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contrast the behavior of two ODEs

» Quadratic case

1=z, z2(0) =€
€ 1
g T = —
Z() 1_€t7 £ c
» Cubic case
w=w, w(0) =¢

g2 1
W= T le=7a

» The general time of existence does not change when these ODE
are replaced by

t=iwz+ 2 +hO(z), W= iww +w + k@ (w)



nonlinear wave equations
» nonlinear wave equations on R”
O*u = Au+ N(Ou, Vu, 9u, V*u)
where N(v) = O(|v|"~!). The Cauchy problem

u(0,x) = g(x), Ou(0,x) = h(x)
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nonlinear wave equations
» nonlinear wave equations on R”
O*u = Au+ N(Ou, Vu, 9u, V*u)
where N(v) = O(|v|"~!). The Cauchy problem

u(0,x) = g(x), O (0, x) = h(x)

» A basic question in PDE:s is the time of existence 7 = Ty of
solutions, for data (g, ) with

18, Wllz < R

for Z an appropriate Sobolev space

» The best result for the small data Cauchy problem would be to
show that 7 = +o0.

)]



existence time estimates

» It is clear that T depends upon the order m of the nonlinearity
Theorem (S. Klainerman, L. Hérmander, J. Shatah (1980s),
...others)

Suppose that
In—1)(m—2)>1
then for Cauchy data (g,h) € Z, for R sufficiently small, T = +0oc.

The result reflects a balance of nonlinear effects and the
dispersion (decay rate) of solutions in R".



existence time estimates

» It is clear that T depends upon the order m of the nonlinearity
Theorem (S. Klainerman, L. Hérmander, J. Shatah (1980s),
...others)

Suppose that
In—1)(m—2)>1
then for Cauchy data (g,h) € Z, for R sufficiently small, T = +0oc.

The result reflects a balance of nonlinear effects and the
dispersion (decay rate) of solutions in R".

» Theorem (decay rates for the linear wave equation)
Homogeneous solutions of the linear wave equation satisfy
C

lu(t,x)|pee <
’ M%(nfl)




check dimensions

» Suppose that m = 3 (the minimum) then to satisfy the
hypotheses one needs

mn=1D(m-2)>1, thus n > 3
Suppose that m > 4, then

n=1)(m-2)>1, thus n > 2



check dimensions

» Suppose that m = 3 (the minimum) then to satisfy the
hypotheses one needs

mn=1D(m-2)>1, thus n > 3
Suppose that m > 4, then

n=1)(m-2)>1, thus n > 2

» borderline cases

Theorem (long time existence)

Forn =2 and m = 4 (respectively n = 3 and m = 3) and
(g, h)|lz < R sufficiently small, then

Tg > exp(C/R*), respectively Tg > exp(C/R)



examples from physics

» compressible fluid dynamics: m =3
» Einstein’s equations in general relativity: m = 3

» nonlinear Klein - Gordon equation: m =4
and the time decay is better in this case



Transformation theory

» There is great interest in transforming a problem with m = 3
onto one with m = 4. There are several results based on this idea

Theorem (Klainerman (1988), Shatah (1989), Pusateri &
Shatah (2012))

For nonlinearities which satisfy a null condition then
Tr = +o0 for dimension n = 3
Tr = exp(C/R?) for dimension n = 2

The idea in this theorem is to change variables 7 : © — v in order
to eliminate the quadratic terms in the equation

It seems hard however to make repeated transformations with the
methods of the above articles



Transformation theory

» There is great interest in transforming a problem with m = 3
onto one with m = 4. There are several results based on this idea

Theorem (Klainerman (1988), Shatah (1989), Pusateri &
Shatah (2012))

For nonlinearities which satisfy a null condition then
Tr = +o0 for dimension n = 3
Tr = exp(C/R?) for dimension n = 2

The idea in this theorem is to change variables 7 : © — v in order
to eliminate the quadratic terms in the equation

It seems hard however to make repeated transformations with the
methods of the above articles

» Our course of action is to introduce methods of Hamiltonian
systems, and in particular canonical transformations, for this
problem



