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linéaires

CIRM Luminy
April 4-8, 2016
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Aim of the talk

I Motivations for studying nonlocal dispersive equations.

I The fKdV equation as a toy model.

I Comments on some full dispersion surface waves models
(Whitham and FDKP) :

I Asymptotic models keeping the dispersion of the water waves
system.

I Hope to get validity for larger frequency ranges.

I Shortcoming : loss of the ”good” (for PDE methods)
dispersive properties.
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Why nonlocal dispersive equations ?

I First motivation.

To study the influence of dispersion on the space of resolution, on
the lifespan 1, the possible blow-up and on the dynamics of solutions
to the Cauchy problem for “weak” dispersive perturbations of
hyperbolic quasilinear equations or systems, as for instance various
models of water waves or nonlinear optics.

1. Most of dispersive models are not derived from first principles but as asymp-
totic models in various regimes, and one does not expect a priori global well-
posedness
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I General idea : to investigate the “fight” between nonlinearity and
dispersion. Usually this problem is attacked by fixing the dispersion
(eg that of the KdV equation) and varying the nonlinearity (say
upux in the context of generalized KdV).

I Other possibility (probably more physically relevant) : to fix the
quadratic nonlinearity (eg uux ) and to vary (lower) the dispersion.
In fact in many problems arising from Physics or Continuum
Mechanics the nonlinearity is quadratic, with terms like (u · ∇)u and
the dispersion is in some sense weak. In particular the dispersion is
not strong enough for yielding the dispersive estimates that allows
to solve the Cauchy problem in relatively large functional classes
(like the KdV or Benjamin-Ono equation in particular), down to the
energy level for instance. 2

2. And thus obtaining global well-posedness from the conservation laws.
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Toy model (fKdV)

∂tu − Dα∂xu + u∂xu = 0, −1 < α < 1, (1)

where x , t ∈ R, D̂αf (ξ) = |ξ|αf̂ (ξ).

I α = 1 : Benjamin-Ono (or ILW). α = 2 : KdV.

I Extensively studied for 1 ≤ α ≤ 2 (Fonseca-Linares-Ponce,
2012-2013 : GWP).

I α = −1 : Burgers-Hilbert.

I α = −1
2 , reminiscent of the Whitham equation (see below).

α = 1
2 , see Whitham with surface tension.

I It turns out that only the case 0 < α < 1 improves the LWP
theory (see below).
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The Whitham equation (1967)

ut + uux +

∫ ∞
−∞

k(x − y)ux (y , t)dy = 0, or (2)

ut + uux − Lux = 0, (3)

where the Fourier multiplier operator L is defined by

L̂f (ξ) = p(ξ)f̂ (ξ), where p = k̂.

In the original Whitham equation, the kernel k was given by

k(x) =
1

2π

∫
R

(
tanh ξ

ξ

)1/2

e ixξdξ, (4)

that is p(ξ) =
(

tanh ξ
ξ

)1/2

.

I The dispersion is in this case that of the finite depth surface water waves
without surface tension.

I With surface tension, one gets p(ξ) = (1 + β|ξ|2)1/2
(

tanh ξ
ξ

)1/2

, β ≥ 0.
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The Whitham equation makes a link with the
Second motivation :

I Lagrange (1781) first derived the water waves system (Euler
with free boundary) and had the wonderful idea ”to zoom” on
a suitable regime of amplitude, wavelengths, wave steepness
to derive simpler, asymptotic models (he derived the wave
equation with the correct velocity

√
gh)...

I Boussinesq (1877) : Boussinesq system, ”KdV” equation,..

I In those models (and in most of the classical ones), the
nonlocal original dispersion relation is approximated, via
Taylor expansion, leading to a differential operator. The full
dispersion models somehow keep the original dispersion. Valid
in all regimes : Boussinesq (or more nonlinear regimes),
modulational,.. See David Lannes AMS book, 2013.
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Back to fKdV. Basic questions for the Cauchy problem

I How the space of resolution of the Cauchy problem is
enhanced when 0 < α < 1?

I Blow-up and what kind of blow-up ?

I Solitary waves.

I Structure of the solution when it is global (decomposition into
solitary waves + dispersion ?).
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The following quantities are conserved by the flow associated to fKdV,

M(u) =

∫
R
u2(x , t)dx , (5)

and the Hamiltonian

H(u) =

∫
R

(1

2
|D α

2 u(x , t)|2 − 1

6
u3(x , t)

)
dx . (6)

By Sobolev H
1
6 (R) ↪→ L3(R), and H(u) is well-defined when α ≥ 1

3
(energy critical).
Moreover, equation (1) is invariant under the scaling transformation

uλ(x , t) = λαu(λx , λα+1t), ∀λ > 0.

Straightforward computation : ‖uλ‖Ḣs = λs+α− 1
2 ‖uλ‖Ḣs , and thus the

critical index corresponding to (1) is sα = 1
2 − α. In particular, equation

(1) is L2-critical for α = 1
2 .
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Easy results
By standard compactness methods : the Cauchy problem associated to (1) is locally
well-posed in Hs (R) for s > 3

2
.

Moreover, interpolation arguments or the following Gagliardo-Nirenberg inequality,

‖u‖L3 . ‖u‖
3α−1

3α

L2 ‖D α
2 u‖

1
3α

L2 , α ≥ 1

3
,

combined with the conserved quantities M and H defined in (5) and (6) implies the

existence of global weak solution in the energy space H
α
2 (R) as soon as α > 1

2
and for

small data in H
1
4 (R) when α = 1

2
. More precisely 3 :

Theorem
Let 1

2
< α < 1 and u0 ∈ H

α
2 (R). Then (1) possesses a global weak solution in

L∞([0,T ]; H
α
2 (R)) with initial data u0. The same result holds when α = 1

2
provided

‖u0‖L2 is small enough.

