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In this talk we will discuss special regularity properties of solutions to
the IVP associated to the k-generalized KdV equations.{

∂tu + ∂3
xu + uk∂xu = 0, x, t ∈ R, k ∈ Z+,

u(x, 0) = u0(x).
(1)
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Motivation

Linear Problem {
∂tv + ∂3

xv = 0, x, t ∈ R,
v(x, 0) = v0(x) ∈ Hs(R).

(2)

The solution of (2) is given by the unitary group {V (t)}∞−∞ defined via
the Fourier transform as

v(x, t) = V (t)v0(x) =
(
eitξ

3

v̂0

)∨
(x).

and satisfies
‖V (t)v0‖Hs(R) = ‖v0‖Hs(R).

Thus, if v0 /∈ Hs′(R), s′ > s, then for all t ∈ R, v(·, t) /∈ Hs′(R).
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Nonlinear Problem{
∂tu + ∂3

xu + u∂xu = 0, x, t ∈ R
u(x, 0) = u0(x) ∈ Hs(R).

(3)

If s > s0(= −3
4
), there exists a unique solution v of the IVP (3)

u ∈ C([−T, T ] : Hs(R)) ∩ . . .

with u0 7→ u(·, t) continuous (smooth) for any T > 0.
Notice that if

u0 ∈ Hs′(R) with u0 /∈ Hs′′(R), for s′ < s′′

=⇒
u(·, t) ∈ Hs′(R) but u(·, t) /∈ Hs′′(R).
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Local smoothing

The solution of the linear problem can be written explicitly as

v(x, t) = V (t)v0 = St ∗ v0(x) (4)

where
St(x) =

1
3
√
t
Ai

( x
3
√
t

)
(5)

and Ai denotes the Airy function

Ai(x) = c

∫ ∞
−∞

eixξ+iξ
3/3 dξ,

which satisfies the estimate

|Ai(x)| ≤ c
e−cx

3/2
+

(1 + x−)1/4
, x− = max{−x, 0}.
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Strichartz estimates

Solutions of the linear problem (2) satisfy

‖Dθα/2V (t)v0‖LqtLpx ≤ c‖v0‖L2 (6)

where (q, p) =
(

6
θ(α+1)

, 2
1−θ

)
, θ ∈ [0, 1] and α ∈ [0, 1/2].

In particular, we have

‖D1/4V (t)v0‖L4
tL

∞
x
≤ c‖v0‖L2,

and
‖V (t)v0‖L8

tL
8
x
≤ c‖v0‖L2.

The estimate (6) was established by Kenig, Ponce and Vega.
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Kato smoothing effect

Suppose χ ∈ C∞(R), increasing, positive with χ′ ∈ C∞0 (R), χ′ ≥ 0.
After multiplying the equation in (3) by uχ and integration by parts one
gets

d

dt

∫
u2χ +

3

2

∫
(∂xu)2χ′ − 1

2

∫
u2χ′′′ +

1

3

∫
u3χ′ = 0. (7)

If u0 ∈ L2(R), then the solution u of IVP (3) satisfies

u ∈ C([−T, T ] : L2(R)) ∩ . . . and ∂xu ∈ L2([−T, T ]× [−R,R]).

This result was extended by Constantin-Saut, Sjölin, Vega.
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Kenig, Ponce and Vega proved that solutions of the linear problem (2)
satisfy

∞∫
−∞

|∂xV (t)u0(x)|2 dt ≡
∞∫

−∞

|u0(y)|2 dy, ∀x ∈ R.

(Homogeneous Smoothing Effect)

On the other hand, if we consider the inhomogeneous linear problem,
the solution satisfies

‖∂2
x

t∫
0

V (t− t′)g(·, t′) dt′‖L∞
x L

2
T
≤ c‖g‖L1

xL
2
T
.