Lagrangians

» Physically interesting cases are those (systems of) wave
equations (1) arising from a Lagrangian 6A = 0, where the
action functional is

T
Alu(t, ) = / L(Oy, Vi) di
0
The Lagrangian functional for the wave equation
L(ur, V) _/ L((w)? = [Vul) + P (u, ) dx
Rll

The nonlinear term P (1,, Vu) satisfies smallness conditions.
|PU (r)| = O(|r™) in variables r = (u;, Vi), m > 2



Lagrangians

» Physically interesting cases are those (systems of) wave
equations (1) arising from a Lagrangian 6A = 0, where the
action functional is

Alu(t, ) = /O L(Oy, Vi) di

The Lagrangian functional for the wave equation
L{ur, Vi) = / L((w)? = [Vul) + P (u, ) dx
Rll

The nonlinear term P (1,, Vu) satisfies smallness conditions.
|PU (r)| = O(|r™) in variables r = (u;, Vi), m > 2
» The Legendre transform

5M1L = U + allzp(m) (M,./ VM) =
serves to define p = p(u,, Vu). Its inverse gives

ur = u(p, Vu)



Lagrangians and Hamiltonians

» Under the Legendre transformation, this realizes the nonlinear
wave equation (1) as a Hamiltonian PDE

H(u,p) := (p,us) — L(us, Vu)

evaluated at u;, = u;(p, Vu)



Lagrangians and Hamiltonians

» Under the Legendre transformation, this realizes the nonlinear
wave equation (1) as a Hamiltonian PDE

H(u,p) := (p,us) — L(us, Vu)

evaluated at u, = u,(p, Vu)

» In Darboux coordinates

8[” — (5[)H
8[p - _5MH

A first order system of equations equivalent to the above
nonlinear wave equation (1)



Lagrangians and Hamiltonians

» For nonlinear wave equations, if L = L) 4+ [ PU") with

L@ = /,, (u)* — |Vul?) dx
then H = H® + fR(m), with

1 = [ 47+ )

Furthermore, N = N"~1) in (1), of order m — 1
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Restrict our considerations to the n > 3, with x € R”
» Solutions of the linear equations ~ ¢6* (&)1,
Frequencies are continuous, given by the dispersion relation for
the wave equation w(&) = [¢|
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Birkhoff normal forms
Restrict our considerations to the n > 3, with x € R”

» Solutions of the linear equations ~ ¢6* (&)1,
Frequencies are continuous, given by the dispersion relation for
the wave equation w(&) = [¢|

» Normal form - transform the equations to retain only essential
nonlinearities

in a neighborhood Bk (0) C Z
» Conditions:
1. The transformation 7 is canonical, so the new equations are

07 =J0H(Z),  Hy(d)=H(r"'())

2. The new Hamiltonian is
H () =HO(Z) + (2% 4 ... 4 Z200) 4 R+

where each Z(" retains (at most) only resonant terms
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normal form. It is part of averaging theory for dynamical systems
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triad resonances

» This transformation procedure is called the reduction to Birkhoff
normal form. It is part of averaging theory for dynamical systems

» When m = 3 resonances are known as three wave interactions or
resonant triads; those that satisfy the resonance relations

w(ér) Tw(é) Fw(&) =0, )
S+ +8E=0

» The question in PDEs: mapping properties of the transformation
T = 7(3), is it well defined, and on which Banach spaces

When x € R" then £ € R" is a continuous variable, and the
question of resonance becomes more subtle than for finite
dimensional Hamiltonian systems



Triad resonances for wave equations

» Proposition (three wave interactions)

Resonant triads for the wave equation are colinear

§1:8:8

» Proof of Proposition:
The resonant set is an intersection of light cones

LCy:={2:=(&%¢,...) : € =xuw(e!, ... &M}

—

W(E)+0(E)




Hamiltonian flows
» One approach to the transformation 7 = 7) is to construct it as

the time s = 1 flow of an auxiliary Hamiltonian system

d
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Sz Jo,



Hamiltonian flows

» One approach to the transformation 7 = 7) is to construct it as
the time s = 1 flow of an auxiliary Hamiltonian system

d
“ L 75.K®
Sz Jo,

» Define complex symplectic coordinates

() = ém/mxru(xm L o)

