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These equations have occupied a large part of my research since 1980.

The mathematical study of diffusion starts with the Heat
Equation,

u, = Au

a linear example of immense influence in Science.

The Heat Equation has produced a huge number of concepts,
techniques and connections for pure and applied science, for analysts,
probabilists, computational people and geometers, for physicists and
engineers, and lately in finance and the social sciences.

Today educated people talk about the Gaussian function, separation of
variables, Fourier analysis, spectral decomposition, Dirichlet forms,
Maximum Principles, Brownian motion, generation of semigroups,
positive operators in Banach spaces, entropy dissipation, ...



Nonlinear equations

o The heat example is generalized into the theory of linear parabolic
equations, which is nowadays a basic topic in any advanced study of
PDEs.

o However, the heat example and the linear models are not representative
enough, since many models of science are nonlinear in a form that is
very not-linear. A general model of nonlinear diffusion takes the
divergence form

OH(u) =V - A(x,u, Du) + B(x, t,u, Du)

with monotonicity conditions on H and Vp/f(x, t,u, p) and structural
conditions on A and B. Posed in the 1960s (Serrin et al.)
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o The heat example is generalized into the theory of linear parabolic
equations, which is nowadays a basic topic in any advanced study of
PDEs.

o However, the heat example and the linear models are not representative
enough, since many models of science are nonlinear in a form that is
very not-linear. A general model of nonlinear diffusion takes the
divergence form

OH(u) =V - A(x,u, Du) + B(x, t,u, Du)

with monotonicity conditions on H and Vp/f(x, t,u, p) and structural
conditions on A and B. Posed in the 1960s (Serrin et al.)

o In this generality the mathematical theory is too rich to admit a simple
description. This includes the big areas of Nonlinear Diffusion and
Reaction Diffusion, where I have been working.

@ Reference works. Books by Ladyzhenskaya-Solonnikov-Uraltseva,
Friedman, Smoller,... But they are only basic reference.
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@ Many specific examples, now considered the “classical nonlinear
diffusion models”, have been investigated to understand in detail the
qualitative features and to introduce the quantitative techniques, that
happen to be many and from very different origins

@ Typical nonlinear diffusion: Stefan Problem (phase transition between
two fluids like ice and water), Hele-Shaw Problem (potential flow in a
thin layer between solid plates), Porous Medium Equation:

u; = A(u™), Evolution P-Laplacian Eqn: u, = V - (|Vul|P~2Vu).

@ Typical reaction diffusion: Fujita model u, = Au + v”.



Fractional diffusion

@ Replacing Laplacians by fractional Laplacians is motivated by the need to
represent anomalous diffusion. In probabilistic terms, it replaces
next-neighbour interaction of Random Walks and their limit the Brownian
motion by long-distance interaction. The main mathematical models are the
Fractional Laplacians that have special symmetry and invariance properties.

@ Basic evolution equation

u+ (—A)Yu=0
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@ Replacing Laplacians by fractional Laplacians is motivated by the need to
represent anomalous diffusion. In probabilistic terms, it replaces
next-neighbour interaction of Random Walks and their limit the Brownian
motion by long-distance interaction. The main mathematical models are the
Fractional Laplacians that have special symmetry and invariance properties.

@ Basic evolution equation

u+ (—A)Yu=0

@ Intense work in Stochastic Processes for some decades, but not in Analysis of
PDEs until 10 years ago, initiated around Prof. Caffarelli in Texas.
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Recent Direction. The fractional Laplacian operator

o Different formulas for fractional Laplacian operator.
We assume that the space variable x € R", and the fractional exponent
is 0 < s < 1. First, pseudo differential operator given by the Fourier transform:

(=A)u(€) = |€u(€)
@ Singular integral operator:
AV () — u(x) — u(y)
(=A)’u(x) = Cus /Rn e — y|r2s dy

s

With this definition, it is the inverse of the Riesz integral operator (—A) ™ u.
This one has kernel Ci|x — y|"~*, which is not integrable.