3. We recall that we exclude the value α = 1 which corresponds to the
Benjamin-Ono equation for which much more complete results are known.
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Moreover, (Ginibre and Velo 1991) a Kato type local smoothing property
holds, implying global existence of weak L2 solutions :

Theorem
Let 1

2 < α < 1 and u0 ∈ L2(R). Then (1) possesses a global weak

solution in L∞([0,∞); L2(R)) ∩ l∞L2
loc(R;H

α
2

loc(R)) with initial data u0.

I However, the case 0 < α < 1
2 is more delicate and the previous

results are not known to hold. In particular the Hamiltonian H
together with the L2 norm do not control the H

α
2 (R) norm

anymore. Note that the Hamiltonian does not make sense when
0 < α < 1

3 (energy supercritical).
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The local theory (F. Linares-D. Pilod-JCS SIMA 2014)

Theorem
Let 0 < α < 1. Define s(α) = 3

2
− 3α

8
and assume that s > s(α). Then, for every

u0 ∈ Hs (R), there exists a positive time T = T (‖u0‖Hs ) (which can be chosen as a
nonincreasing function of its argument), and a unique solution u to (1) satisfying
u(·, 0) = u0 such that

u ∈ C([0,T ] : Hs (R)) and ∂x u ∈ L1([0,T ] : L∞(R)). (7)

Moreover, for any 0 < T ′ < T , there exists a neighborhood U of u0 in Hs (R) such
that the flow map data-solution

Ss
T ′ : U −→ C([0,T ′]; Hs (R)), u0 7−→ u, (8)

is continuous.
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Remarks

I Classical result : IVP associated to the Burgers equation is ill-posed in

H
3
2 (R).

I When α = 1, the exponent s(α) corresponds to 9
8

obtained for the BO
equation in Kenig-Koenig (2003). The index s(α) is very likely not
optimal (see Molinet-Pilod, in progress).

I Molinet-S-Tzvetkov (2001) : for 0 < α < 2 the Cauchy problem is C 2-
ill-posed 4 for initial data in any Sobolev spaces Hs (R), s ∈ R, and in
particular the Cauchy problem cannot be solved by a Picard iterative
scheme implemented on the Duhamel formulation (quasilinear type).

I Well-posedness in H
α
2 (R) in the case 1

2
≤ α < 1, (which would imply

global well-posedness by using the conserved quantities (5) and (6)) : still
open.

This conjecture is supported by the numerical simulations in C. Klein-S
(see below) that suggest that the solution is global in this case, for
arbitrary large initial data.

4. That is that the flow map cannot be C 2.
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I Theorem 3 extends easily by perturbation to some non pure
power dispersions. For instance, in the case of the Whitham
equation with surface tension, it suffices to observe that

(1 + ξ2)1/2

(
tanh |ξ|
|ξ|

)1/2

= |ξ|1/2 + R(|ξ|),

where |R(|ξ|)| ≤ |ξ|−3/2 for large |ξ|.
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Solitary waves (mainly based on Linares-Pilod-S 2014-2015. See also Arnesen, arXiv
2015 for related results).
A (localized) solitary wave solution of (1) of the form u(x , t) = Qc (x − ct) must
satisfy the equation

DαQc + cQc −
1

2
Q2

c = 0, (9)

where c > 0.
One does not expect solitary waves to exist when α < 1

3
since then the Hamiltonian

does not make sense (see a formal argument in Kuznetsov-Zakharov 2000). In fact :

I Assume that 0 < α ≤ 1
3

. Then (9) does not possesses any nontrivial solution Qc

in the class H
α
2 (R) ∩ L3(R) 5. (The proof works as well for α < 0).

Based on the identity ∫
R

(Dαφ)xφ′dx =
α− 1

2

∫
R
|D α

2 φ|2dx ,

5. This implies that the Hamiltonian is well defined.
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The solitary waves are classically obtained following Weinstein approach by looking for
the best constant Cp,αin the Gagliardo-Nirenberg inequality

∫
R
|u|p+2 ≤ Cp,α

(∫
R
|Dα/2u|2

) p
2α
(∫

R
|u|2
) p

2α
(α−1)+1

, α ≥ p

p + 2
. (10)

This amounts to minimize the functional

Jp,α(u) =

(∫
R |Dα/2u|2

) p
2α
(∫

R |u|2
) p

2α
(α−1)+1∫

R |u|p+2
. (11)
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One obtains (see Frank-Lenzman 2010 and the references therein) :

Theorem
Let 1

3 < α < 1. Then
(i) Existence : There exists a solution Q ∈ H

α
2 (R) of equation (9) such

that Q = Q(|x |) > 0 is even, positive and strictly decreasing in |x |.
Moreover, the function Q ∈ H

α
2 (R) is a minimizer for Jp,α.

(ii) Symmetry and Monotonicity : If Q ∈ H
α
2 (R) is a nontrivial solution

of (9) with Q ≥ 0, then there exists x0 ∈ R such that Q(· − 0) is an
even, positive and strictly decreasing in |x − x0|.
(iii) Regularity and Decay : If Q ∈ H

α
2 (R) solves (9), then

Q ∈ Hα+1(R). Moreover, we have the decay estimate
|Q(x)|+ |xQ ′(x)| ≤ C

1+|x|1+α , for all x ∈ R and some constant C > 0.
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I Uniqueness issues have been addressed in Frank-Lenzman 2010 (in any
dimension). They concern ground states solutions according to the following
definition

Definition
Let Q ∈ H

α
2 (R) be an even and positive solution of (9) . If

J(p,α)(Q) = inf
{

J(p,α)(u) : u ∈ H
α
2 (R) \ {0}

}
,

then Q is a ground state solution.