(Inhomogeneous Smoothing Effect)
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Suppose now that we have χ = χ(x, t)

d

dt

∫
u2χ−

∫
u2∂tχ︸ ︷︷ ︸
A

+
3

2

∫
(∂xu)2∂xχ−

1

2

∫
u2∂3

xχ︸ ︷︷ ︸
B

= 0

∫
u2
(
∂tχ + ∂3

xχ
)
dx = 0

χ(x, t) = ea(t)xα+

∂tχ = a′(t)xα+χ

∂3
xχ ' α(α− 1)(α− 2)x

3(α−1)
+ (a(t))3χ

3(α− 1) = α ⇐⇒ α = 3/2 and a(t) =
a0

(1 + 27a2
0t/4)1/2

.
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Theorem 1 (Isaza-L-Ponce (2014)). Let a0 be a positive constant. For
any given data

u0 ∈ L2(R) ∩ L2(ea0x
3/2
+ dx),

the unique solution of the IVP (3) satisfies that for any T > 0

sup
t∈[0,T ]

∫ ∞
−∞

ea(t)x
3/2
+ |u(x, t)|2dx ≤ C∗

C∗ = C∗(a0, ‖u0‖2, ‖ea0x
3/2
+ /2u0‖2, T ), with

a(t) =
a0

(1 + 27a2
0t/4)1/2

.
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We observe that this is sharp in the sense of following result by Escu-
riaza, Kenig, Ponce and Vega:

Theorem A (EKPV (2006)). There exists c0 > 0 such that if a solution

u ∈ C([0, 1] : H4(R) ∩ L2(|x|2dx))

of the IVP (3), satisfies

u(·, 0), u(·, 1) ∈ L2(ec0x
3/2
+ dx),

then u ≡ 0.

Above we used the notation: x+ = max{x; 0}.
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Propagation of Regularity

Let us assume that we have a datum u0 ∈ H3/4+(R) whose restric-
tion belongs to H l((b,∞)) for some l ∈ Z+ and b ∈ R we shall
prove that the restriction of the corresponding solution u(·, t) belongs
to H l((β,∞)) for any β ∈ R and any t ∈ (0, T ).
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We start defining the class of solutions to the IVP (3) for which our
results apply. We shall rely on the following well-posedness result:

Theorem B (Kenig-Ponce-Vega). If u0 ∈ H3/4+(R), then there exist
T = T (‖u0‖3/4+,2; k) > 0 and a unique solution of the IVP (3) such
that

(i) u ∈ C([−T, T ] : H3/4+(R)),

(ii) ∂xu ∈ L4([−T, T ] : L∞(R)), (Strichartz),

(iii) sup
x

∫ T

−T
|J r∂xu(x, t)|2 dt <∞ for r ∈ [0, 3/4

+
],

(iv)

∫ ∞
−∞

sup
−T≤t≤T

|u(x, t)|2 dx <∞.

(8)

Moreover, the map data-solution, u0 → u(x, t) is locally continuous
(smooth) from H3/4+(R) into the class defined in (8).
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Our first result is concerned with the propagation of regularity in the
right hand side of the data for positive times.

Theorem 2 (Isaza-L-Ponce(2015)). If u0 ∈ H3/4+(R) and for some
l ∈ Z+, l ≥ 1 and x0 ∈ R

‖ ∂lxu0‖2
L2((x0,∞)) =

∫ ∞
x0

|∂lxu0(x)|2dx <∞,

then the solution of the IVP (3) provided by Theorem B satisfies that
for any v > 0 and ε > 0

sup
0≤t≤T

∫ ∞
x0+ε−vt

(∂jxu)2(x, t) dx < c,

for j = 0, 1, . . . , l with c = c(l; ‖u0‖3/4+,2; ‖ ∂lxu0‖L2((x0,∞)); v; ε;T ).
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In particular, for all t ∈ (0, T ], the restriction of u(·, t) to any interval
(x0,∞) belongs to H l((x0,∞)).
Moreover, for any v ≥ 0, ε > 0 and R > 0∫ T

0

∫ x0+R−vt

x0+ε−vt
(∂l+1

x u)2(x, t) dxdt < c,

with c = c(l; ‖u0‖3/4+,2; ‖ ∂
l
xu0‖L2((x0,∞)); v; ε;R;T ).

Thus, this kind of regularity moves with infinite speed to its left as time
evolves.
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Remark 1. It can be deduced from our proof of Theorem 2 that the
inequality (2) can be more precise i.e. for δ > 0 and t ∈ (0, 1) and
j = 1, . . . , l ∫ ∞

−∞

1

〈x−〉j+δ
(∂jxu)2(x, t) dx ≤ c

t
,

with
c = c(‖u0‖3/4+,2; ‖∂jxu0‖L2((x0,∞)); x0; δ).

(On question of K. Nakanishi)
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Our second result describes the persistence properties and regularity
effects, for positive times, in solutions associated with data having
polynomial decay in the positive real line.