@ Take the random walk for Lévy processes:
n+1 Z P kuk

where Pj denotes the transition function which has a . tail (i.e, power decay
with the distance |i — k|). In the limit you get an operator A as the infinitesimal
generator of a Levy process: if X; is the isotropic a-stable Lévy process we have

Au(x) = lim B(u(x) — u(x + X))



The fractional Laplacian operator 11

@ The a-harmonic extension: Find first the solution of the (n + 1) problem
V-0V =0 (x,y) eR"xRy; v(x,0) =ulx), xecR"

Then, putting @ = 2s we have

s _ : -« ov
(AYu(x) = ~Ca limy' 3

When s = 1/2i.e. a = 1, the extended function v is harmonic (in n + 1
variables) and the operator is the Dirichlet-to-Neumann map on the base space
x € R". It was proposed in PDEs by Caffarelli and Silvestre.
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@ The a-harmonic extension: Find first the solution of the (n + 1) problem
V-0V =0 (r,y) e R"xRy; v(x,0) =u(x), xeR"
Then, putting @ = 2s we have

s _ : -« ov
(AYu(x) = ~Ca limy' 3

When s = 1/2i.e. a = 1, the extended function v is harmonic (in n + 1
variables) and the operator is the Dirichlet-to-Neumann map on the base space
x € R". It was proposed in PDEs by Caffarelli and Silvestre.

Remark. In R" all these versions are equivalent. In a bounded domain we have
to re-examine all of them. Three main alternatives are studied in probability and
PDE:s, corresponding to different options about what happens to particles at the
boundary or what is the domain of the functionals.

References. Books by Landkof (1966-72), Stein (1970), Davies (1996).
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Porous Medium / Fast Diffusion Equations

@ The simplest model of nonlinear diffusion equation is maybe

’ u = Au" =V - (c(u)Vu) ‘

¢(u) indicates density-dependent diffusivity
c(u) = mu" =" [= mlu|" ]
o If m > 1 it degenerates at u = 0 , = slow diffusion

@ For m = 1 we get the classical Heat Equation.

@ On the contrary, if m < 1 itis singular at 4 = 0 = Fast Diffusion.
@ Let us see why we have a problem. Take m = 2 and differentiate
u, = 2ulu + 2|Vul?

at the level u = 0 it degenerates into u, ~ 2|Vu|? which is not parabolic
and admits propagation fronts = Free Boundaries appear.
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Applied motivation for the PME

@ Flow of gas in a porous medium (Leibenzon, 1930; Muskat 1933)

m=1+~vy2>2
{ pi +div (pv) = 0,
v=—%Vp, p=pp)

Second line left is the Darcy law for flows in porous media (Darcy,
1856). Porous media flows are potential flows due to averaging of
Navier-Stokes on the pore scales.
To the right, put p = p, p”, with v = 1 (isothermal), v > 1 (adiabatic
flow).

k k
pr=div (2 pVp) = div (7 pV (pop™)) = cApH

@ Underground water infiltration (Boussinesq, 1903) m = 2



Barenblatt profiles

o These profiles are the alternative to the Gaussian profiles.

They are source solutions. Source means that u(x,t) — M §(x) as
t—0.us

@ Explicit formulas (1950, 52):
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o These profiles are the alternative to the Gaussian profiles.

They are source solutions. Source means that u(x,t) — M §(x) as
t—0.us

@ Explicit formulas (1950, 52):

B(x,1; M) =~ °F(x/1?), F(¢) = (c _ kg2)1+/(’”*‘)

o= 2+n(r:nfl)

— 1
8= mmt—n <1/2
Heightu = Ct—<

Free boundary at distance
x| = ct?

Scaling law; anomalous diffusion versus Brownian motion
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Fast Diff Eqn Barenblatt profiles

@ We have well-known explicit formulas for Self-similar Barenblatt profiles with
exponents less than one if 1 > m > (n — 2)/n:
1

B(x,; M) =t °F(x/i"), F() = (C + k€2)1/(=m)

The exponents are v = 5—#— and 8 = m > 1/2.
Solutions for m > 1 with fat tails (polynomial decay; anomalous distributions)
@ Big problem: What happens for small m, m < (n—2)/n?