I The main result in Frank-Lenzman 2010 implies in our case (p = 1) that the
ground state is unique.

I Observe that the uniqueness (up to the trivial symmetries) of the solitary-waves
of the Benjamin-Ono equation has been established by Amick-Toland 1991 (see
Albert-Toland 1994, Albert 1995, Frank-Lenzmann 2011 for the ILW equation).

I Note that the method of proof of the existence Theorem does not yields any
(orbital) stability result. One has to use instead a variant of the Cazenave-Lions
method, that is obtain the solitary waves by minimizing the Hamiltonian with
fixed L2 norm. See Albert-Bona-S (1997) in the case α = 1 (and for
non-homogeneous symbols, as in the ILW equation) and Albert (1999) when
α ≥ 1.
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I One can extend Albert 1999 to the case 1/2 < α < 1
(Linares-Pilod-S 2015)

E (u) =
1

2

∫
R

[|D α
2 u|2 − 1

3
u3]dx and M(u) =

1

2

∫
R
u2dx .

For q > 0 fixed, we set

Iq = inf
u∈H

α
2 (R)

{E (u) : M(u) = q}. (12)

We will denote by Gq the set (possibly empty) of minimizers.
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Linares-Pilod-S- ADE 2015 (similar results obtained independently by
M.A. Arnesen, arxiv 2015)

I When 1
2 < α < 1, Gq is not empty and orbitally stable for any

q > 0.

I Any minimizer in Gq is (up to scaling) a ground state and thus (by
Frank-Lenzman 2013) positive, radial and unique.

I Let 1
2 < α < 1, c > 0 and Qc = cQ(c

1
α ·), where Q is the ground

state solution of (??). For every ε > 0, there exists δ > 0 such that
if u0 ∈ Hs(R), s > sα = 3

2 − 3α
8 , satisfy

‖u0 − Qc‖α
2
< α , (13)

then the corresponding solution u emanating from u0 satisfies

inf
y∈R
‖u(·, t)− Qc (·+ y)‖α

2
< ε (14)

for all t ∈ [0,Ts), where Ts is the maximal time of existence of u.
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I This is so far a conditional stability result since the global
well-posedness of the fKdV equation is still unknown (even for
initial data close to a solitary wave).

I Questions : asymptotic stability, ”multi-solitons”,...

I Instability (by blow-up) is expected when 1
3 < α ≤ 1

2 (see the
simulations below) but not proven yet. Recall that for GKdV,
instability was proven when p > 4 (Bona-Souganidis-Strauss
(BSS) 1987) and when p = 4 (Martel-Merle 2001,...).
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I Why BSS does not extend straightforwardly ?

As in BSS the first step is to give a sense to the formal conserved quantity

I (u) =

∫
R

udx . (15)

As in BSS one checks that if u0 ∈ Hs (R), s ≥ 1 + α is such that
∫∞
−∞ u0(x)dx

converges as a generalized Riemann integral, then I (u(t)) converges for any
t ∈ [0,Ts (u0)) and is constant, where Ts (u0) is the lifespan of the solution u of the
corresponding Cauchy problem.
Again as in BSS one has to estimate how fast the tail of I (u) near infinity grows with
t. This cannot be deduced from BSS since

Gα(x) =

∫ ∞
−∞

e i(xξ−ξ|ξ|α)dξ

is not a bounded function of x when α < 1.
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I Actually, (Sidi-Sulem-Sulem 1986), Gα(x) = O(x−(α+2)) as
x → +∞ and oscillates when x → −∞, growing as
|x |(1−α)/2α.

I To proceed as in BSS, one would need to impose a (one sided)
decay property to u0 insuring that the resulting solution of the
Cauchy problem decays sufficiently to the left to compensate
the growth of the fundamental solution (in progress...).
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Blow-up issues (open)

I Solutions of fKdV are conjectured to blow-up in finite time in
the energy super critical case 0 < α ≤ 1/3 and in the L2 super
critical case 1/3 < α ≤ 1/2.

I They are conjectured to be global in the L2 sub-critical case
α > 1/2.

I Scattering is expected (for small localized initial data) when
0 < α < 1 and actually even when −1 < α < 0.

I See the following computations (Klein-S 2014).
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Numerical results for the fKdV (Christian Klein-JCS 2015).
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L2-subcritical case α = 0.6. u0 = 5sech2x
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L2-subcritical case α = 0.6. u0 = 5sech2x . Evolution of
the sup norm
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α = 0.6. u0 = 5sech2x . Fitted soliton at humps in green
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L2 critical case α = 0.5. u0 = sech2x .
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L2-critical case α = 1
2 . u0 = 3sech2x .

