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We consider three parabolic problems, popular in the literature,
with “bubbling” blow-up phenomena in finite and/or infinite time.

1. The Sobolev critical semilinear heat equation in Rn

ut = ∆u + u
n+2
n−2 , u > 0 in Ω× (0,T ) (1)

u = 0 on ∂Ω× (0,T )

Ω ⊂ Rn, n ≥ 3, u > 0, T ≤ +∞.



2. The harmonic map flow from R2 into S2

ut = ∆u + |∇u|2u, |u| = 1 in Ω× (0,T ) (2)

u = ϕ on ∂Ω× (0,T ), u(·, 0) = u0 in Ω

Here Ω ⊂ R2.



3. The Keller-Segel equation in R2

ut = ∆u −∇ · (u∇v), u > 0 in R2 × (0,T ) (3)

v = (−∆)−1u :=
1

2π
log

1

| · |
∗ u

ut = ∇ · (u∇(log u − (−∆)−1u))



The three problems have a Lyapunov functional (decreasing
along trajectories)

ut = ∆u + up, p =
n + 2

n − 2
(1)

E1(u) =
1

2

∫
|∇u|2 − 1

p + 1

∫
up+1,

∂tE1(u(·, t)) = −
∫
|ut |2

ut = ∆u + |∇u|2u, |u| = 1 (2)

E2(u) =
1

2

∫
|∇u|2,

∂tE2(u(·, t)) = −
∫
|ut |2



ut = ∇ · (u∇(log u − (−∆)−1u)) (3)

E3(u) =

∫
u log u − 1

2

∫
u(−∆)−1u

∂tE3(u(·, t)) = −
∫

u|∇(log u − (−∆)−1u)|2



The three problems have a continuous, blowing-up family of
energy invariant steady states in entire space.

∆u + u
n+2
n−2 = 0, u > 0 in Rn

U(x) = αn

(
1

1 + |x |2

) n−2
2

,

Uλ,x0(x) =
1

λ
n−2

2

U

(
x − x0

λ

)
= αn

(
λ

λ2 + |x − x0|2

) n−2
2

.

We have
E1(Uλ,x0) = E (U) for all λ, x0.



Uλ,x0(x) = αn

(
λ

λ2 + |x − x0|2

) n−2
2

, λ ↓ 0



∆u + |∇u|2u = 0, |u| = 1 in R2

U(x) =

(
2x

1+|x |2
|x |2−1
1+|x |2

)
, x ∈ R2,

the 1-corrotational harmonic map.

Uλ,x0,Q(x) = QU

(
x − x0

λ

)
with Q a linear orthogonal transformation of R3.

E2(Uλ,x0,Q) = E (U) for all λ, x0.



∆u −∇ · (u∇(−∆)−1u) = 0 in R2

U(x) =
8

(1 + |x |2)2
x ∈ R2,

Uλ,x0(x) = λ−2U

(
x − x0

λ

)
=

8λ2

(λ2 + |x − x0|2)2

E3(Uλ,x0) = E (U) for all λ, x0.

Observe that ∫
R2

Uλ,x0(x) dx = 8π.



A bubbling solution u(x , t) of Problem (1), (2) or (3) as
t ↑ T ≤ +∞ is one that blows-up by resembling about one or
more points a steady state with a time dependent scaling
parameter λ(t)→ 0 as t ↑ T .



ut = ∆u + u
n+2
n−2 , u > 0 in Ω× (0,+∞) (1)

u = 0 on ∂Ω× (0,+∞)

We look for a solution that at main order as t → +∞ looks like

u(x , t) ≈
k∑

j=1

Uλj (t),xj (t)(x) =
k∑

j=1

αn

(
λj(t)

λj(t)2 + |x − xj(t)|2

) n−2
2



• A result: Galaktionov and King (2003) A globally defined radial
solution u(r , t), r = |x | of (1) when Ω = B(0, 1) blows-up like

u(r , t) ≈ αn

(
λj(t)

λj(t)2 + r2

) n−2
2

where λ(t)→ 0 as t → +∞. If dimension n ≥ 5 we have

λ(t) ∼ ct−
1

n−4 .