1 .
= o [ e




Hamiltonian flows
» One approach to the transformation 7 = 7) is to construct it as
the time s = 1 flow of an auxiliary Hamiltonian system

d
“ L 75.K®
P Jo;

» Define complex symplectic coordinates
1

o1
2(x) = E(V\DXIM(XHI ‘Dx|p(X))

= o [ e

» In these coordinates, using Plancherel (and dropping ‘hat’s)

()2 + // Coal€rr &) 22 dE
o 2| S gm0 )

m=3 |p|+|g|l=m

where 2727 := [, ,2(&) [Ty, 2(=80)



null condition

» The Hamiltonian H®) satisfies the null condition when the
interaction coefficients satisfy

(1'12(6]7527 5’3) =0 ’ gj S Rn
for all resonant triads (£, &, &3) € R

This is equivalent to Klainerman’s definition (proof given later)



null condition

» The Hamiltonian H®) satisfies the null condition when the
interaction coefficients satisfy

(1'12(61762753) =0 ’ 5] S Rn
for all resonant triads (£, &, &3) € R

This is equivalent to Klainerman’s definition (proof given later)
» A particular example is

H® :/ p(\Vu]z —p?) dx

Under Fourier transform, and using complex symplectic
coordinates

GV, 5 — (31 .
HO@z) = //MM0 e (elol - &-6)
x (212223 + 212-27—3) d1d& + - - -




cohomological equation

» To eliminate H®) using a Hamiltonian flow, solve the
cohomological equation for K®)

{H(z),K(3)} - g®
Do this despite the resonant triads (the singularities) of the RHS

If the Hamiltonian vector field X' has a well defined solution
map on an appropriate Banach space Z, this is a good
transformation of the nonlinear wave equation



cohomological equation

» To eliminate H©) using a Hamiltonian flow, solve the
cohomological equation for K®)

{H(Z) K(3)} - g®

Do this despite the resonant triads (the singularities) of the RHS

If the Hamiltonian vector field X' has a well defined solution
map on an appropriate Banach space Z, this is a good
transformation of the nonlinear wave equation

» Solution of the cohomological equation for K )

K9 = C//£ +6+6=0 |5Lﬁlf|3| (le2llsa] = & - &)

21222 212—22—
><( 12223 12—22-3 )d£1d£2+---
witw+ws W —wy—ws

= // K3,0(6)212023 + K21 (€)212 273 dE1dEr + - - -



resonant variety

» The first denominator is nonresonant (except at

§S=6L=8=0)

The second denominator vanishes on the resonant set

R = {(&,6.6) R w(é) —w(&) —w(&) =0,
&L+6&+&G=0)



resonant variety

» The first denominator is nonresonant (except at

§S=6L=8=0)

The second denominator vanishes on the resonant set

R = {(&,6.6) R w(é) —w(&) —w(&) =0,
&L+6&+&G=0)

» Proposition (null condition)

The numerator |&,||63| — & - &3 in the resonant kernel K, | vanishes
when (&, &3) are colinear. That is, when

§1:8: 83



e . . 3)
auxiliary Hamiltonian vector field XX
» We seek the transformation as a time s = 1 flow of the auxiliary
Hamiltonian system
d

ez = id k™ =X (2,2)

The flow map 1;(z) gives rise to 70%)(z) := 1,—(2)
The question is whether the flow map exists
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auxiliary Hamiltonian vector field XX
» We seek the transformation as a time s = 1 flow of the auxiliary
Hamiltonian system
d

ez = id k™ =X (2,2)

The flow map 1;(z) gives rise to 70%)(z) := 1,—(2)