DISPERSIVE PERTURBATIONS OF BURGERS EQUATIONS 15
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Figure 4. Solution to the fKdV equation (
Cauchy
7) for α = 0.5 and the

initial data u0 = 3sech2x for several values of t. gBO3sechalpha054t
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Figure 5. L∞ norm of the solution to the fKdV equation (
Cauchy
7) for

α = 0.5 and the initial data u0 = 3sech2x in dependence of time on
the left, and the modulus of the Fourier coefficients of the solution
for t = 7 on the right. gBO3sechalpha05

are consistent within numerical accuracy, and are compatible with (
L2scal
33) for

γ = 1 which is exactly the value for the L2 critical gKdV.
Note that it cannot be decided numerically whether energy zero marks

a dividing line between radiation and blow-up. We can only state that
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α = 1
2 . u0 = 3sech2x . Fit with rescaled soliton (green)
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Figure 9. L2 norm of the gradient (left) and L∞ norm of the
solution to the fKdV equation (

Cauchy
7) for α = 0.2 and the initial data

u0 = sech2x (right) for t > 2.4497 in blue and the fitted lines
κ1 ln(t∗ − t) + κ2 in green. gBOsechalpha02fit

for α = 0.4 in Fig.
gBOsechalpha04
10. On the left one sees the solution for the initial data

u0 = sechx which seems to be just radiated away. However on the right is
the solution corresponding to the initial data u0 = 3sech2x for which the
code breaks at 1.11. It is unclear whether this behavior is related to the
nonexistence of solitons for α < 0.3, and whether the energy of the solitons
(which is unknown) is for α > 0.3 the limiting energy for blow-up.
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Figure 10. Solution to the fKdV equation (
Cauchy
7) for α = 0.4, on the

left for the initial data u0 = sech2x at t = 10, on the right for the
initial data u0 = 3sech2x at t = 1.11. gBOsechalpha04

We summarize the numerical findings in this section in the following

Conjecture 1. Consider smooth initial data u0 ∈ L2(R) with a single hump.
Then for

• α > 0.5: solutions to the fKdV equations with the initial data u0 stay
smooth for all t.

• α = 0.5: solutions to the fKdV equations with the initial data u0 with
negative energy blow up at finite time t∗ and infinite x∗. The type of

Jean-Claude Saut Université Paris-Sud Remarks on some nonlocal dispersive equations



Outline
Preliminary remarks

The toy model (fKdV)
A second toy model

Full dispersion water waves models
Full dispersion KP equations

The local Cauchy problem
Solitary waves
Numerical simulations of fKdV

Energy supercritical 0 < α < 1
3 .u0 = sech2x

DISPERSIVE PERTURBATIONS OF BURGERS EQUATIONS 17

10 5 0 5
0

2

4

6

x

u

t=0

10 5 0 5
0

2

4

6
t=1.225

x

u

10 5 0 5
0

2

4

6
t=2.45

x

u

10 5 0 5
0

2

4

6

x

u

t=3.045

Figure 7. Solution to the fKdV equation (
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initial data u0 = sech2x for several values of t. gBOsechalpha024t
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Cauchy
7) for

α = 0.2 and the initial data u0 = sech2x in dependence of time on
the left, and the modulus of the Fourier coefficients of the solution
for t = 3.045 on the right. gBOsechalpha02

with the computation. This also applies within numerical precision to the
values of κ1 which should be according to (

genscal
34) 7/6 and 1/6 respectively.

Thus for α < 0.3, blow-up is observed also for initial data with positive
energy. For 0.3 < α < 0.5 this does not seem to be the case as can be seen
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Conjectures for the fKdV equation

I α > 0.5 : solutions to the fKdV equations stay smooth for all t. For large
t they decompose asymptotically into solitons and radiation.

I 0 < α ≤ 0.5 : solutions to the fKdV equations with initial data u0

sufficiently small, but non-zero mass stay smooth for all t.

I α = 0.5 : solutions to the fKdV equations with initial data u0 with
negative energy and mass larger than the soliton mass blow up at finite
time t∗ (cf GKdV when p = 4).

I 1/3 < α < 0.5 : solutions to the fKdV equations with the initial data u0

and sufficiently large L2 norm blow up at finite time t∗ and finite x = x∗.
A soliton-type hump separates from the initial hump and eventually blows
up (cf GKdV when p > 4).

I 0 < α < 1/3 (energy super-critical) : solutions to the fKdV equations
with the initial data u0 and sufficiently large L2 norm blow up at finite
time t∗ and finite x = x∗. The nature of blow-up is different from the
previous one since no solitary waves exist in this case, the maximum of
the initial hump evolves directly into a blow-up.
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Another toy model : the fKP equation
(Linares-Pilod-S, in progress)

ut + uux − Dα
x ux + ε∂−1

x uyy = 0, in R2 × R+, −1 < α < 2 (16)

where ε = 1 corresponds to the fKP II equation and ε = −1 to the fKP I
equation.(
Dα

x f
)∧

(ξ, η) = |ξ|α f̂ (ξ, η).
When α = ±1/2 it has some links with the full dispersion KP equation
with surface tension (see below)
Hamiltonian :

Hα(u) =

∫
R2

(
1

2
|D

α
2

x u|2 − ε1

2
|∂−1

x uy |2 −
1

6
u3). (17)

The corresponding energy space is

Yα = {u ∈ L2(R2) : D
α
2

x u, ∂−1
x uy ∈ L2(R2)}.
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One checks readily that the transformation

uλ(x , y , t) = λαu(λx , λ
α+2

2 y , λα+1t)

leaves (16) invariant.

Moreover, |uλ|2 = λ
3α−4

4 |u|2, so that α = 4
3 is the L2 critical exponent.