Theorem 3 (Isaza-L-Ponce (2015)). If u0 ∈ H3/4+(R) and for some
n ∈ Z+, n ≥ 1,

‖xn/2u0‖2
L2((0,∞)) =

∫ ∞
0

|xn| |u0(x)|2dx <∞, (9)

then the solution u of the IVP (3) provided by Theorem B satisfies that

sup
0≤t≤T

∫ ∞
0

|xn| |u(x, t)|2 dx ≤ c (10)

with c = c(n; ‖u0‖3/4+,2; ‖xn/2u0‖L2((0,∞));T ).
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Moreover, for any ε, δ, R > 0, v ≥ 0, m, j ∈ Z+, m + j ≤ n, m ≥ 1,

sup
δ≤t≤T

∫ ∞
ε−vt

(∂mx u)2(x, t)xj+ dx

+

∫ T

δ

∫ R−vt

ε−vt
(∂m+1

x u)2(x, t)xj−1
+ dxdt ≤ c,

with c = c(n; ‖u0‖3/4+,2; ‖xn/2u0‖L2((0,∞));T ; δ; ε;R; v).
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As a direct consequence of Theorem 2 and Theorem 3, the above
comments and the time reversible character of the equation in (3) one
has:

Corollary 1. Let u ∈ C([−T, T ] : H3/4+(R)) be a solution of the
equation in (3) described in Theorem B. If there exist m ∈ Z+, t̂ ∈
(−T, T ), a ∈ R such that

∂mx u(·, t̂ ) /∈ L2((a,∞)),

then for any t ∈ [−T, t̂) and any β ∈ R

∂mx u(·, t) /∈ L2((β,∞)), and xm/2 u(·, t) /∈ L2((0,∞)).
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As a consequence of Theorem 2 and Theorem 3 one has that for an
appropriate class of data the singularity of the solution travels with
infinite speed to the left as time evolves. In the integrable cases k =
1, 2 this is expected as part of the so called resolution conjecture.
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Consider the class Zs,r = Hs(R)∩L2(|x|rdx) r, s > 0. Isaza-L-Ponce
(2014) showed that the solution flow associated to the KdV equation
preserves this class if and only if s ≥ 2r.

Corollary 2. Given u0 ∈ Hs(R), s > 3/4+. If the corresponding solu-
tion of the KdV equation satisfies that for some m > 0

u(·, t1) ∈ L2(|x+|m dx)

and
u(·, t2) ∈ L2(|x−|m dx)

with t1 < t2, then
u ∈ C(R : H2m(R)).
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Idea of the Proofs

We construct a class of real functions χ
0,ε,b

(x) for ε > 0 and b ≥ 5ε
such that

χ
0,ε,b
∈ C∞(R), χ′

0,ε,b
≥ 0,

χ
0,ε,b

(x) =

{
0, x ≤ ε,

1, x ≥ b,

with
supp χ

0,ε,b
⊆ [ε,∞), supp χ′

0,ε,b
(x) ⊆ [ε, b],

and
χ′

0,ε,b
(x) ≥ (b− 3ε)−1 1[3ε,b−2ε](x),

Thus
χ′

0,ε/3,b+ε
(x) ≥ cj |χ(j)

0,ε,b
(x)|, ∀x ∈ R, ∀j ≥ 1.
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We shall use an induction argument. First, we shall prove (2) for l = 1
to illustrate our method.
Formally, take partial derivative with respect to x of the equation in (3)
and multiply by ∂xuχ0,ε,b

(x+ vt) to obtain after integration by parts the
identity

1

2

d

dt

∫
(∂xu)2(x, t)χ0(x + vt) dx− v

∫
(∂xu)2(x, t)χ′0(x + vt) dx︸ ︷︷ ︸

A1

+
3

2

∫
(∂2

xu)2(x, t)χ′0(x + vt) dx− 1

2

∫
(∂xu)2(x, t)χ′′′0 (x + vt) dx︸ ︷︷ ︸

A2

+

∫
∂x(u∂xu)∂xu(x, t)χ0(x + vt) dx︸ ︷︷ ︸

A3

= 0.
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Remarks

Consider the IVP for the mKdV{
∂tu + ∂3

xu + u2∂xu = 0, x, t ∈ R,
u(x, 0) = u0(x)

(11)

which is also an integrable system.