The question is whether the flow map exists
» The Hamiltonian vector field

X7 = ic./£1+£z+£=o[ St | ( SERCER: >Z_IZ_2

1&2]IE N & | + [&2] + [€]
1€l /1]l =& - &\ -
i r&u&r%+\fzr+r§\)z““
&1 7 1&lIEl =& - €\
+2 &IE] (|£1| Y ‘ﬂ)azfz} dé +

is not Lipschitz on (any reasonable) Banach spaces



kernel estimates

» Change variables w(&) := +/[£|z(£) so that ||w||gs give the
standard Sobolev energies for (u,p)

We are led to study the resonant homogeneous kernels

B _ Lol -&-¢
() =ker&8) = (e @)



kernel estimates

» Change variables w(&) := +/[£|z(£) so that ||w||gs give the
standard Sobolev energies for (u,p)

We are led to study the resonant homogeneous kernels

B _ Lol -&-¢
() =ker&8) = (e @)

» Lemma
Estimates of (x) in conic neghborhoods

€]
&l

where C (&1, &2, &) is a bounded symbol.

(*) = =5 X|al<ie)/10 + C(€1,€2,6)
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Lie algebras of invariant operators

» Angular momentum operators {1y = x;0y, — x40y,
Dilation operators A = >/, xz0k,

» Under Fourier transform

Qe = Qe(X) = &0, — &g = Qu(§)
Ax) — —A(&) —nl

» The operators () and A obey the Leibnitz rule with respect to the
integral operators

Oy = [ ks g

Namely
QX®) (u,v) = X (Qu, v) + XK (u, Qv)



. (3)
Energy estimates for XX
» Work in the invariant norm Sobolev spaces
75 = {w : APQY9%w e LA(R") , |a| +|8] + |o] <5}
= {w s AL W € XY, |of + 6] + o] <5}



Energy estimates for XX
» Work in the invariant norm Sobolev spaces
75 = {w : APQY9%w e LA(R") , |a| +|8] + |o] <5}
= {w s ALQE(E) W € P(RY) ., |of + 6] + o] <5}

» Energy estimates: For n > 3 solutions of 9,z = XX (z,z) satisfy

d 3, _
gHZ(Sa')H% = 2re(z, XX (2,2))s

3
< Clizlls

This is enough to show that the flow map v)5(z) exists and is
continuous on Bg(0) C Z* for |s| < 1, for small R
In fact t)5(z) is smooth on the scale of spaces Z*

10:305(z) — 1l|5—1 < Cllzl5-1




transformed Hamiltonian

» This transformation 7/ = 7)(z) = 1, (z) has achieved a
canonical change of variables of the nonlinear wave equation to
one with a new Hamiltonian

Hi(d) = HY(Z)+RY
= HY)+ (H(4) — %{K(3)7{K(3)7H(2)}}) 4.
Now m = 4 and we have the improved existence theory

Namely if n > 3 then T = +o0.



transformed Hamiltonian

» This transformation 7/ = 70)(z) = 1), (z) has achieved a
canonical change of variables of the nonlinear wave equation to
one with a new Hamiltonian

Hi(d) = HY(Z)+RY
= HY)+ (H(4) — %{K(3)7 {K(3)7H(2)}}) 4.
Now m = 4 and we have the improved existence theory

Namely if n > 3 then T = +o0.

» In principle, this operation can be repeated. This is particularly
important for case n = 2 (Alinhac, Hoshige, Delort)



global existence via an energy estimate

» The standard argument for existence theory for the nonlinear
wave equation (1) uses the invariant norm Sobolev estimate

C
|(u(t,-),p(t, ) < ——|zlls
|T|§ n—1)

withs > (n+2)/2



global existence via an energy estimate

» The standard argument for existence theory for the nonlinear
wave equation (1) uses the invariant norm Sobolev estimate

C
[(u(t, ), p(t,)|eee < ———|lzls
|t|§(n71
withs > (n+2)/2
» Then energy estimates for (1) give

el < coxp( [ sl as) .00l
Cenp( [ (et /67202 ) [0, 0)

This gives an a priori bound for My := sup, <7 [|z(#, -)||s which
is uniform in 7" < +o0 if the integral f0+oo(<s>(”_l)/2)_(m_2) ds
converges

IN

If the integral grows logarithmically, it gives the lower bounds
Tg > exp(C/R"2?)



Thank you
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