Fractionary Gagliardo-Nirenberg inequality :

Lemma
Let 4

5 < α < 1. For any f ∈ Yα one has

|f |33 ≤ c |f |
5α−4
α+2

2 ‖f ‖
18−5α
2(α+2)

H
α
2

x

|∂−1
x fy |

1
2
2 ,

where ‖ · ‖
H

α
2

x

denotes the natural norm on the space

H
α
2

x (R2) = {f ∈ L2(R2) : D
α
2

x f ∈ L2(R2)}.

This implies obviously the embedding Yα ↪→ L3(R2) if 4
5 < α < 1.
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Non trivial properties of the linear group

I Strichartz estimates when α > 1
2 (by-product of

Molinet-S-Tzvetkov 2007).

I Local smoothing ”à la Kato” for fKP-II when α > 1
2 (combine

arguments in S- 1993 (KP-II) and Ginibre-Velo 1991 (fKdV)) :

for initial data in L2(R2), gain (locally) of |Dα/2
x u|2 and

|∂−1
x uy |2.
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The energy critical value α = 4
5 is obviously related to the non existence

of localized solitary waves u(x , y , t) = φ(x − ct, y). One has by Pohozaev
type arguments :

Proposition
Assume that 0 < α ≤ 4

5 when ε = −1 or that α is arbitrary when
ε = 1.Then fKP does not possess non trivial solitary waves in the space
Yα ∩ L3(R2).

Existence of solitary waves (fKP I) :

I α > 4
5 (minimization of ||u||2Y α under the constraint

∫
R2 u

3 = λ.)

I Existence of a (conditionally orbitally stable) set of minimizers of
the Hamiltonian with fixed L2 norm when α > 4

3 .

I Extension of the corresponding proofs for the generalized KP I
equation (de Bouard-S 1997).
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Blow-up issues

I For the generalized KP-I equation

ut + upux + uxxx − ∂−1
x uyy = 0, (18)

finite blow-up occurs when p > 4/3 (S-1993, Liu 2001).

I No corresponding results for fKP I.
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The Whitham equation
Numerical simulations of the Whitham equation

ut +(ux )+εuux +Tεux = 0, Tε =

(
tanh

√
εD√

εD

)1/2

, 0 < ε� 1. (19)

Rigorous results on the Whitham equation

I Well posedness of the Cauchy problem in Hs(R), s > 3/2 on the
correct time scale 1/ε : trivial (skew adjoint perturbation of
ut + εuux ).

I The Whitham equation does possess solitary waves that are formally
orbitally stable (Ehrnström-Groves-Wahlen 2012). The proof uses in
a crucial way that the dispersion relation of the Whitham equation
approaches the KdV one for small frequencies.

I Existence of periodic travelling waves Ehrnström-Kalish 2009, 2013 ;
stability issues : Hur-Johnson 2014, 2014, Kalish et al 2014
(numerics) and references therein.
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Some ideas on Ehrnström, Groves and Wahlen proof.

I A family of SW is found using a constrained minimization principle and
concentration-compactness methods for noncoercive functionals. The SW
are approximated by (scalings of) the corresponding solutions to the long
wave limit equation (KdV).

I Write Whitham (ε = 1) as

ut + 2uux + Lux = 0, F(Lf )(ξ) =

(
tanh(ξ)

ξ

)1/2

.

I Equation for a solitary wave u(x − νt) (vanishing at infinity) :

Lu − νu + u2 = 0.

I Weakly nonlinear ansatz :

u(x) = µw(µ2x), µ =
1

2

∫
R
u2dx � 1
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I The Whitham solitary waves are approximated by (suitably scaled)
solutions of the ”solitary wave” version of KdV

1

6
w ′′ − νlww + w2 = 0,

with solutions

Dlw = {wKdV (·+y); y ∈ R}, wKdV (x) =

(
3

2

) 2
3

sech2

((
3

2

) 1
3

x

)
.
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I Whitham SW are formally local minimizers of the functional E : H1(R)→ R,

E(u) = −1

2

∫
R

uLu −
∫
R

u2dx := L(u) +N (u).

with Q(u) = 1
2

∫
R u2 held fixed.

I L is smoothing and thus E not coercive.

I Use a method of Buffoni (2004) for capillary-gravity SW, see also
Groves-Wahlen (2011).

I Consider a fixed ball

U = {u ∈ H1(R); ||u||1 < R},

and look for small amplitude solutions in the set

Uµ = {u ∈ U;Q(u) = µ},

where 0 < µ� 1.
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I In particular one looks at the minimizing sequences for E over Uµ which do not
approach the boundary of U.

Theorem
(Ehrnstrom-Groves-Wahlen 2012) There exists µ∗ > 0 such that for each µ ∈ (0, µ∗)
such that
(i) The set Dµ of minimizers of E over Uµ is not empty and the estimate ||u||21 = O(µ)
holds uniformly over u ∈ Dµ and µ ∈ (0, µ∗). Each element of Dµ is a Whitham SW ;
the wave speed ν is the Lagrange multiplier in this constrained variational principle.
(ii) Let s < 1 and suppose that {un}n∈N is a minimizing sequence for E over Uµ with
the property that

sup
n∈N
||un||1 < R. (20)

There exists a sequence {xn}n∈N in R such that a subsequence of {un(·+ xn)}n∈N
converges in Hs (R) to a function in Dµ.
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Theorem
Convergence to KdV :

sup
u∈Dµ

inf
y∈R
||µ− 2

3 u(µ−
1
3 (·+ y))− wKdV ||1 → 0

and

sup
u∈Dµ

∣∣∣∣∣ν(u)− 1− µ 2
3

(
2

3

) 1
2

∣∣∣∣∣ = o(µ
2
3 )

as µ→ 0.
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Proof in two steps :

I Construction of a minimizing sequence satisfying (20) by considering
the corresponding problem for periodic waves and penalize the
variational functional so that minimizing sequences do not approach
the boundary of the corresponding domain in function space.