@ Main items: existence for very general data, non-existence for very fast
diffusion, non-uniqueness for v.f.d., extinction, universal estimates, lack of
standard Harnack.
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@ The model arises from the consideration of a continuum, say, a fluid,
represented by a density distribution u(x, ) > 0 that evolves with time
following a velocity field v(x, t), according to the continuity equation

u+ V- (uv) =0.

@ We assume next that v derives from a potential, v = —Vp, as happens in fluids
in porous media according to Darcy’s law, an in that case p is the pressure. But
potential velocity fields are found in many other instances, like Hele-Shaw
cells, and other recent examples.

@ We still need a closure relation to relate # and p. In the case of gases in porous
media, as modeled by Leibenzon and Muskat, the closure relation takes the
form of a state law p = f(u), where f is a nondecreasing scalar function, which
is linear when the flow is isothermal, and a power of u if it is adiabatic.

The linear relationship happens also in the simplified description of water
infiltration in an almost horizontal soil layer according to Boussinesq. In both
cases we get the standard porous medium equation, u, = cA(u?).

See PME Book for these and other applications (around 20!).



Nonlocal diffusion model. The problem

@ The diffusion model with nonlocal effects proposed in 2007 with Luis
Caftarelli uses the derivation of the PME but with a closure relation of the form
p = K(u), where K is a linear integral operator, which we assume in practice
to be the inverse of a fractional Laplacian. Hence, p es related to u through a
fractional potential operator, K = (—A)™, 0 < s < 1, with kernel
k(x,y) = clx = y| 77
(i.e., a Riesz operator). We have (—A)’p = u.
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Nonlocal diffusion model. The problem

@ The diffusion model with nonlocal effects proposed in 2007 with Luis
Caftarelli uses the derivation of the PME but with a closure relation of the form
p = K(u), where K is a linear integral operator, which we assume in practice
to be the inverse of a fractional Laplacian. Hence, p es related to u through a
fractional potential operator, K = (—A)™, 0 < s < 1, with kernel

(n—2s)
k(x,y) = clx =y~
(i.e., a Riesz operator). We have (—A)’p = u.

@ The diffusion model with nonlocal effects is thus given by the system

u,=V-(uVp), p=K(u). (1)

where u is a function of the variables (x, r) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is
related to u via a linear operator K. u, = V - (u V(—=A)"*u)

@ The problem is posed for x € R, n > 1, and 7 > 0, and we give initial
conditions
u(x,0) = up(x), xeR", )
where 1 is a nonnegative, bounded and integrable function in R".
Papers and surveys by us and others are available, see below



Nonlocal diffusion model

@ The interest in using fractional Laplacians in modeling diffusive processes has a
wide literature, especially when one wants to model long-range diffusive
interaction, and this interest has been activated by the recent progress in the
mathematical theory as a large number works on elliptic equations, mainly of
the linear or semilinear type (Caffarelli school; Bass, Kassmann, and others)

@ There are many works on the subject. Here is a good reference to fractional
elliptic work by a young Spanish author

Xavier Ros-Otén. Nonlocal elliptic equations in bounded domains: a survey,
Preprint in arXiv:1504.04099 [math.AP].



Nonlocal diffusion Model 1. Applications

@ Modeling dislocation dynamics as a continuum. This has been studied by P.
Biler, G. Karch, and R. Monneau (2008), and then other collaborators,
following old modeling by A. K. Head on Dislocation group dynamics II.
Similarity solutions of the continuum approximation. (1972).

This is a one-dimensional model. By integration in x they introduce viscosity
solutions a la Crandall-Evans-Lions. Uniqueness holds.
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recently in a number of applications in particle physics. Thus, Giacomin and
Lebowitz (J. Stat. Phys. (1997)) consider a lattice gas with general short-range
interactions and a Kac potential, and passing to the limit, the macroscopic
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@ Modeling dislocation dynamics as a continuum. This has been studied by P.
Biler, G. Karch, and R. Monneau (2008), and then other collaborators,
following old modeling by A. K. Head on Dislocation group dynamics II.
Similarity solutions of the continuum approximation. (1972).

This is a one-dimensional model. By integration in x they introduce viscosity
solutions a la Crandall-Evans-Lions. Uniqueness holds.

