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contrast the behavior of two ODEs
I Quadratic case

ż = z2 , z(0) = ε

z(t) =
ε

1− εt
, Tε =

1
ε

I Cubic case

ẇ = w3 , w(0) = ε

w(t) =

√
ε2

1− 2ε2t
, Tε =

1
2ε2

I The general time of existence does not change when these ODE
are replaced by

ż = iωz + z2 + h(3)(z) , ẇ = iωw + w3 + k(4)(w)
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nonlinear wave equations

I nonlinear wave equations on Rn

∂2
t u = ∆u + N(∂tu,∇u, ∂2

t u,∇2u) (1)

where N(v) = O(|v|m−1). The Cauchy problem

u(0, x) = g(x) , ∂tu(0, x) = h(x)

I A basic question in PDEs is the time of existence T = TR of
solutions, for data (g, h) with

‖(g, h)‖Z ≤ R

for Z an appropriate Sobolev space
I The best result for the small data Cauchy problem would be to

show that TR = +∞.
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existence time estimates
I It is clear that TR depends upon the order m of the nonlinearity

Theorem (S. Klainerman, L. Hörmander, J. Shatah (1980s),
. . . others)
Suppose that

1
2(n− 1)(m− 2) > 1

then for Cauchy data (g, h) ∈ Z, for R sufficiently small, TR = +∞.

The result reflects a balance of nonlinear effects and the
dispersion (decay rate) of solutions in Rn.

I Theorem (decay rates for the linear wave equation)
Homogeneous solutions of the linear wave equation satisfy

|u(t, x)|L∞ ≤ C

|t|
1
2 (n−1)
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check dimensions
I Suppose that m = 3 (the minimum) then to satisfy the

hypotheses one needs

1
2(n− 1)(m− 2) > 1 , thus n > 3

Suppose that m ≥ 4, then

1
2(n− 1)(m− 2) > 1 , thus n > 2

I borderline cases

Theorem (long time existence)
For n = 2 and m = 4 (respectively n = 3 and m = 3) and
‖(g, h)‖Z ≤ R sufficiently small, then

TR > exp(C/R2) , respectively TR > exp(C/R)
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examples from physics

I compressible fluid dynamics: m = 3

I Einstein’s equations in general relativity: m = 3

I nonlinear Klein - Gordon equation: m = 4
and the time decay is better in this case



Transformation theory

I There is great interest in transforming a problem with m = 3
onto one with m = 4. There are several results based on this idea

Theorem (Klainerman (1988), Shatah (1989), Pusateri &
Shatah (2012))
For nonlinearities which satisfy a null condition then

TR = +∞ for dimension n = 3
TR = exp(C/R2) for dimension n = 2

The idea in this theorem is to change variables τ : u→ v in order
to eliminate the quadratic terms in the equation
It seems hard however to make repeated transformations with the
methods of the above articles

I Our course of action is to introduce methods of Hamiltonian
systems, and in particular canonical transformations, for this
problem
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Lagrangians
I Physically interesting cases are those (systems of) wave

equations (1) arising from a Lagrangian δA = 0, where the
action functional is

A(u(t, ·)) =

∫ T

0
L(∂tu,∇u) dt

The Lagrangian functional for the wave equation

L(ut,∇u) =

∫
Rn

1
2

(
(ut)

2 − |∇u|2
)

+ P(m)(ut,∇u) dx

The nonlinear term P(m)(ut,∇u) satisfies smallness conditions.
|P(m)(r)| = O(|r|m) in variables r = (ut,∇u), m ≥ 2

I The Legendre transform

δut L = ut + ∂ut P
(m)(ut,∇u) := p

serves to define p = p(ut,∇u). Its inverse gives

ut = ut(p,∇u)
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Lagrangians and Hamiltonians

I Under the Legendre transformation, this realizes the nonlinear
wave equation (1) as a Hamiltonian PDE

H(u, p) := 〈p, ut〉 − L(ut,∇u)

evaluated at ut = ut(p,∇u)

I In Darboux coordinates

∂tu = δpH

∂tp = −δuH

A first order system of equations equivalent to the above
nonlinear wave equation (1)
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Lagrangians and Hamiltonians

I For nonlinear wave equations, if L = L(2) +
∫

P(m), with

L(2) =

∫
Rn

1
2

(
(ut)

2 − |∇u|2
)

dx

then H = H(2) +
∫

R(m), with

H(2) =

∫
Rn

1
2

(
p2 + |∇u|2

)
dx

Furthermore, N = N(m−1) in (1), of order m− 1



Birkhoff normal forms
Restrict our considerations to the n ≥ 3, with x ∈ Rn

I Solutions of the linear equations eiξ·x−ω(ξ)t.
Frequencies are continuous, given by the dispersion relation for
the wave equation ω(ξ) = |ξ|

I Normal form - transform the equations to retain only essential
nonlinearities

τ : z =

(
u
p

)
7→ z′

in a neighborhood BR(0) ⊆ Z
I Conditions:

1. The transformation τ is canonical, so the new equations are

∂tz′ = J δH+(z′) , H+(z′) = H(τ−1(z′))