A crucial step is to prove the subadditivity of Iµ = {E(u); u ∈ Uµ}.
This is where the long wave scaling is used.

I Apply concentration-compactness principle to show that any
minimizing sequence satisfying (20) converges (up to subsequences
and translations) in Hs(R), s < 1 to a minimizer of E over Uµ.
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”Shock” formation for Whitham ?

I For the fractionary KdV equation

ut + εuux + εDαux = 0,

a finite time blow up may occur in a C 1+δ norm when
−1 < α < 0, (Castro-Cordoba-Gancedo (2010). The proof is
easily adapted to the Whitham equation (Lannes-JCS 2013).

I When −1 < α < −1
3 and for Whitham, blow-up in finite time

(for suitable smooth initial data) of the sup norm of the
derivative (Vera Hur 2015) : there exists T > 0 with
|u(x , t)| < +∞, x ∈ R, t < T , and limt→T− ∂xu(x , t) = −∞.
It would be interesting to check that the blow-up time is
beyond the relevant time scale O(1/ε). The Whitham
equation is not supposed to describe wave breaking !.
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Ideas on the proof :

I The proof uses estimates (Ehrnström 2015) on the kernel

k(x) =
1

2π

∫ ∞
−∞

√
tanh(ξ)

ξ
e−ixξdξ,

more precisely

k(x) ∼ (2π|x |)−1/2 and k ′(x) ∼ −1

2
sgn(x)(2π|x |3)−1/2 as |x | → 0.
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I For x ∈ R, let X (t; x) solves

dX

dt
(t; x) = u(X (t; x), t), X (0; x) = x ,

where u is a local solution of Whitham.

I Let vn(t; x) = (∂n
x u)(X ((t; x), t), n = 0, 1, 2, ...

and analyze the ODE system satisfied by the v ′ns.
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I In the context of water waves, the Whitham equation writes

ut + (Tε)1/2 ux + εuux = 0 (21)

where ε� 1 and Tε = tanh
√
ε|D|√

ε|D| , D = −i∂x .

I It should be a good approximation for water waves on time
scales of order O( 1

ε ), (with error O(tε2)).

I In the relevant regime (KdV) one does not expect wave
breaking, so the blow-up time found by V. Hur should be
larger that O( 1

ε ).
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According to the previous results and the computations below, the
Whitham equation seems to have three different regimes that need
more investigations :

I A pure radiation regime for small enough initial data
(supported by the dispersive estimates obtained by B.
Melinand 2015 for the underlying linear group).

I An ”hyperbolic” (shocklike) regime for large enough initial
data.

I A solitonic regime in the KdV limit.
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Numerical simulations of the Whitham equation (ε = 1)

Klein-JCS. Physica D 2015 (see also Lannes-JCS 2013 for other
simulations)
See also the fractional KdV (fKdV) equation

ut + uux − |D|αux = 0, α = −1/2

that has the same dispersion for large frequencies.

I Recall that fKdV does not possess solitary wave solutions
when α ≤ 1/3.
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Whitham, u0 = −0.1sech2x , t = 20
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Conjectures for the Whitham equations

Consider smooth initial data u0 ∈ L2(R) with a single hump. Then

I solutions to the Whitham equation and to fKdV equations with
−1 < α < 0 for initial data u0 of sufficiently small mass stay
smooth for all t and will be radiated away.

I solutions to the Whitham equation (21) and to the fKdV equation
with α = −1/2 for negative initial data u0 of sufficiently large mass
will develop a cusp at t∗ > tc of the form |x − x∗|1/3. The sup norm
of the solution remains bounded at the blow-up point.

I solutions to the Whitham equation (21) and to the fKdV equation
with α = −1/2 for positive initial data u0 of sufficiently large norm
mass will develop a cusp at t∗ < tc of the form |x − x∗|1/2.
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Comparison at the same time t = 0.11 of the solution to the KdV
equation (dash) and the Whitham equation with different values of
ε (µ = 0.01, ε = 0.1, ε = 1) Initial condition is a KdV solitary wave
Lannes-JCS 2013.
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Full dispersion KP equations

Whitham equations are also 1D version of the Full Dispersion Kadomtsev-Petviashvili
(FDKP) equations introduced by D. Lannes (2013) and studied in Lannes-JCS (2013).

∂t u + cWW (
√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2ux + µ
3

2
uux = 0, (22)

where cWW (
√
µk) is the phase velocity of the linearized water waves system, namely

cWW (
√
µk) =

(
tanh

√
µk

√
µk

)1/2

and

|Dµ| =
√

D2
1 + µD2

2 , D1 =
1

i
∂x , D2 =

1

i
∂y .

Denoting by h a typical depth of the fluid layer, a a typical amplitude of the wave, λx

and λy typical wave lengths in x and y respectively, the relevant regime here is when

µ ∼ a

h
∼
(
λx

λy

)2

∼
(

h

λx

)2

� 1.
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When adding surface tension effects, one has to replace (22) by

∂tu + c̃WW (
√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2ux + µ
3

2
uux = 0, (23)

with

c̃WW (
√
µk) = (1 + βµk2)

1
2

(
tanh

√
µk

√
µk

)1/2

,

where β > 0 is a dimensionless coefficient measuring the surface tension
effects,

I The idea is to overcome the unphysical properties (see below) of the
classical KP equation due to the awful approximation of the
dispersion at ξ1 = 0...
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Shortcoming of the KP equation

I The term ∂−1
x uyy implies a physically irrelevant constraint on u. Roughly

speaking, one has in some sense
∫∞
−∞ u(x , y , t)dx = 0, ∀y ∈ R.