@ Equations of the more general form u, = V - (o(1)V Lu) have appeared
recently in a number of applications in particle physics. Thus, Giacomin and
Lebowitz (J. Stat. Phys. (1997)) consider a lattice gas with general short-range
interactions and a Kac potential, and passing to the limit, the macroscopic
density profile p(r, t) satisfies the equation

% =Vv. Ux(p)VL;(pp)
See also (GL2) and the review paper (GLP). The model is used to study phase
segregation in (GLM, 2000).

@ More generally, it could be assumed that /C is an operator of integral type
defined by convolution on all of R", with the assumptions that is positive and
symmetric. The fact the K is a homogeneous operator of degree 2s, 0 < s < 1,
will be important in the proofs. An interesting variant would be the Bessel
kernel K = (—A + ¢I)™°. We are not exploring such extensions.
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@ In the other end of the s interval, when s = 1 and we take L = —A we get
w=Vu-Vp—u*, —Ap=u. 3)
In one dimension this leads to u; = upx — u°, pxx = —u. In terms of
v = —px = [udx we have

ve = upx + c(t) = —vev + (1),

For ¢ = 0 this is the Burgers equation v, + vv, = 0 which generates shocks in
finite time but only if we allow for u to have two signs.
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Extreme cases

@ If we take s = 0, /C = the identity operator, we get the standard porous medium
equation, whose behaviour is well-known, see references later.

@ In the other end of the s interval, when s = 1 and we take L = —A we get
w=Vu-Vp—u*, —Ap=u. 3)
In one dimension this leads to u; = upx — u°, pxx = —u. In terms of
v = —px = [udx we have

ve = upx + c(t) = —vev + (1),

For ¢ = 0 this is the Burgers equation v, + vv, = 0 which generates shocks in
finite time but only if we allow for u to have two signs.

@ HYDRODYNAMIC LIMIT. The case s = 1 in several dimensions is more
interesting because it does not reduce to a simple Burgers equation.

w=V-wVp)=Vu-Vp—u’; , p=(-A)""u,

Applications in superconductivity and superfluidity, see paper with Serfaty and
below.
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Our first project. Results

o Existence of weak energy solutions and property of finite propagation
L. Caffarelli and J. L. Vazquez, Nonlinear porous medium flow with
fractional potential pressure, Arch. Rational Mech. Anal. 2011; arXiv
2010.

o Existence of self-similar profiles, renormalized Fokker-Planck equation
and entropy-based proof of stabilization
L. Caffarelli and J. L. Vazquez, Asymptotic behaviour of a porous
medium equation with fractional diffusion, appeared in Discrete Cont.
Dynam. Systems, 2011; arXiv 2010.

@ Regularity in three levels: L' — L2, L> — L>, and bounded implies C*
L. Caffarelli, F. Soria, and J. L. Vazquez, Regularity of porous medium
equation with fractional diffusion, J. Eur. Math. Soc. (JEMS) 15 5
(2013), 1701-1746. The very subtle case s = 1/2 is solved in a new
paper L. Caffarelli, and J. L. Vazquez, appeared in ArXiv and as
Newton Institute Preprint, 2014
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Abel Symposium 2010.
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Our first project. Results

o Limits — 1 S. Serfaty, and J. L. Vazquez, Hydrodynamic Limit of
Nonlinear. Diffusion with Fractional Laplacian Operators, Calc. Var.
PDEs 526, online; arXiv:1205.6322v1 [math.AP], may 2012.

A presentation of this topic and results for the Proceedings from the
Abel Symposium 2010.

@ J. L. Vazquez. Nonlinear Diffusion with Fractional Laplacian
Operators. in “Nonlinear partial differential equations: the Abel
Symposium 20107, Holden, Helge & Karlsen, Kenneth H. eds.,
Springer, 2012. Pp. 271-298.

Last reference is proving that the selfsimilar solutions of Barenblatt
type (Caffareli-Vazquez, Biler-Karch-Monneau) are attractors with
calculated rate in 1D

e Exponential Convergence Towards Stationary States for the 1D Porous
Medium Equation with Fractional Pressure, by J. A. Carrillo, Y. Huang,
M. C. Santos, and J. L. Vazquez. JDE, 2015.
Uses entropy analysis. Problem is open (and quite interesting in higher
dimenions).