We will see that the statement the singularity of the solution travels to
the left is not a precise one.
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We recall a result that can be obtained as a consequence of the ar-
gument given by Bona and Saut.

Theorem 4. There exists

u0 ∈ H1(R) ∩ C∞(R)

so that the solution u(·, t) of the IVP (11) u ∈ C(R : H1(R)) ∩ . . .
satisfies {

u(·, t) ∈ C1(R), t > 0, t /∈ Z+,

u(·, t) ∈ C1(R\{0})\C1(R), t ∈ Z+.
(12)
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The argument of Bona-Saut is based on the asymptotic decay of the
Airy function and the well-posedness of the IVP (11) with data u0(x)
in appropriate weighted Sobolev spaces.

This argument was simplified (for the case of two points in (12)) for the
modified KdV equation by L-Scialom without relying in weighted spa-
ces. A direct proof of Theorem 4 can be given following the approach
used by L-Scialom.
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Our method can be extended to W s,p-setting. Indeed,

Theorem 5 (L-Ponce-Smith (?)). Let p ∈ (2,∞) and j ≥ 1, j ∈ Z+.
There exists

u0 ∈ H3/4(R) ∩W j,p(R) (13)

such that the corresponding solution

u ∈ C([−T, T ] : H3/4(R)) ∩ . . .

of (3) satisfies that there exists t ∈ [0, T ] such that

u(·,±t) /∈ W j,p(R+). (14)

Remark. It will follow from our proof that there exists u0 as in (13) such
that (14) holds in R−. Hence, the regularities in W j,p(R) for p > 2 do
not propagate forward or backward in time to the right or to the left.
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Extensions

Results regarding propagation of regularity (similar to Theorem 2)
have been extended for solutions of the IVP associated to

• the Benjamin-Ono equation

∂tv −H∂2
xv + v∂xv = 0 (15)

where H denotes the Hilbert transform.

• the (Kadomtsev-Petviashvilli) KP II equation

∂tw + ∂3
xw + ∂−1

x ∂
2
yw + w∂xw = 0 (16)

where
∂̂−1
x f (ξ) = −iξ−1 f̂ (ξ).
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Hence, it is natural to ask if this propagation of regularity phenomenon
is intrinsically related to the integrable character of the model.

Indeed, for the k-generalized dispersive BO equation,

∂tu + uk∂xu− (−∂2
x)
α/2∂xu = 0, k ∈ Z+, 1 ≤ α ≤ 2,

which for α = 1 corresponds to the k-generalized BO equation and
α = 2 to the k-generalized KdV equation, the propagation of regu-
larities (as that presented in Theorem 2) is only known in the cases
α = 1 and α = 2.
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This fact seems to be more general. In particular, it is valid for soluti-
ons of the general quasilinear equation KdV type, that is,{

∂tu + a(u, ∂xu, ∂
2
xu) ∂3

xu + b(u, ∂xu, ∂
2
xu) = 0,

u(x, 0) = u0(x),
(17)

where the functions a, b : R3 × [0, T ]→ R satisfy:

(H1) a(·, ·, ·) and b(·, ·, ·) are C∞ with all derivatives bounded in
[−M,M ]3, for any M > 0,

(H2) given M > 0, there exists κ > 0 such that

1/κ ≤ a(x, y, z) ≤ κ for any (x, y, z) ∈ [−M,M ]3,

and
∂z b(x, y, z) ≤ 0 for (x, y, z) ∈ [−M,M ]3.
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To establish the propagation of regularity in this case we shall follow
the arguments and results obtained by Craig, Kappeler and Strauss.
Under the hypotheses (H1) and (H2), they showed

Theorem C (CKS). Let m ∈ Z+, m ≥ 7. For any u0 ∈ Hm(R), there
exist T = T (‖u0‖7,2) > 0 and a unique solution u = u(x, t) of the IVP
(17) satisfying,

u ∈ L∞([0, T ];Hm(R)).

Moreover, for any R > 0

T∫
0

R∫
−R

(∂m+1
x u)2(x, t) dxdt <∞.
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We need some (weak) continuous dependence of the solutions upon
the data. Hence, we prove the following “refinement” of Theorem C.