• The nonradial case? Existence of such solutions? In the radial
case existence of a nonradial globally defined solution follows from
non-continuation results for radial solutions (Galaktionov and
Vazquez 1997, Ni, Sacks, Tavantzis 1984).



What about the nonradial case?
Connection with Green’s function: G (x , y)

−∆xG (x , y) = cnδ(x − y) in Ω, G (x , y) = 0, x ∈ ∂Ω.

H(x , y) the regular part of G (x , y) namely the solution of the
problem

−∆xH(x , y) = 0 in Ω, H(x , y) = Γ(x − y) for all x ∈ ∂Ω.

G (x , y) = Γ(x − y)− H(x , y).

where Γ is the fundamental solution

Γ(x) =
αn

|x |n−2
,



For Problem (1) we establish the existence of a globally defined
solution with bubbling phenomena as t → +∞.
Let q1, . . . , qk be given distinct points in Ω.

G(q) =


H(q1, q1) −G (q1, q2) · · · −G (q1, qk)
−G (q1, q2) H(q2, q2) −G (q2, q3) · · · −G (q3, qk)

...
. . .

...
−G (q1, qk) · · · −G (qk−1, qk) H(qk , qk)


Our result:
A global solution of (1) with its k bubbling points qj exists if the
matrix G(q) is positive definite.

We can always find k points where G(q) is positive definite thanks
to: H(x , x)→ +∞ as dist (x , ∂Ω)→ 0.



Theorem (C. Cortázar, M. del Pino, M. Musso)

Assume n ≥ 5, G(q1, · · · , qk) is positive definite. Then there exist
functions
xj(t)→ qj and 0 < λj(t)→ 0, as t → +∞, j = 1, . . . , k ,
and a solution of (1) of the form

u(x , t) =
k∑

j=1

Uλj (t),xj (t)(x)− λ
n−2

2
j H(x , qj) + l .o.t,

as t → +∞ and for certain positive numbers aj

λj(t) ∼ aj t
− 1

n−4 .

The set of initial conditions around u(x , 0) that lead to k-bubbling
in infinite time is a codimension k manifold of functions.



Given k points q1, . . . , qk ∈ Rn We want to find a solution u(x , t)
of (1) with

u(x , t) ≈
k∑

j=1

Uλj (t),xj (t)(x)

where xj(t)→ qj and λj(t)→ 0 as t →∞ for each j = 1, . . . , k .

Ansatz at main order: for a certain fixed positive function
µ0(t)→ 0 and positive constants b1, . . . , bk we have that

λj(t) = bjµ0(t), xj(t) = qj



Away from the concentration points qj

ut ≈ ∆u +
k∑

j=1

Uλj ,q(x)p

and ∫
Ω
Uλj ,q(x)pdx ≈ λ

n−2
2

j an, an :=

∫
Rn

U(y)pdy ,

Hence, away from the points qj

ut ≈ ∆u + cnµ
n−2

2
0

k∑
j=1

b
n−2

2
j δqj in Ω× (0,∞).

where δq is the Dirac mass at the point q.



Letting u = µ
n−2

2
0 v we get

vt ≈ ∆v − n − 2

2
µ−1

0 µ̇0v +
k∑

j=1

b
n−2

2
j δqj in Ω× (0,∞).

We assume, as it will be a priori satisfied that µ−1
0 µ̇0 → 0, which is

the case for instance if µ0 ∼ t−a.



Hence

vt ≈ ∆v + an

k∑
j=1

b
n−2

2
j δqj in Ω× (0,∞),

v = 0 on ∂Ω× (0,∞).