2. The new Hamiltonian is

H+(z′) = H(2)(z′) +
(
Z(3) + · · ·+ Z(M)

)
+ R(M+1)

+

where each Z(m) retains (at most) only resonant terms
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triad resonances

I This transformation procedure is called the reduction to Birkhoff
normal form. It is part of averaging theory for dynamical systems

I When m = 3 resonances are known as three wave interactions or
resonant triads; those that satisfy the resonance relations

ω(ξ1)± ω(ξ2)± ω(ξ3) = 0 , (2)

ξ1 + ξ2 + ξ3 = 0

I The question in PDEs: mapping properties of the transformation
τ = τ (3), is it well defined, and on which Banach spaces

When x ∈ Rn then ξ ∈ Rn is a continuous variable, and the
question of resonance becomes more subtle than for finite
dimensional Hamiltonian systems
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Triad resonances for wave equations
I Proposition (three wave interactions)

Resonant triads for the wave equation are colinear

ξ1 : ξ2 : ξ3

I Proof of Proposition:
The resonant set is an intersection of light cones

LC± := {Ξ := (ξ0, ξ1, . . . ) : ξ0 = ±ω(ξ1, . . . ξn)}

  

ξ
2

ξ
1

ω(ξ
1
)+ω(ξ

2
)

ω(ξ
1
)

- ξ
3

ω



Hamiltonian flows
I One approach to the transformation τ = τ (3) is to construct it as

the time s = 1 flow of an auxiliary Hamiltonian system

d
ds

z = JδzK(3)

I Define complex symplectic coordinates

z(x) =
1√
2

(√
|Dx|u(x) + i

1√
|Dx|

p(x)
)

=
1√
2π

n

∫
Rn

ẑ(ξ)eikx dξ

I In these coordinates, using Plancherel (and dropping ‘hat’s)

H =

∫
Rn
ω(ξ)|z(ξ)|2+

∑
m≥3

[ ∑
|p|+|q|=m

∫∫
∑m

`=1 ξ`=0
cpq(ξ1, . . . ξm)zpzq] d~ξ

where zpzq :=
∏
`=1,..p z(ξ`)

∏
`′=1,..q z̄(−ξ`′)
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null condition
I The Hamiltonian H(3) satisfies the null condition when the

interaction coefficients satisfy

c12(ξ1, ξ2, ξ3) = 0 , ξj ∈ Rn

for all resonant triads (ξ1, ξ2, ξ3) ∈ R3n

This is equivalent to Klainerman’s definition (proof given later)
I A particular example is

H(3) =

∫
Rn

p
(
|∇u|2 − p2) dx

Under Fourier transform, and using complex symplectic
coordinates

H(3)(z, z̄) = C
∫∫

ξ1+ξ2+ξ3=0

√
|ξ1|
|ξ2||ξ3|

(
|ξ2||ξ3| − ξ2 · ξ3

)
×
(
z1z2z3 + z1z̄−2z̄−3

)
dξ1dξ2 + · · ·
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cohomological equation
I To eliminate H(3) using a Hamiltonian flow, solve the

cohomological equation for K(3)

{H(2),K(3)} = H(3)

Do this despite the resonant triads (the singularities) of the RHS

If the Hamiltonian vector field XK(3)
has a well defined solution

map on an appropriate Banach space Z, this is a good
transformation of the nonlinear wave equation

I Solution of the cohomological equation for K(3)

K(3)(z, z̄) := C
∫∫

ξ1+ξ2+ξ3=0

√
|ξ1|
|ξ2||ξ3|

(
|ξ2||ξ3| − ξ2 · ξ3

)
×
( z1z2z3

ω1 + ω2 + ω3
+

z1z̄−2z̄−3

ω1 − ω2 − ω3

)
dξ1dξ2 + · · ·

=

∫∫
K3,0(~ξ)z1z2z3 + K2,1(~ξ)z1z̄−2z̄−3 dξ1dξ2 + · · ·



cohomological equation
I To eliminate H(3) using a Hamiltonian flow, solve the

cohomological equation for K(3)

{H(2),K(3)} = H(3)

Do this despite the resonant triads (the singularities) of the RHS

If the Hamiltonian vector field XK(3)
has a well defined solution

map on an appropriate Banach space Z, this is a good
transformation of the nonlinear wave equation

I Solution of the cohomological equation for K(3)

K(3)(z, z̄) := C
∫∫

ξ1+ξ2+ξ3=0

√
|ξ1|
|ξ2||ξ3|

(
|ξ2||ξ3| − ξ2 · ξ3

)
×
( z1z2z3

ω1 + ω2 + ω3
+

z1z̄−2z̄−3

ω1 − ω2 − ω3

)
dξ1dξ2 + · · ·

=

∫∫
K3,0(~ξ)z1z2z3 + K2,1(~ξ)z1z̄−2z̄−3 dξ1dξ2 + · · ·



resonant variety

I The first denominator is nonresonant (except at
ξ1 = ξ2 = ξ3 = 0)
The second denominator vanishes on the resonant set