Theorem 6 (L-Ponce-Smith (?)). Let m ∈ Z+, m ≥ 7. For any u0 ∈
Hm(R) there exist T = T (‖u0‖7,2) > 0 and a unique solution u =
u(x, t) of the IVP (17) such that

u ∈ C([0, T ] : Hm−δ(R)) ∩ L∞([0, T ] : Hm(R)), for all δ > 0, (18)

with
∂m+1
x u ∈ L2([0, T ]× [−R,R]), for all R > 0. (19)

Moreover, the map data solution u0 7→ u(·, t) is locally continuous
from Hm(R) into C([0, T ] : Hm−δ(R)) for any δ > 0.
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Theorem 7 (L-Ponce-Smith(?)). Let n,m ∈ Z+, n > m ≥ 7. If u0 ∈
Hm(R) and for some x0 ∈ R

∂jxu0 ∈ L2((x0,∞)) for j = m + 1, . . . , n.

Then the solution of the IVP (17) provided by Theorem 6 satisfies that
for any ε > 0, v > 0, and t ∈ [0, T )

∞∫
x0+ε−vt

|∂jxu(x, t)|2 dx

≤ c(ε; v; ‖u0‖m,2; ‖∂lxu0‖L2((x0,∞)) : l = m + 1, . . . , n),

(20)

for j = m + 1, . . . , n.
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Theorem 7 tells us that the propagation phenomenon described in
Theorem 2 still holds in solutions of the quasilinear problem (17).

This result and those in KdV, BO, KPII equations seem to indicate
that the propagation of regularity phenomena can be established in
systems where Kato smoothing effect can be proved by integration by
parts directly in the differential equation.
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A different kind of propagation of regularity

Next we consider the propagation of regularities in solutions to some
related dispersive models.

We choose the IVP associated to the Benjamin-Bona-Mahony (BBM)
equation {

∂tu + ∂xu + u∂xu− ∂2
x∂tu = 0, x, t ∈ R,

u(x, 0) = u0(x).
(21)
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We recall the local well-posedness for the IVP (21) obtained by Bona
and Tzvetkov

Theorem D. Let s ≥ 0. For any u0 ∈ Hs(R) there exist T =
T (‖u0‖s,2) > 0 and a unique solution u of the IVP (21)

u ∈ C([0, T ] : Hs(R)) ≡ Xs
T .

Moreover, the map data-solution u0 7→ u(·, t) is locally continuous
from Hs(R) into Xs

T .
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For the IVP (21) we prove that

Theorem 8 (L-Ponce-Smith (?)). Let u0 ∈ Hs(R), s ≥ 0. If for some
k ∈ Z+ ∪ {0}, θ ∈ [0, 1), and Ω ⊆ R open

u0

∣∣
Ω
∈ Ck+θ,

then the corresponding solution u ∈ Xs
T of the IVP (21) provided by

Theorem D satisfies that

u(·, t)
∣∣
Ω
∈ Ck+θ for all t ∈ [0, T ].

Moreover,
u, ∂tu ∈ C([0, T ] : Ck+θ(Ω)).
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Remarks.

• Theorem 8 tells us that in the time interval [0, T ] in the Ck+θ setting
no singularities can appear or disappear in the solution u(·, t).
In particular, one has the following consequence of Theorem 8
and its proof:

Corollary 3. Let u0 ∈ Hs(R), s ≥ 0. If for a < x0 < b, k ∈ Z+∪{0}
and θ ∈ [0, 1)

u0

∣∣
(a,x0)

, u0

∣∣
(x0,b)
∈ Ck+θ and u0

∣∣
(a,b)

/∈ Ck+θ,

then the corresponding solution u ∈ Xs
T of the IVP (21) provided

by Theorem D satisfies

u(·, t)
∣∣
(a,x0)

, u(·, t)
∣∣
(x0,b)
∈ Ck+θ and u(·, t)

∣∣
(a,b)

/∈ Ck+θ.
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• Theorem 2, Theorem 4, Theorem 8, and Corollary 3 show
that solutions of the BBM equation and the KdV equation exhibit
a quite different behavior regarding the propagation of regularities.
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Further results

We also proved similar type of results for the Degasperis-Procesi
equation

∂tu− ∂2
x∂tu + 4u∂xu = 3∂xu∂

2
xu + u∂3

xu, x ∈ R, t > 0,

and the 1D Brinkman model

∂tρ = ∂x
(
ρ(1− ∂2

x)
−1∂x(ρ

2)
)
, x ∈ R, t > 0.
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Thanks for your attention