Main estimates for this model

We recall that the equation of M1 is du = V - (u VK (u)), posed in the whole
space R".

We consider K = (—A) ™" for some 0 < s < 1 acting on Schwartz class
functions defined in the whole space. It is a positive essentially self-adjoint
operator. Welet H = K'/? = (—=A)™/2,

We do next formal calculations, assuming that u > 0 satisfies the required
smoothness and integrability assumptions. This is to be justified later by
approximation.

@ Conservation of mass

5 | wxnax=o. @)

@ First energy estimate:

—/ x, 1) logu(x,1)d. /|VHu| dx. 3)

@ Second energy estimate

%/|Hu(x,t)|2dx: —2/u|VKu\2dx. ()



Main estimates

@ Conservation of positivity: uo > 0 implies that u(r) > 0 for all times.

@ L estimate. We prove that the L° norm does not increase in time.
Proof. At a point of maximum of « at time t = #o, say x = 0, we have

u = Vu-VP+ulAK(u).

The first term is zero, and for the second we have —AK = L where L = (—A),
with ¢ = 1 — s so that

AKu(0) = —Lu(0 / ‘y|n+2(l Y) <0.

This concludes the proof.

@ We did not find a clean comparison theorem, a form of the usual maximum
principle is not proved for Model 1. Good comparion works for Model 2 to be
presented below, actually, it helps produce a very nice theory.

@ Finite propagation is true for model M 1. Infinite propagation is true for model
M2.
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@ Solutions are bounded in terms of data in L, 1 < p < oc.
For Model 1 Use (the de Giorgi or the Moser) iteration technique on the
Caffarelli-Silvestre extension as in Caffarelli-Vasseur.
Or use energy estimates based on the properties of the quadratic and
bilinear forms associated to the fractional operator, and then the
iteration technique
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@ Solutions are bounded in terms of data in L, 1 < p < oc.
For Model 1 Use (the de Giorgi or the Moser) iteration technique on the
Caffarelli-Silvestre extension as in Caffarelli-Vasseur.
Or use energy estimates based on the properties of the quadratic and
bilinear forms associated to the fractional operator, and then the
iteration technique

@ Theorem (for M1) Let u be a weak solution the IVP for the FPME
with data uy € L'(R") N L>°(R"), as constructed before. Then, there
exists a positive constant C such that for every t > 0

sup [u(x, )| < C1™*[[uoll /s ) 7
xeRn
witha =n/(n+2 —2s),v= (2 — 2s)/((n + 2 — 2s). The constant C
depends only on n and s.
This theorem allows to extend the theory to data uy € L' (R"), ug > 0,
with global existence of bounded weak solutions.



Energy and bilinear forms

o Energy solutions: The basis of the boundedness analysis is a property
that goes beyond the definition of weak solution. We will review the
formulas with attention to the constants that appear since this is not
done in [CSV]. The general energy property is as follows: for any F
smooth and such that f = F’ is bounded and nonnegative, we have for
every0<1, < <T,

S Flult2)) d = [ Flu = [ [ VI )]uVpdxdi =
— [ [ Vh(u)V(~A)udxdr

where & is a function satisfying 4’ (1) = uf’(u). We can write the last
integral as a bilinear form

/Vh(u)V(—A)fsudx = By(h(u),u)
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o Energy solutions: The basis of the boundedness analysis is a property
that goes beyond the definition of weak solution. We will review the
formulas with attention to the constants that appear since this is not
done in [CSV]. The general energy property is as follows: for any F
smooth and such that f = F’ is bounded and nonnegative, we have for
every0<1, < <T,

S Flult2)) d = [ Flu = [ [ VI )]uVpdxdi =
— [ [ Vh(u)V(~A)udxdr

where & is a function satisfying 4’ (1) = uf’(u). We can write the last
integral as a bilinear form

/Vh(u)V(—A)fsudx = By(h(u),u)

@ This bilinear form B is defined on the Sobolev space W!'?(R") by

1
Cn,s // VV()C)WVW()/) dxdy (8)
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@ This bilinear form B is defined on the Sobolev space W'2(R") by

Bs(v,w) = Cps [[ Vv(x )‘x = =Vw(y)dxdy =
ffN %) Vv(x)Vw(y) dxdy
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9
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Energy and bilinear forms II

@ This bilinear form B is defined on the Sobolev space W'2(R") by

Bs(v,w) = Cps [[ Vv(x )‘x = =Vw(y)dxdy =
ffN %) Vv(x)Vw(y) dxdy

where N (x,y) = Cy;|x — y|~("=2 is the kernel of operator (—A) ™.