R = {(ξ1, ξ2, ξ3) ∈ R3n : ω(ξ1)− ω(ξ2)− ω(ξ3) = 0 ,

ξ1 + ξ2 + ξ3 = 0}

I Proposition (null condition)
The numerator |ξ2||ξ3| − ξ2 · ξ3 in the resonant kernel K2,1 vanishes
when (ξ2, ξ3) are colinear. That is, when

ξ1 : ξ2 : ξ3
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auxiliary Hamiltonian vector field XK(3)

I We seek the transformation as a time s = 1 flow of the auxiliary
Hamiltonian system

d
ds

z = iδz̄(x)K
(3) := XK(3)

(z, z̄)

The flow map ψs(z) gives rise to τ (3)(z) := ψs=1(z)
The question is whether the flow map exists

I The Hamiltonian vector field

XK(3)
(z, z̄) := iC

∫
ξ1+ξ2+ξ=0

[√ |ξ1|
|ξ2||ξ|

( |ξ2||ξ| − ξ2 · ξ
|ξ1|+ |ξ2|+ |ξ|

)
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]
dξ1 + · · ·

is not Lipschitz on (any reasonable) Banach spaces
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kernel estimates

I Change variables w(ξ) :=
√
|ξ|z(ξ) so that ‖w‖Hs give the

standard Sobolev energies for (u, p)

We are led to study the resonant homogeneous kernels

(∗) = k(ξ1, ξ2, ξ) :=
1
|ξ2|

( |ξ2||ξ| − ξ2 · ξ
|ξ1| − |ξ2| − |ξ|

)

I Lemma
Estimates of (∗) in conic neghborhoods

(∗) =
|ξ|
|ξ2|

χ|ξ2|≤|ξ|/10 + C(ξ1, ξ2, ξ)

where C(ξ1, ξ2, ξ) is a bounded symbol.
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Lie algebras of invariant operators
I Angular momentum operators Ωj` = xj∂x` − x`∂xj

Dilation operators Λ =
∑n

k=1 xk∂xk

I Under Fourier transform

Ωj` = Ωj`(X) 7→ ξj∂ξ` − ξ`∂ξj = Ωjl(ξ)

Λ(x) 7→ −Λ(ξ)− nI

I The operators Ω and Λ obey the Leibnitz rule with respect to the
integral operators

X(K)(u, v) =

∫
ξ+ξ1+ξ2=0

k(ξ, ξ1, ξ2)u(ξ1)v(ξ2) dξ1

Namely

ΩX(K)(u, v) = X(K)(Ωu, v) + X(K)(u,Ωv)
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Energy estimates for XK(3)

I Work in the invariant norm Sobolev spaces

Z s̄ := {w : ΛβΩα∂σx ŵ ∈ L2(Rn) , |α|+ |β|+ |σ| ≤ s̄}

= {w : ΛβξΩα
ξ 〈ξ〉σw ∈ L2(Rn

ξ) , |α|+ |β|+ |σ| ≤ s̄}

I Energy estimates: For n ≥ 3 solutions of ∂sz = XK(3)
(z, z̄) satisfy

d
ds
‖z(s, ·)‖2

s̄ = 2re〈z,XK(3)
(z, z̄)〉s̄

≤ C‖z‖3
s̄

This is enough to show that the flow map ψs(z) exists and is
continuous on BR(0) ⊆ Z s̄ for |s| ≤ 1, for small R
In fact ψs(z) is smooth on the scale of spaces Z s̄

‖∂zψs(z)− I‖s̄−1 < C‖z‖s̄−1
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transformed Hamiltonian

I This transformation z′ = τ (3)(z) = ψs=1(z) has achieved a
canonical change of variables of the nonlinear wave equation to
one with a new Hamiltonian

H+(z′) = H(2)(z′) + R(4)

= H(2)(z′) +
(
H(4) − 1

2{K
(3), {K(3),H(2)}}

)
+ . . .

Now m = 4 and we have the improved existence theory

Namely if n ≥ 3 then TR = +∞.

I In principle, this operation can be repeated. This is particularly
important for case n = 2 (Alinhac, Hoshige, Delort)
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global existence via an energy estimate
I The standard argument for existence theory for the nonlinear

wave equation (1) uses the invariant norm Sobolev estimate

|(u(t, ·), p(t, ·)|L∞ ≤ C

|t|
1
2 (n−1)

‖z‖s̄

with s̄ ≥ (n + 2)/2
I Then energy estimates for (1) give

‖z(t, ·)‖s̄ ≤ C exp
(∫ t

0
|z(s, ·)|(m−2)

C1 ds
)
‖z(t, 0)‖s̄

≤ C exp
(∫ t

0
(‖z(s, ·)‖s̄/〈s〉(n−1)/2)(m−2) ds

)
‖z(t, 0)‖s̄

This gives an a priori bound for MT := sup|t|≤T ‖z(t, ·)‖s̄ which
is uniform in T < +∞ if the integral

∫ +∞
0 (〈s〉(n−1)/2)−(m−2) ds

converges

If the integral grows logarithmically, it gives the lower bounds
TR ≥ exp(C/Rm−2)
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Thank you
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