with source
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Attainability for 1D scalar conservation law with source

Typical solutions (building blocks) of SCL and their gluing

Typical solutions of SCL: (building blocks)
shock waves (a mess: admissibility issues, irreversibility)
rarefactions U(t , x) = [F ′]−1( x

t ), reversible
in fact, constants are also solutions :-)

NB: irreversibility is very bad for backward constructions...
Modification and gluing of the blocks:

solutions can be glued continuously e.g across lines
one can modify the block using symmetries:
translation invariance , scaling, change
(t , x ,F )→ (T − t ,∓x ,±F ),...

The obvious solution with source: (case a < b)

U(t , x) = max{a,min{b, x
t }} fulfills Ut + F (U)x = g,

g :=
(
− x

t + F ′( x
t )
) 1

t 11[a,b]( x
t ),

‖g(t , ·)‖L1(R) ≤ MF ,max{|a|,|b|}, ‖g(t , ·)‖L∞(R) ≤
1
t

MF ,max{|a|,|b|}

moreover, ‖U(t , ·)‖L∞(R) = max{|b|, |a|} and |U(t , ·)|BV (R) = b − a.
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Attainability for 1D scalar conservation law with source

Backward construction for piecewise constant data. Extension by
density

Gluing, for piecewise constant terminal datum uT :
Juxtapose reversed profiles U(T − t , x − x0) at jump points x0 of uT .
Overlapping cancellation continuous gluing
across vertical segments in space-time 1/2 0

1/2

0

t=T

t=0

−1 1

−1

1

Extension by density
for uT ∈ BV : approximate uT by piecewise constant uεT ,
use BV estimates on uε and L∞loc estimates on gε

for uT ∈ L∞: assume F non-degenerately nonlinear,
use L∞ estimates and velocity averaging compactness tools.

NB: Why u(T ) = lim uε(T )? Weak trace formulation, [Chen,Frid]
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Attainability

for a class of triangular systems

of Keyfitz-Kranzer kind
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Keyfitz-Kranzer system and some generalizations

Keyfitz-Kranzer system

Hyperbolic systems of conservation laws:
Beyond the scalar case, few is known even about well-posedness.
Particular (classes of) systems may possess special structure.
[Keyfitz-Kranzer’79] system:

Ut + (φ(|U|)U)x = 0

can be rewritten with r = |U|, w = U/|U| as{
rt + (rφ(r))x = 0
(r w)t + (rφ(r)w)x = 0 ⇔

{
(convex) scalar cons. law
continuity eqn. (Aw)t + (Bw)x = 0

where (A,B) = (r , rφ(r)) is a divergence-free in (t , x) field.
Well-posedness:
True for “strong entropy solutions” [Freistuhler’94],[Panov’00].
The idea is that r is a Kruzhkov entropy solution of the SCL ,
and w is a renormalized solution of the continuity equation.
(⇒ |w | ≡ 1, needed to reconstruct a solution U of KK from (r ,w) ).
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Keyfitz-Kranzer system and some generalizations

Triangular systems. Attainability and backward construction.

Our framework: (motivated by KK, though it does not include KK){
ut + f (u)x = 0, f strictly convex
vt + (g(u)v)x = 0

Structure: (non-strictly) hyperbolic: eigenvalues f ′(u) and g(u).
Objectives:

Describe the set of attainable states at time t = T .
Provide a backward construction (analytical, then numerical).

Notion(s) of solution: entropy solutions ??
non-resonant case (∀u f ′(u) 6= g(u)): ∃ non-trivial entropies.
We use only isentropic (reversible) solutions.
resonant case : only trivial entropies (those of the SCL).
We combine reversible solutions u of SCL and
reversible solutions w of the continuity equations
(which are also DiPerna-Lions renormalized solutions).

Curious: Attainability by entropy solutions⇔ by reversible solutions !
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Attainability for convex 1D scalar conservation law

Attainability for convex conservation law
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Attainability for convex 1D scalar conservation law

Attainability for convex conservation law

Proposition

Let T > 0. Consider a scalar conservation law ut + f (u)x = 0 with
strictly convex C1 flux f . Then

(i) Set of states attainable by entropy solutions at time T :

AT =
{

u ∈ L∞(R) : ∃ρ : R→ R nondecreasing

such that f ′(u) =
x − ρ(x)

T
}
.

(ii) For every uT ∈ AT (R) there exists a unique isentropic solution u
on [0,T ]× R that verifies u(T , ·) = uT .

Proofs:
[Ancona,Marson’98] , with Dafermos’ generalized characteristics
[Adimurthi,Ghoshal,V.Gowda’14] , with Hopf-Lax-Oleinik formula

Numerical counterpart:
Discretize zt + (−f (z))x = 0, z|t=0 = uT by a monotone FV scheme.
Attainability of uT ⇔ z is reversible. Take u(t , ·) = z(T − t , ·).
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Attainability for convex 1D scalar conservation law

(Isentropic version of) the construction of Adimurthi, Ghoshal, Veerappa
Gowda:

For uT corresponding to a piecewise constant ρ:

t=T

t=0
y i y i+1 y i+2

x i x i+1 x i+2

Ω

Ω
r

c
i

i

Rarefaction waves

Compression 
   waves

Extension by density: (use uniform BV estimates)
discretizing ρ := x − Tf ′(uT (x)), at the limit one reaches any uT ∈ AT .
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The non-resonant case: attainability by isentropic solutions

Attainability for KK kind systems

in the non-resonant case
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The non-resonant case: attainability by isentropic solutions

Non-resonant case: entropies and attainability

Main Theorem (Attainability: only the component uT matters)

For non-resonant KK-like triangular system, any (uT , vT ) ∈ AT × L∞

is attainable at time T by a (unique) isentropic solution.