See L. Molinet-N. Tzvetkov-JCS (2007) for a discussion of this issue.

I It also prevents to get the optimal error estimate with the full water waves
system. In fact, see D. Lannes (2002), D. Lannes -JCS (2006), one gets

||UEuler − UKP || = o(1), (O(
√
ε) with some additional constraint)

instead of O(ε2t) in the KdV (Boussinesq) regime.

I A solution is to introduce weakly transverse Boussinesq systems leading
to optimal error estimates (Lannes-JCS 2006). Introducing Full dispersion
KP equations is an alternate choice.
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Advantages/disadvantages of the full dispersion KP equation

I Enlarges the validity of the model and relaxes somehow the
zero-mass constraint.

I The classical K I and KP II equations are recovered formally
by keeping the first order term in the expansion with respect
to µ of the nonlocal operators.

I Shortcoming from a PDE point of view : lack of the nice
dispersive properties....
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The linearized equation

For purely gravity waves, the linearized equation writes

∂tu + P(D1,D2)u = 0, (24)

where P = Pε = P(D1,D2) is the Fourier multiplier defined as

P(D1,D2) = cWW (
√
ε|Dε|)(1 + ε

D2
2

D2
1

)1/2∂x .

The symbol of p(ξ1, ξ2) of P can be written

p(ξ1, ξ2) =
i

ε1/4

(
tanh[

√
ε(ξ2

1 + εξ2
2)

1
2 ]
) 1

2
(ξ2

1 + εξ2
2)

1
4 sgn ξ1; (25)

since it is real valued, it is clear that the linearized equation
defines a unitary group in all Sobolev spaces Hs(R2), s ∈ R.
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The symbol p(ξ1, ξ2) is not continuous at the origin. It remains
however bounded, which is not the case for the symbol of the
linear KP equation,

pKP(ξ1, ξ2) = i
(
ξ1 +

ε

2

ξ2
2

ξ1
− ε

6
ξ3

1

)
,

which grows to infinity as ξ1 → 0 if ξ2 6= 0.
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I Expanding the FDKP symbol :

p(ξ1, ξ2) = i

(
ξ1 +

ε

2

ξ2
2

ξ1
− ε

6
ξ3

1

)
+ O(ε2)

= pKP (ξ1, ξ2) + O(ε2).

I The expansion p = pKP + O(ε2) is only formal in the above
computations. Due to the singularity in 1/ξ1, it can only be made
rigorous when this singularity is controlled by a cancellation of the
solution u at low frequencies in x , or equivalently, under a zero mass
constraint, typically, u ∈ ∂xH

s(R2).
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The zero mass constraint (occurs already in the linear problem)

I Well-known facts on the classical KP I/II equations :

∂t u + ∂3
x u ± ∂−1

x ∂2
y u = 0. (26)

The linear evolution is given in Fourier variables by

Ŝ±(t)u0(ξ1, ξ2) = û(ξ1, ξ2, t) = exp{it
(
ξ3

1 ±
ξ2

2

ξ1

)
}û0(ξ1, ξ2),

Unitary group in any Sobolev space Hs (R2), s ≥ 0. On the other hand, even for
smooth initial data, say in the Schwartz class, the relation

uxt = utx

holds true only in a very weak sense, e.g. in S′(R2), if u0 does not satisfy the

constraint û0(0, ξ2) =
∫∞
−∞ u0(x , y)dx = 0 for any ξ2 ∈ R and y ∈ R.
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I In particular, even for smooth localized u0, the mapping

û0 7→ ∂t û = i

(
ξ3

1 ±
ξ2

2

ξ1

)
exp{it

(
ξ3

1 ±
ξ2

2

ξ1

)
}û0(ξ)

cannot be defined with values in a Sobolev space if u0 does
not satisfy the zero mass constraint. For instance, if u0 is a
gaussian, ∂tu is not even in L2.
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I Linear evolution of the FDKP equation :

̂SFD (t)u0(ξ1, ξ2) = exp{it
(

tanh(
√
µ(ξ2

1+µξ2
2))1/2

)1/2
(ξ2

1+µξ2
2)1/4sign ξ1}û0(ξ1, ξ2),

and u0 7→ ∂t S̃(t)u0 is continuous from Hs (R2) to Hs−1/2(R2), for any s ≥ 0.

I For gravity-capillary waves :

̂S̃FD (t)u0(ξ1, ξ2) = exp
{

it
(

tanh(
√
µ(ξ2

1 + µξ2
2))1/2

)1/2

× (1 + βµ(ξ2
1 + µξ2

2))1/2(ξ2
1 + µξ2

2)1/4sign ξ1

}
û0(ξ1, ξ2),

and the map u0 7→ ∂t S̃(t)u0 is continuous from Hs (R2) to Hs−3/2(R2), for any
s ≥ 0.

I Note finally that in both FDKP cases (with or without surface tension),
∂t u ∈ H∞(Rd ) if for instance u0 is in the Schwartz space, say a gaussian.
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The nonlinear problem

Since (22) and (23) are skew-adjoint perturbations of the Burgers
equation, one establishes by standard methods the following result which
is valid for both gravity and capillary-gravity waves but of course does
not take advantage of the dispersion. No zero mass constraint is needed.