@ After some integrations by parts we also have

1
Bs(v,w) = Coi—s [ | (v(x) =vV) iz (W) —w(y)) dxdy
=207
)]
since —AN_; = N|_;,.
o It is known (Stein) that B,(u, u) is an equivalent norm for the fractional
Sobolev space W1=52(R").
We will need in the proofs that C, ;s ~ K,(1 —s) as s — 1, for some
constant K,, depending only on 7.



Additional and Recent work, open problems

@ The asymptotic behaviour as ¢t — oo is a very interesting topic
developed in a paper with Luis Caffarelli. Rates of convergence are
found for in dimension n = 1 but they are not available for n > 1, they
are tied to some functional inequalities that are not known,

o The equation is generalized into u, = V - (4"~ 'V (—A)~Su) with
m > 1. Recent work with D. Stan and F. del Teso shows that finite
propagation is true for m > 2 and propagation is infinite is m < 2. This
is quite different from the standard porous medium case s = 0, where
m = 1 is the dividing value.

@ The questions of uniqueness and comparison are solved in dimension
n = 1 thanks to the trick of integration in space. New tools are needed
to make progress in several dimensions.

@ The problem in a bounded domain with Dirichlet or Neumann data has
not been studied.

o In the standard PME theory, the Wasserstein metrics W), have proved to
be a very interesting tool leading to contractive evolutions. The study in
this setting for the present fractional model is only partial, there is work
by Carrilloetal. inn = 1.
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FPME: Second model for fractional Porous Medium

Flows

@ An alternative natural equation is the equation that we will call FPME:
Ou+ (—A)’u™ =0. (10)

@ This model arises from stochastic differential equations when modeling
for instance heat conduction with anomalous properties and one
introduces jump processes into the modeling.

Understanding the physical situation looks difficult to me , but the
modelling on linear an non linear fractional heat equations is done by
Stefano Olla, Milton Jara and collaborators, see for instance

M. D. Jara, T. Komorowski, S. Olla, Ann. Appl. Probab. 19 (2009), no. 6,
2270-2300. M. Jara, C. Landim, S. Sethuraman, Probab. Theory Relat.
Fields 145 (2009), 565-590.

@ Another derivation comes from boundary control problems and it
appears in
Athanasopoulos, 1.; Caffarelli, L. A. Continuity of the temperature in boundary
heat control problems, Adv. Math. 224 (2010), no. 1, 293-315, where they
prove C regularity of the solutions.
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Mathematical theory of the FPME, Model 2

@ The Problem is

L (—=2) (") = 0]

We take x € R", 0 < m < 00,0 < s < 2, with initial data in ug € L' (R™).
Normally, ug, u > 0.

This second model, M2 here, represents another type of nonlinear interpolation,
this time between

w — A(|u"'u) = 0‘ and |u + u|"'u =0

@ A complete analysis of the Cauchy problem done by
A. de Pablo, F. Quirds, Ana Rodriguez, and J.L.V., in 2 papers appeared in
Advances in Mathematics (2011) and Comm. Pure Appl. Math. (2012).
In the classical Bénilan-Brezis-Crandall style, a semigroup of weak energy
solutions is constructed, the L' — L> smoothing effect works,
C® regularity (if m is not near 0),
Nonnegative solutions have infinite speed of propagation for all m and s = no
compact support.
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Outline of work done for model M2

o Existence of self-similar solutions, work by JLV, JEMS 2014.