Thus as t → +∞ we get

v(x , t) ≈ an

k∑
j=1

b
n−2

2
j G (x , qj)

where G (x , y) is the Green function of the domain. If H(x , y)
denotes regular part, hence:

u(x , t) ≈
k∑

j=1

λ
n−2

2
j

[ αn

|x − qj |n−2
− H(x , qj)

]
.



Thus a better approximation is

u0(x , t) :=
k∑

j=1

Uλj ,ξj (x)− λ
n−2

2
j H(x , qj).

Let
S(u) := −ut + ∆xu + up.

The error of approximation is S(u0). We get after some
computation near qj

λ
n+2

2
j S(u0)(x , t) = E0(y , t) + l .o.t.

where y =
x−qj
λj

and

E0(y , t) = λj λ̇j

[
y ·∇U(y)+

n − 2

2
U(y)

]
+ pU(y)p−1

[
−λn−2

j H(qj , qj)+
∑
i 6=j

(λiλj)
n−2

2 G (qi , qj)
]
,



We look for a solution

u(x , t) = u0(x , t) + λ
− n−2

2
j φ

(
x − ξj
λj

, t

)
At main order S(u0 + φ̃) = 0 means

λ2
j φt ≈ ∆yφ+ pU(y)p−1φ+ λ

n+2
2

j S(u0),

so that at main order we expect



L0(φ) := ∆yφ+ pU(y)p−1φ+ E0(y , t) = 0 in Rn.

This equation is solvable for space decaying φ if and only if∫
Rn E0Zdy = 0 for all bounded solution of L0(Z ) = 0, which all

consist of linear combinations of the functions

Zi (y) :=
∂U

∂yi
(y), i = 1, . . . , n, Zn+1(y) :=

n − 2

2
U(y)+y ·∇U(y),



We get in particular the necessary condition for the existence of φ0,

0 =

∫
Rn

E0(y , t)Zn+1(y) dy =

c1

[
λn−2
j H(qj , qj)−

∑
i 6=j

(λiλj)
n−2

2 G (qi , qj)
]

+ c2 λj λ̇j ,

c1 = −p
∫
Rn

Up−1Zn+1 = (n − p)

∫
Rn

Up, c2 =

∫
Rn

|Zn+1|2.

We observe that c2 < +∞ thanks to n ≥ 5.



Since λj = bjµ0, we get that for all j

µ0(t)n−3[bn−2
j H(qj , qj)−

∑
i 6=j

(bibj)
n−2

2 G (qi , qj)] + c2c
−1
1 b2

j µ̇0(t) = 0

µ̇0(t) = −aµ0(t)n−3,

for some positive constant a, which yields

µ0(t) = γt−
1

n−4 ,

and for suitable γ (chosen taken into account scaling invariance)

bn−3
j H(qj , qj)−

∑
i 6=j

b
n−2

2
i b

n−2
2
−1

j G (qi , qj) =
2bj
n − 2

for all j = 1, . . . , k ,



This system is solvable if the matrix

G(q) =


H(q1, q1) −G (q1, q2) · · · −G (q1, qk)
−G (q1, q2) H(q2, q2) −G (q2, q3) · · · −G (q3, qk)

...
. . .

...
−G (q1, qk) · · · −G (qk−1, qk) H(qk , qk)


is positive definite. Indeed, it is equivalent to ∇bI (b) = 0 where

I (b) :=
k∑

j=1

bn−2
j H(qj , qj)−

∑
i 6=j

b
n−2

2
i b

n−2
2

j G (qi , qj)−
k∑

j=1

b2
j .

which has a positive minimizer.



A well-known fact is that the eigenvalue problem

L0(φ) + λφ = 0, φ ∈ L∞(RN)

has exactly one negative, simple eigenvalue λ0, with a positive,
radially symmetric eigenfunction Z0, which decays like

Z0(y) ∼ |y |−
n−1

2 e−
√
|λ0| |y | as |y | → ∞.