Lemma (description of entropies of KK-like triangular systems)

If f ′(u) 6= g(u) for all u ∈ [a,b], all smooth entropies have the form

E(u, v) = η(u) + e−H(u)µ(veH(u)),

here H is a primitive of u 7→ −g′(u)
f ′(u)−g(u) , η, µ are any smooth functions.

Change of unknown: v = A(u)w , A(·) := e−H(·) .
General entropies re-write as E = η(u) + A(u)µ(w).
Hint: for isentropic solutions of SCL, A(u)t + (A(u)g(u))x = 0.
Proof of Th.: analogously to KK, solve the SCL (here, isentropically );
then for (A(u)w)t+(A(u)g(u)w)x = 0, ∃! renormalized sol. [Panov’08]
It follows that the entropies E = η(u) + A(u)µ(w) are conserved.
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If f ′(u) 6= g(u) for all u ∈ [a,b], all smooth entropies have the form

E(u, v) = η(u) + e−H(u)µ(veH(u)),

here H is a primitive of u 7→ −g′(u)
f ′(u)−g(u) , η, µ are any smooth functions.

Change of unknown: v = A(u)w , A(·) := e−H(·) .
General entropies re-write as E = η(u) + A(u)µ(w).
Hint: for isentropic solutions of SCL, A(u)t + (A(u)g(u))x = 0.
Proof of Th.: analogously to KK, solve the SCL (here, isentropically );
then for (A(u)w)t+(A(u)g(u)w)x = 0, ∃! renormalized sol. [Panov’08]
It follows that the entropies E = η(u) + A(u)µ(w) are conserved.
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Attainability for KK kind systems

in the resonant case
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The resonant case: exact and approximate attainability

Resonant case. Forward and backward non-uniqueness.

Counterexamples: Resonant (at u∗ = 1) system{
ut +

(
u2

2

)
x
= 0

vt +
(
u2v

)
x = 0.

(1)

Given any C1, compactly supported in (0,1) function K ,

u(t , x) = min
{

1,max
{

0,
x
t

}}
with v(t , x) =

1
x2 K

(
1
x
− 1

t

)
are admissible (from any reasonable standpoint?) solutions.
All the corresponding family of terminal states should be seen (?)
as attainable from the same initial state U0 = (sign+(u),0).

Forward non-uniqueness of v , if u has rarefactions focusing at t = 0
Backward non-uniqueness, if u has compressions focusing at t = T

⇒ problems, if uT is “on the border” of the set AT

Numerics: it may be impossible to capture some solutions !
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The resonant case: exact and approximate attainability

Regularized states and the main result.

Regularized states of AT :
The subset of all states in AT without focusing waves:

AT := W 1,∞(R)
⋂(
∪δ>0AT+δ

)
AT is dense in AT w.r.t. L1

loc topology
If S(·) is the evolution semigroup, uT ∈ AT ⇒ S(δ)AT ∈ AT+δ.
Solving SCL forward on [0, δ] rules out focusing at t = 0

Theorem (Attainability, the resonant case)

Under the local uniform convexity assumption of f ,
every state UT ∈ AT × L∞(R) is attainable at time t = T
every state in UT ∈ AT × L∞(R) is approximatively attainable
at time t = T , with respect to L1

loc(R) topology.
In the backward solutions for UT = (uT , vT ) ∈ AT , u can be chosen
to be the unique isentropic solution of the SCL with u(T ) = uT ; then v
is the unique weak solution (and also the unique DiPerna-Lions
renormalized solution) of the continuity eqn. with v(T ) = vT .
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Numerics for backward-forward resolution
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Numerics for backward resolution of KK kind triangular systems

The algorithm for backward and forward resolution

Scheme: (isentropicity⇒ same scheme forward and backward!)
u computed by explicit FV with Godunov numerical flux
v computed by the explicit FV scheme of [Gosse,James’00]

Protocol of experiments: UT
backward num.−→ U0

forward num.−→ ≈ UT ?
perso

nal copy

nal copy

Figure: Test cases (non-resonant): one datum uT , two different data v1,2
T
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Numerics for backward resolution of KK kind triangular systems

Resonant case: inexact attainability and the interest of regularization.

Crude numerics: bad backward-forward matching for uT ∈ AT \ AT

Author's nal copy

Regularization + numerics: uT ∈ AT replaced by S(δ)uT ∈ AT

Author's nal copy
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Numerics for backward resolution of KK kind triangular systems

Conclusions and perspectives

Conclusions:
attainability with a source: trivial for scalar conservation laws
and even for general contractive evolution equations,
due to the singular nudging strategy
[Adimurthi,A.,Ghoshal, in prep.]
convex scalar case: attainability by isentropic solutions helps a
lot in backward resolution of Keyfitz-Kranzer and similar systems
[A.,Donadello,Ghoshal,Razafison’15]

In progress:
some necessary / some sufficient conditions for attainability
for SCL with non-convex (cubic) flux [Donadello, Marson, A., in prep.]
...here, one cannot rely only upon reversible solutions !

Open:
e.g., extension of the nudging to hyperbolic systems
using “dissipative source” [Dafermos,Hsiao’82] ?

Merci !
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