Asymptotic behaviour follows.
Comparison of models M1 and M2 is quite interesting

@ A priori upper and lower estimates of intrinsic, local type. Work with
Matteo Bonforte reports on problems posed in R” (appeared in ARMA,
2015) and on bounded domains (this is more recent and much less
known).
- Quantitative positivity and Harnack Inequalities follow. Against some
prejudice due to the nonlocal character of the diffusion, we are able to
obtain them here for fractional PME/FDE using the technique of
weighted integrals.

o Existence of classical solutions and higher regularity for the FPME and
the more general model

O+ (—~AP@(u) = 0|

Two works by PQRV. The first appeared at J. Math. Pures Appl. treats
the model case ®(u) = log(1 + u), which is interesting. Second
accepted 2015 in J. Eur. Math. Soc. proves higher regularity for
nonnegative solutions of this fractional porous medium equation.
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Symmetrization (Schwarz and Steiner). Collaboration with Bruno
Volzone, two papers at IMPA. Applying usual symmetrization
techniques is not easy and we have many open problems.

The phenomenon of KPP propagation in linear and nonlinear fractional
diffusion. Work with Diana Stan based on previous linear work of
Cabré and Roquejoftre (2009, 2013).

Numerics is being done by a number of authors at this moment:
Nochetto, Jakobsen, and coll., and with my student Felix del Teso.
Extension of model M1 to accept a general exponent m so that the
comparison of both models happens on equal terms.

Work by P. Biler and collaborators. Work by Stan, Teso and JLV
(papers in CRAS, and a very recent ArXiv) on

‘ O+ V(" IV(=A)"w’) =0 ‘

Interesting question : separating finite and infinite propagation.
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Extension of model M1 to accept a general exponent m so that the
comparison of both models happens on equal terms.

Work by P. Biler and collaborators. Work by Stan, Teso and JLV
(papers in CRAS, and a very recent ArXiv) on

O+ V("' V(~A) ") = 0

Interesting question : separating finite and infinite propagation.
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@ A detailed account on such progress is obtained in the papers (cf arxiv)

and in the following reference that is meant as a survey for two-year
progress on Model M2

Recent progress in the theory of Nonlinear Diffusion with Fractional
Laplacian Operators, by Juan Luis Vazquez. In “Nonlinear elliptic and
parabolic differential equations”, Disc. Cont. Dyn. Syst. - S 7, no. 4
(2014), 857-885..

Operators and Equations in Bounded Domains

Work that will be presented in the next lecture. It is long time
collaboration with Matteo Bonforte and in one instance with Yannick
Sire.

We develop a new programme for Existence, Uniqueness and
Asymptotic behaviour for fractional porous medium equations on
bounded domains, after examining very carefully the concept of FLO in
a bounded domain



Future Directions

o Existence of self-similar solutions. See recent papers by JLV in JEMS
and arXiv.
Question : 3 explicit formulae for the self-similar solutions ? (the
influence of Algebra).

@ Other nonlocal linear operators (hot topic)

@ p-Laplacian type fractional flows (JLV paper posted in June 2015 in
arXiv).

@ Very degenerate nonlinearities, like the Mesa Problem (cf. JLV, arXiv)

o Fast diffusion and extinction. Very singular fast diffusion.
Non-existence due to instantaneous extinction (paper with Bonforte and
Segatti in arXiv, 2015)



Future Directions

o Existence of self-similar solutions. See recent papers by JLV in JEMS
and arXiv.
Question : 3 explicit formulae for the self-similar solutions ? (the
influence of Algebra).

@ Other nonlocal linear operators (hot topic)

p-Laplacian type fractional flows (JLV paper posted in June 2015 in
arXiv).

@ Very degenerate nonlinearities, like the Mesa Problem (cf. JLV, arXiv)
@ Fast diffusion and extinction. Very singular fast diffusion.

Non-existence due to instantaneous extinction (paper with Bonforte and
Segatti in arXiv, 2015)

Elliptic theory (main topic, many authors)
Geostrophic flows (this is more related to Fluid Mechanics)
Reaction-diffusion and blowup

Geometrical flows, fractional Yamabe (MMar Gonzalez in Barcelona)

Chemotaxis systems, ....
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Younger collaborators
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The End
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The End

Thank you, Gracias, Merci
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