Theorem
Let s > 2 and u0 ∈ Hs(R2). There exist T (||u0||s , ε) = O( 1

ε ) and a
unique solution u ∈ C ([0,T (||u0||s , ε)],Hs(R2)) of (22) with initial data
u0. Moreover,

|u(·, t)|2 = |u0|2, t ∈ [0,T (||u0||s , ε)].
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As for the classical KP I/II equations, the FDKP equation
conserves the Hamiltonian

Hε(u) =
1

2

∫
R2

|Hε(D)u|2 +
ε

4

∫
R2

u3, (27)

where

Hε(D) =

(
tanh(

√
ε|Dε|)√

ε|Dε|

)1/4 (
1 + ε

D2
2

D2
1

)1/4

=

(
tanh(

√
ε|Dε|)√
ε

)1/4 |Dε|1/4

|D1|1/2
;

the conservation of Hε(u) is indeed a direct consequence of the
fact that FDKP can be written under the form

∂tu + ∂x (δHε(u)) = 0, (28)

where δHµ(u) denotes the variational derivative of Hµ(u).
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Observe that unlike the Cauchy problem, the Hamiltonian for the
FDKP equation requires a constraint to be well defined. This
constraint however is weaker than for the classical KP equations
(In the sense that the order of vanishing of the Fourier transform
at the frequency ξ1 = 0 is weaker than the corresponding one for
the KP equations).
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Namely the “energy space” associated to the FDKP equation (without
surface tension) is

E = {u ∈ L2(R2)∩L3(R2), |D2|1/4|D1|−1/2u, |D2|1/2|D1|−1/2u ∈ L2(R2)}.

Again, one finds the standard KP Hamiltonian by expanding formally
Hε(D) in powers of ε, namely

Hε(u) = HKP (u) + O(ε2)

with

HKP (u) =
1

2

∫
R2

u2 +
ε

4

∫
R2

[|∂y∂
−1
x u|2 − 1

3
|∂xu|2 + u3]dxdy .

Replacing Hε(u) by HKP (u) in (28), the resulting equation is the KP II
equation

∂tu + ∂xu +
ε

2
∂−1

x ∂2
yu +

ε

6
∂3

xu + ε
3

2
uux = 0. (29)
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I With surface tension, the Hamiltonian H̃ε(u) is found by replacing Hε(D) in the
Hamiltonian Hε(u) by

H̃ε(D) =

(
(1 + βε|Dε|2) tanh(

√
ε|Dε|)√

ε|Dε|

)1/4 (
1 + ε

D2
2

D2
1

)1/4

=

(
(1 + βε|Dε|2) tanh(

√
ε|Dε|)√

ε

)1/4 |Dε|1/4

|D1|1/2
.

The corresponding energy space is

Ẽ = {u ∈ L2(R2) ∩ L3(R2),

|D1|1/4u, |D2|3/4|D1|−1/2u, |D2|1/2|D1|−1/2 ∈ L2(R2)}

and the KP I (if β > 1/3) or KP II (if β < 1/3) Hamiltonian is found by a
formal expansion with respect to ε,

H̃KP (u) =
1

2

∫
Rd

u2 +
ε

4

∫
R2

[|∂y∂
−1
x u|2 + (β − 1

3
)|∂x u|2 + u3]dxdy .
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If u0 satisfies an appropriate constraint, u(·, t) satisfies the constraint on
[0,T ] and the Hamiltonian is conserved. More precisely,

Theorem
Assume that s > 2 and u0 ∈ Hs(R2) ∩ E (resp. u0 ∈ Hs(R2) ∩ Ẽ ). Then
the solution u in Proposition 11 remains in E (resp. Ẽ ) on [0,T ] and the
Hamiltonian is conserved on [0,T ].

I In order to prove the conservation of the Hamiltonian we introduce
Y s = {f ∈ Hs(R2) ∩ E ; |Dε||D1|−1f ∈ L2(R2)}. An argument using
the Duhamel formula proves that Y s is invariant by the FDKP flow
and we conclude by proving that Y s is dense in Hs(R2) ∩ E .

Jean-Claude Saut Université Paris-Sud Remarks on some nonlocal dispersive equations



Outline
Preliminary remarks

The toy model (fKdV)
A second toy model

Full dispersion water waves models
Full dispersion KP equations

The linearized equation
The zero mass constraint
The nonlinear problem
Solitary waves.

Solitary waves.

I KP II has no localized solitary waves, contrary to KP I. (A. de
Bouard-JCS 1997).

I Similar issues are unknown for the FDKP equations.

I It is unlikely that solitary waves exist for the FDKP equation
without or with weak surface tension (β < 1

3 ).

I When β > 1
3 , localized solitary waves are likely exist approximating

the KP-I ground state in the long wave limit (
√
ε|ξ| → 0.).
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Numerical simulations (D. Lannes-JCS 2013) suggest :

I Confirmation of shock formation for the Whitham equation. The
blow-up time tends to infinity as ε→ 0.

I Formation of a ”lump like” solution for FDKP with large surface
tension when ε� 1.
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Ongoing work (Linares-Pilod-S).

I Extend Ernström et al to the FDKP equation with strong
surface tension :

∂tu + c̃WW (
√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2ux + µ
3

2
uux = 0, (30)

with

c̃WW (
√
µk) = (1 + βµk2)

1
2

(
tanh

√
µk

√
µk

)1/2

,

I When β > 1
3 , the long wave limit of (30) is the usual KP I

equation which admits localized (ground states) solitary waves
(de Bouard-S 1997) or explicit lump solution, (Manakov et al
1977).
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