At main order we have

λ2
j φt = L0(φ) + E0(y , t)

Let e(t) :=
∫
Rn φ(y , t)Z (y) dy . Then, integrating the equation,

using that λj(t)2 ≈ γt−
2

n−2 we get

γt−
2

n−2 ė(t)− λ0e(t) = f (t) :=

∫
Rn

E0(y , t)Z0(y) dy .

Hence, for some a > 0,

e(t) = exp(at
n−2
n−4 )

(
e(0) +

∫ t

0
s

2
n−4 f (s) exp(−as

n−2
n−4 )ds

)
.



The only way in which e(t) does not grow exponentially in time is
for the specific value of

e(0) =

∫
Rn

φ(y , 0)Z0(y) dy = −
∫ ∞

0
s

2
n−4 f (s) exp(−as

n−2
n−4 )ds

Therefore the (small) initial condition required for the remainder φ
should lie on a certain manifold locally described as a translation of
the hyperplane orthogonal to Z0(y). Since we have k of these
hyperplanes, these constraints define a codimension k manifold of
initial conditions.



• Similar phenomena holds true for n = 4 and n = 3 with

µ(t) ∼
{
e−a
√
t if n = 4

e−at if n = 3

• In entire space R3 we can find (del Pino, Musso, Wei) solutions
with a positive single blowing-up bubble as t → +∞ for γ > 1 and

ut = ∆u + u5 in R3, lim
|x |→∞

|x |−γu(x , 0) > 0.

µ(t) ∼


1

tγ−1 if 1 < γ < 2
log2 t
t if γ = 2
1
t if γ > 2.

Formal asymptotics previously derived by Fila and King, 2011.



• Multiple bubbling at a single point? The solutions
constructed have simple bubbling: no “bubble on top of bubble”.

A fact: (del Pino, Dolbeault and Musso, JDE 2003 in a ball,
F.Pacard and R.Jing JFA 2005 general domain). The slightly
supercritical problem

∆u + λu + u
n+2
n−2

+ε = 0, u > 0 in Ω, u = 0 on ∂Ω

has solutions with multiple bubbling at a single point when
0 < ε→ 0:

uε(x) ≈
k∑

j=1

αn

(
µεj

(µεj )2 + |x |2

) n−2
2

, µεk � µεk−1 � · · · � µε1.

The analogue of this in the parabolic setting?



x0 x0
uε(x) ∼

3∑
j=1

αn

(
µεj

(µεj )2 + |x |2

) n−2
2



A result for a related problem (Yamabe flow in Rn:
conformal evolution of metrics by scalar curvature

Ancient solutions with bubbling as t → −∞

P.Daskalpoulos, M.D., N. Sesum, Crelle 2016:

(u
n+2
n−2 )t = ∆u + u

n+2
n−2 in Rn × (−∞, 0]

There exists a radially symmetric solution with the profile

u(x , t) ≈
k∑

j=1

αn

(
µj(t)

µj(t)2 + |x |2

) n−2
2

, µk � µk−1 � · · · � µ1.

More precisely, as t → −∞

µj(t) ∼ |t|−bj (j−
k+1

2
), j = 1, . . . , k .



Finite time bubbling for the planar harmonic map flow into S2

ut = ∆u + |∇u|2u, |u| = 1 in Ω× (0,T ) (2)

u = ϕ on ∂Ω× (0,T ), u(·, 0) = u0 in Ω

Substantial literature is present (since 90s) on the analysis of this
ow and its bubbling phenomena (Among them K.C. Chang, W.
Ding, A. Freire, F.H. Lin, H. Matano, M. Struwe, G. Tian, P.
Topping, R. Ye). Blowing-up occurs in the form of scalings of
steady states
Our building block is the 1-corrotational harmonic map,

U(x) =

(
2x

1+|x |2
|x |2−1
1+|x |2

)
, x ∈ R2,



The 1-corrotational symmetric ansatz

u(r , θ, t) =

(
e iθ sin v(r , t)

cos v(r , t)

)
,

The equation reduces just to

vt = vrr +
vr
r

+
sin(2v)

2r2
.

v(r , t) = w(r) := 2 arctan(r)

is the stationary 1-corrotational harmonic map.



Results on existence of blow-up

• Chang-Ding-Ye (1991) in the 1-corotational case, when
Ω = B1(0), for suitable boundary and initial conditions we have

v(r , t) ∼ w

(
r

λ(t)

)
with λ(t)→ 0 as t → T < +∞

• Topping: in the general case λ(t) = o(T − t)
1
2 which means

blow-up is always “type II”. For certain targets this estimate is
nearly optimal.

• Angenent, Hulshof and Matano: In the 1-corrotational case the
rate is λ(t) = o(T − t).



• Van der Berg, Hulshof, King: Formal analysis. Blow-up in the
1-co-rotational radially symmetric case should typically be

λ(t) ∼ κ(T − t)

log2(T − t)
.

• Raphael and Schweyer (2013) constructed a 1-corrotational
solution with this bubbling rate for the Cauchy problem in entire
space. They prove stability of this bubbling within the radial
1-corrotational class.

• The existence and stability issues without radial symmetry is
largely open. It has indeed been conjectured by some authors that
the bubbling phenomenon is not stable once radial symmetry is
perturbed.



Theorem (J. Davila, M. del Pino, J. Wei)

Let q ∈ Ω be arbitrary and T > 0 small. There exist an initial
condition u0(x) and boundary condition ϕ(x) such that the
solution u(x , t) to problem (2) blows-up at time T at the point q
in the form

u(x , t) ≈ Q(t)Uλ(t),x0(t)(x)

with x0(t)→ q and λ(t)→ 0, and Q(0) = Id and the limit Q(T )
exists, and

λ(t) ∼ κ(T − t)

log2(T − t)
.

This blow-up is stable in the sense that the same holds for any
small perturbation (into S2) of the initial and boundary condition,
at a point q1 and time T1 close to q and T



• Also, a similar result can be proven with blow up at k given
points of the domain. In this case, the phenomenon is codimension
k − 1-stable.

• One can construct solutions with reverse bubbling, that continue
naturally after blow up. With that continuation, the k-blow-up
phenomenon is stable, of course with blow-up taking place at
different times.



For Keller-Segel, our main result is existence and stability of the
critical mass solution.

ut = ∆u −∇ · (u∇(−∆)−1u), u > 0 in R2 × (0,∞) (3)

Assuming that u(x , 0) ∈ L1(R2), the following is known:

• If
∫
R2 u(x , 0)dx > 8π then finite-time blow-up always takes

place. Bubbling behavior in the radial case with exact rates when
mass is close to 8π have been built by Raphael and Schweyer.

• It
∫
R2 u(x , 0)dx < 8π then the solution is global, it goes to zero

uniformly as t →∞ with a self-similar profile (Dobeault and
Perthame)



• The solution when
∫
R2 u(x , 0)dx = 8π is globally defined in time.

If the second moment of the initial condition is finite, namely∫
R2 |x |2u(x , 0)dx < +∞, then the solution blows-up in infinite

time, with a bubbling behavior (of unknown rates) (Masmoudi,
Carlen-Figalli)

• Formal rates of bubbling when mass equals 8π have been studied
by Chavanis and Sire and by Campos.



Our result: (with Davila, Dolbeault, Musso and Wei)
There exists a solution u(x , t) of Keller-Segel with fast-decay initial
condition, which blow up in infinite time, with a profile which at
main order is

u(x , t) ≈ 8λ(t)2

(λ(t)2 + |x |2)2

where

λ(t) ∼ 1√
log t

.

All positive initial conditions (not necessarly radial) with fast
decay and mass 8π suitably close to u(x , 0) lead to the same
phenomenon.



Thanks for your attention


